版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
自覺遵守考場紀(jì)律如考試作弊此答卷無效密自覺遵守考場紀(jì)律如考試作弊此答卷無效密封線第1頁,共3頁浙大城市學(xué)院
《區(qū)塊鏈數(shù)據(jù)庫技術(shù)》2021-2022學(xué)年第一學(xué)期期末試卷院(系)_______班級_______學(xué)號_______姓名_______題號一二三四總分得分一、單選題(本大題共15個小題,每小題1分,共15分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、在一個利用人工智能進行智能客服的系統(tǒng)中,為了提高回答的準(zhǔn)確性和全面性,以下哪個方面的優(yōu)化可能是關(guān)鍵的?()A.知識庫的構(gòu)建和更新B.自然語言處理模型的改進C.對話流程的設(shè)計D.以上都是2、在人工智能的對話系統(tǒng)中,需要實現(xiàn)自然流暢的交互。假設(shè)要開發(fā)一個客服機器人,以下關(guān)于對話系統(tǒng)的描述,正確的是:()A.只要對話系統(tǒng)能夠回答用戶的問題,就不需要考慮回答的方式和語氣B.對話系統(tǒng)可以完全理解用戶的意圖和情感,無需進一步的優(yōu)化C.利用大規(guī)模的對話數(shù)據(jù)進行訓(xùn)練,并結(jié)合語義理解和生成技術(shù),可以提高客服機器人的對話能力D.對話系統(tǒng)的性能不受語言多樣性和文化差異的影響3、在人工智能的對話系統(tǒng)中,假設(shè)需要根據(jù)用戶的上下文和歷史對話信息生成連貫且有針對性的回復(fù)。以下哪種方法能夠更好地利用上下文信息?()A.使用循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)或長短時記憶網(wǎng)絡(luò)(LSTM)捕捉序列信息B.只關(guān)注當(dāng)前輸入的文本,不考慮歷史信息C.對上下文信息進行簡單的統(tǒng)計分析D.隨機生成回復(fù),不依賴上下文4、在人工智能的藥物研發(fā)中,機器學(xué)習(xí)可以輔助藥物分子的設(shè)計和篩選。假設(shè)要開發(fā)一種治療特定疾病的新藥,以下哪種機器學(xué)習(xí)方法可能最有助于找到潛在的有效分子結(jié)構(gòu)?()A.分類算法B.回歸分析C.聚類分析D.強化學(xué)習(xí)5、在人工智能的應(yīng)用中,自動駕駛是一個具有挑戰(zhàn)性的領(lǐng)域。假設(shè)一輛自動駕駛汽車需要在復(fù)雜的交通環(huán)境中做出安全的駕駛決策,需要融合多種傳感器的數(shù)據(jù)。以下關(guān)于傳感器融合的方法,哪一項是不正確的?()A.使用卡爾曼濾波將不同傳感器的數(shù)據(jù)進行融合,以獲得更準(zhǔn)確的車輛狀態(tài)估計B.簡單地將各個傳感器的數(shù)據(jù)相加,作為最終的決策依據(jù)C.基于深度學(xué)習(xí)的方法,自動學(xué)習(xí)不同傳感器數(shù)據(jù)之間的關(guān)系D.采用加權(quán)平均的方式,根據(jù)傳感器的可靠性為其分配不同的權(quán)重6、人工智能在圖像識別領(lǐng)域取得了顯著的成果。假設(shè)要開發(fā)一個能夠識別水果種類的圖像識別系統(tǒng),需要考慮多種因素。以下關(guān)于圖像數(shù)據(jù)預(yù)處理的步驟,哪一項是最關(guān)鍵的?()A.對圖像進行裁剪和旋轉(zhuǎn),以統(tǒng)一圖像的大小和方向B.將圖像轉(zhuǎn)換為灰度圖像,減少數(shù)據(jù)量C.對圖像進行增強和去噪處理,提高圖像質(zhì)量D.隨機打亂圖像的順序,增加數(shù)據(jù)的多樣性7、人工智能中的自動機器學(xué)習(xí)(AutoML)旨在自動化模型的選擇和調(diào)優(yōu)過程。