瓊臺(tái)師范學(xué)院《機(jī)器學(xué)習(xí)》2021-2022學(xué)年第一學(xué)期期末試卷_第1頁(yè)
瓊臺(tái)師范學(xué)院《機(jī)器學(xué)習(xí)》2021-2022學(xué)年第一學(xué)期期末試卷_第2頁(yè)
瓊臺(tái)師范學(xué)院《機(jī)器學(xué)習(xí)》2021-2022學(xué)年第一學(xué)期期末試卷_第3頁(yè)
瓊臺(tái)師范學(xué)院《機(jī)器學(xué)習(xí)》2021-2022學(xué)年第一學(xué)期期末試卷_第4頁(yè)
瓊臺(tái)師范學(xué)院《機(jī)器學(xué)習(xí)》2021-2022學(xué)年第一學(xué)期期末試卷_第5頁(yè)
已閱讀5頁(yè),還剩1頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁(yè),共3頁(yè)瓊臺(tái)師范學(xué)院《機(jī)器學(xué)習(xí)》

2021-2022學(xué)年第一學(xué)期期末試卷題號(hào)一二三四總分得分一、單選題(本大題共15個(gè)小題,每小題1分,共15分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在進(jìn)行數(shù)據(jù)預(yù)處理時(shí),異常值的處理是一個(gè)重要環(huán)節(jié)。假設(shè)我們有一個(gè)包含員工工資數(shù)據(jù)的數(shù)據(jù)集。以下關(guān)于異常值處理的方法,哪一項(xiàng)是不正確的?()A.可以通過(guò)可視化數(shù)據(jù)分布,直觀地發(fā)現(xiàn)異常值B.基于統(tǒng)計(jì)學(xué)方法,如三倍標(biāo)準(zhǔn)差原則,可以識(shí)別出可能的異常值C.直接刪除所有的異常值,以保證數(shù)據(jù)的純凈性D.對(duì)異常值進(jìn)行修正或替換,使其更符合數(shù)據(jù)的整體分布2、某機(jī)器學(xué)習(xí)項(xiàng)目需要對(duì)圖像中的物體進(jìn)行實(shí)例分割,除了常見(jiàn)的深度學(xué)習(xí)模型,以下哪種技術(shù)可以提高分割的精度?()A.多尺度訓(xùn)練B.數(shù)據(jù)增強(qiáng)C.模型融合D.以上技術(shù)都可以3、在進(jìn)行深度學(xué)習(xí)中的圖像生成任務(wù)時(shí),生成對(duì)抗網(wǎng)絡(luò)(GAN)是一種常用的模型。假設(shè)我們要生成逼真的人臉圖像。以下關(guān)于GAN的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.GAN由生成器和判別器組成,它們通過(guò)相互對(duì)抗來(lái)提高生成圖像的質(zhì)量B.生成器的目標(biāo)是生成盡可能逼真的圖像,以欺騙判別器C.判別器的任務(wù)是區(qū)分輸入的圖像是真實(shí)的還是由生成器生成的D.GAN的訓(xùn)練過(guò)程穩(wěn)定,不容易出現(xiàn)模式崩潰等問(wèn)題4、考慮一個(gè)時(shí)間序列預(yù)測(cè)問(wèn)題,數(shù)據(jù)具有明顯的季節(jié)性特征。以下哪種方法可以處理這種季節(jié)性?()A.在模型中添加季節(jié)性項(xiàng)B.使用季節(jié)性差分C.采用季節(jié)性自回歸移動(dòng)平均(SARIMA)模型D.以上都可以5、在處理不平衡數(shù)據(jù)集時(shí),以下關(guān)于解決數(shù)據(jù)不平衡問(wèn)題的方法,哪一項(xiàng)是不正確的?()A.過(guò)采樣方法通過(guò)增加少數(shù)類(lèi)樣本的數(shù)量來(lái)平衡數(shù)據(jù)集B.欠采樣方法通過(guò)減少多數(shù)類(lèi)樣本的數(shù)量來(lái)平衡數(shù)據(jù)集C.合成少數(shù)類(lèi)過(guò)采樣技術(shù)(SMOTE)通過(guò)合成新的少數(shù)類(lèi)樣本來(lái)平衡數(shù)據(jù)集D.數(shù)據(jù)不平衡對(duì)模型性能沒(méi)有影響,不需要采取任何措施來(lái)處理6、假設(shè)正在開(kāi)發(fā)一個(gè)用于情感分析的深度學(xué)習(xí)模型,需要對(duì)模型進(jìn)行優(yōu)化。以下哪種優(yōu)化算法在深度學(xué)習(xí)中被廣泛使用?()A.隨機(jī)梯度下降(SGD)B.自適應(yīng)矩估計(jì)(Adam)C.牛頓法D.