假設(shè)一個企業(yè)沒有專業(yè)的數(shù)據(jù)科學(xué)家,希望使用AutoML來構(gòu)建模型。以下關(guān)于自動機器學(xué)習(xí)的描述,哪一項是錯誤的?()A.AutoML可以自動搜索合適的算法、超參數(shù)和特征工程方法B.能夠降低模型開發(fā)的門檻,使非專業(yè)人員也能構(gòu)建有效的人工智能模型C.AutoML生成的模型總是優(yōu)于由經(jīng)驗豐富的數(shù)據(jù)科學(xué)家手動構(gòu)建的模型D.但仍需要一定的人工干預(yù)和監(jiān)督,以確保模型的合理性和可靠性8、人工智能中的無人駕駛技術(shù)面臨著眾多技術(shù)和法律挑戰(zhàn)。假設(shè)我們在討論無人駕駛汽車的責(zé)任歸屬問題,以下關(guān)于無人駕駛責(zé)任的說法,哪一項是不正確的?()A.事故責(zé)任的判定應(yīng)該綜合考慮多種因素B.完全由無人駕駛汽車的制造商承擔(dān)責(zé)任C.法律法規(guī)需要隨著技術(shù)發(fā)展不斷完善D.乘客在某些情況下也可能承擔(dān)一定責(zé)任9、在強化學(xué)習(xí)中,“Q-learning”算法通過估計什么來進行決策?()A.狀態(tài)價值B.動作價值C.策略D.獎勵10、在人工智能的應(yīng)用中,語音合成技術(shù)可以將文本轉(zhuǎn)換為自然流暢的語音。假設(shè)要為一款智能導(dǎo)航應(yīng)用開發(fā)語音合成功能,以下哪個因素對于合成語音的質(zhì)量影響最大?()A.語音的音色選擇B.文本的語法結(jié)構(gòu)C.語音的韻律和語調(diào)D.文本的詞匯量11、強化學(xué)習(xí)是人工智能的一個重要分支,常用于訓(xùn)練智能體在環(huán)境中做出最優(yōu)決策。假設(shè)一個智能機器人需要在迷宮中找到出口,通過與環(huán)境的交互獲得獎勵。在這種情況下,以下關(guān)于強化學(xué)習(xí)算法的選擇,哪一項是最合適的?()A.Q-learning算法,通過估計狀態(tài)-動作值函數(shù)來選擇最優(yōu)動作B.策略梯度算法,直接優(yōu)化策略以最大化期望回報C.蒙特卡羅方法,通過隨機采樣來估計價值函數(shù)D.以上算法都不合適,應(yīng)該選擇其他方法12、在人工智能的模型壓縮中,假設(shè)需要在不顯著降低模型性能的前提下減少模型的參數(shù)數(shù)量和計算量。以下哪種方法可以實現(xiàn)這一目標(biāo)?()A.剪枝技術(shù),去除不重要的連接和參數(shù)B.量化技術(shù),降低參數(shù)的精度C.知識蒸餾,將大模型的知識傳遞給小模型D.以上都是13、人工智能在智能交通系統(tǒng)中的應(yīng)用可以改善交通流量和安全性。假設(shè)要開發(fā)一個能夠?qū)崟r優(yōu)化交通信號燈的系統(tǒng),以下關(guān)于考慮交通狀況多樣性的方法,哪一項是最關(guān)鍵的?()A.只考慮當(dāng)前道路的車流量,不考慮周邊道路的情況B.綜合考慮不同時間段、天氣條件和特殊事件等對交通的影響C.按照固定的模式設(shè)置交通信號燈,不進行實時調(diào)整D.忽略行人的需求,只關(guān)注車輛的通行14、人工智能中的強化學(xué)習(xí)算法可以用于優(yōu)化資源分配。假設(shè)一個數(shù)據(jù)中心要通過人工智能分配計算資源,以下關(guān)于其應(yīng)用的描述,哪一項是不正確的?()A.根據(jù)服務(wù)器負(fù)載和任務(wù)需求,動態(tài)調(diào)整資源分配策略B.以最小化能耗和提高服務(wù)質(zhì)量為目標(biāo),優(yōu)化資源利用效率C.強化學(xué)習(xí)可以快速適應(yīng)數(shù)據(jù)中心的變化,無需人工重新配置D.強化學(xué)習(xí)算法在資源分配中總是能夠找到最優(yōu)解,不存在次優(yōu)情況15、人工智能中的預(yù)訓(xùn)練語言模型,如GPT-3,在自然語言處理任務(wù)中取得了顯著成果。假設(shè)要將預(yù)訓(xùn)練語言模型應(yīng)用于特定領(lǐng)域的文本分類任務(wù),以下關(guān)于預(yù)訓(xùn)練模型應(yīng)用的描述,正確的是:()A.可以直接使用預(yù)訓(xùn)練模型進行分類,無需任何微調(diào)就能獲得良好的效果B.預(yù)訓(xùn)練模型的參數(shù)是固定的,不能根據(jù)新的任務(wù)和數(shù)據(jù)進行調(diào)整C.在預(yù)訓(xùn)練模型的基礎(chǔ)上,使用特定領(lǐng)域的數(shù)據(jù)進行微調(diào),可以提高在該領(lǐng)域任務(wù)中的性能D.預(yù)訓(xùn)練語言模型對計算資源要求不高,任何設(shè)備都能輕松應(yīng)用二、簡答題(本大題共4個小題,共20分)1、(本題5分)解釋人臉識別的原理和流程。2、(本題5分)說明知識圖譜的構(gòu)建和應(yīng)用。3、(本題5分)說明決策樹算法的構(gòu)建過程和特點。4、(本題5分)談?wù)勅斯ぶ悄茉谏a(chǎn)管理中的應(yīng)用。三、操作題(本大題共5個小題,共25分)1、(本題5分)利用Python的TensorFlow庫,構(gòu)建一個深度強化學(xué)習(xí)模型,讓智能體在一個物流配送環(huán)境中學(xué)習(xí)最優(yōu)的配送路徑規(guī)劃策略。考慮不同的交通狀況和配送需求,優(yōu)化配送效率。2、(本題5分)利用Python的PyTorch框架,搭建一個基于注意力機制的文本生成模型,能夠根據(jù)給定的主題生成連貫的文章。3、(本題5分)運用PyTorch構(gòu)建一個基于注意力機制的圖像描述生成模型。根據(jù)輸入的圖像生成準(zhǔn)確、生動的文字描述,評估描述的質(zhì)量。4、(本題5分)利用Python的PyTorch庫,實現(xiàn)一個基于循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)的文本生成模型。以給定的一段文本為基礎(chǔ),訓(xùn)練模型生成具有相似風(fēng)格和主題的新文本。對生成的文本進行質(zhì)量評估和分析。5、(本題5分)使用Python的Keras庫,實現(xiàn)一個基于Transformer架構(gòu)的機器翻譯模型。對大量的雙語語料進行訓(xùn)練,能夠?qū)崿F(xiàn)從一種語言到另一種語言的準(zhǔn)確翻譯。四、案例分析題(本大題共4個小題,共40分)1、(本題10分)研究一個利用人工智能進行輿情監(jiān)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 愛心流水燈課程設(shè)計
- 網(wǎng)球初學(xué)者教學(xué)課程設(shè)計
- 預(yù)見2025:中國行業(yè)趨勢報告-羅蘭貝格-202501
- 汽車行業(yè)品牌推廣咨詢
- 紡織服裝行業(yè)業(yè)務(wù)代表工作報告
- 教育行業(yè)人才選拔經(jīng)驗交流
- 2024年秋季小學(xué)開學(xué)典禮方案
- 2024年美發(fā)店管理制度
- 分布式電力供應(yīng)合同(2篇)
- 2024年臘八節(jié)的賀詞
- 水閘閘門運行方案
- 消費型股東招募計劃書
- 2022-2023學(xué)年江蘇省連云港市九年級(上)期末數(shù)學(xué)試卷(含詳細答案解析)
- 會計事務(wù)所述職報告
- 2022年江蘇普通高中學(xué)業(yè)水平選擇性考試政治真題及答案
- 玻璃工業(yè)的節(jié)能減排與綠色制造
- 防止交叉感染的護理措施和策略
- 蘇教譯林版四年級英語上冊單詞默寫表
- 金屬冶煉中的領(lǐng)導(dǎo)潛能與領(lǐng)導(dǎo)力發(fā)展策略
- 上海市浦東新區(qū)部分學(xué)校聯(lián)考2023-2024學(xué)年七年級上學(xué)期期末考試數(shù)學(xué)試題
- 南京理工大學(xué)物理化學(xué)課程考試8套卷(含答案)
評論
0/150
提交評論