共軛梯度法7、在一個(gè)回歸問(wèn)題中,如果數(shù)據(jù)存在非線性關(guān)系并且噪聲較大,以下哪種模型可能更適合?()A.多項(xiàng)式回歸B.高斯過(guò)程回歸C.嶺回歸D.Lasso回歸8、想象一個(gè)市場(chǎng)營(yíng)銷(xiāo)的項(xiàng)目,需要根據(jù)客戶的購(gòu)買(mǎi)歷史、瀏覽行為和人口統(tǒng)計(jì)信息來(lái)預(yù)測(cè)其未來(lái)的購(gòu)買(mǎi)傾向。同時(shí),要能夠解釋模型的決策依據(jù)以指導(dǎo)營(yíng)銷(xiāo)策略的制定。以下哪種模型和策略可能是最適用的?()A.建立邏輯回歸模型,通過(guò)系數(shù)分析解釋變量的影響,但對(duì)于復(fù)雜的非線性關(guān)系可能不敏感B.運(yùn)用決策樹(shù)集成算法,如梯度提升樹(shù)(GradientBoostingTree),準(zhǔn)確性較高,且可以通過(guò)特征重要性評(píng)估解釋模型,但局部解釋性相對(duì)較弱C.采用深度學(xué)習(xí)中的多層卷積神經(jīng)網(wǎng)絡(luò),預(yù)測(cè)能力強(qiáng),但幾乎無(wú)法提供直觀的解釋D.構(gòu)建基于規(guī)則的分類(lèi)器,明確的規(guī)則易于理解,但可能無(wú)法處理復(fù)雜的數(shù)據(jù)模式和不確定性9、假設(shè)正在進(jìn)行一個(gè)異常檢測(cè)任務(wù),數(shù)據(jù)具有高維度和復(fù)雜的分布。以下哪種技術(shù)可以用于將高維數(shù)據(jù)映射到低維空間以便更好地檢測(cè)異常?()A.核主成分分析(KPCA)B.局部線性嵌入(LLE)C.拉普拉斯特征映射D.以上技術(shù)都可以10、在一個(gè)信用評(píng)估模型中,我們需要根據(jù)用戶的個(gè)人信息、財(cái)務(wù)狀況等數(shù)據(jù)來(lái)判斷其信用風(fēng)險(xiǎn)。數(shù)據(jù)集存在類(lèi)別不平衡的問(wèn)題,即信用良好的用戶數(shù)量遠(yuǎn)遠(yuǎn)多于信用不良的用戶。為了解決這個(gè)問(wèn)題,以下哪種方法是不合適的?()A.對(duì)少數(shù)類(lèi)樣本進(jìn)行過(guò)采樣,增加其數(shù)量B.對(duì)多數(shù)類(lèi)樣本進(jìn)行欠采樣,減少其數(shù)量C.為不同類(lèi)別的樣本設(shè)置不同的權(quán)重,在損失函數(shù)中加以考慮D.直接使用原始數(shù)據(jù)集進(jìn)行訓(xùn)練,忽略類(lèi)別不平衡11、在進(jìn)行強(qiáng)化學(xué)習(xí)中的策略優(yōu)化時(shí),以下關(guān)于策略優(yōu)化方法的描述,哪一項(xiàng)是不正確的?()A.策略梯度方法通過(guò)直接計(jì)算策略的梯度來(lái)更新策略參數(shù)B.信賴域策略優(yōu)化(TrustRegionPolicyOptimization,TRPO)通過(guò)限制策略更新的幅度來(lái)保證策略的改進(jìn)C.近端策略優(yōu)化(ProximalPolicyOptimization,PPO)是一種基于策略梯度的改進(jìn)算法,具有更好的穩(wěn)定性和收斂性D.所有的策略優(yōu)化方法在任何強(qiáng)化學(xué)習(xí)任務(wù)中都能取得相同的效果,不需要根據(jù)任務(wù)特點(diǎn)進(jìn)行選擇12、假設(shè)正在開(kāi)發(fā)一個(gè)自動(dòng)駕駛系統(tǒng),其中一個(gè)關(guān)鍵任務(wù)是目標(biāo)檢測(cè),例如識(shí)別道路上的行人、車(chē)輛和障礙物。在選擇目標(biāo)檢測(cè)算法時(shí),需要考慮算法的準(zhǔn)確性、實(shí)時(shí)性和對(duì)不同環(huán)境的適應(yīng)性。以下哪種目標(biāo)檢測(cè)算法在實(shí)時(shí)性要求較高的場(chǎng)景中可能表現(xiàn)較好?()A.FasterR-CNN,具有較高的檢測(cè)精度B.YOLO(YouOnlyLookOnce),能夠?qū)崿F(xiàn)快速檢測(cè)C.SSD(SingleShotMultiBoxDetector),在精度和速度之間取得平衡D.以上算法都不適合實(shí)時(shí)應(yīng)用13、在構(gòu)建機(jī)器學(xué)習(xí)模型時(shí),選擇合適的正則化方法可以防止過(guò)擬合。假設(shè)我們正在訓(xùn)練一個(gè)邏輯回歸模型。以下關(guān)于正則化的描述,哪一項(xiàng)是錯(cuò)誤的?()A.L1正則化會(huì)使部分模型參數(shù)變?yōu)?,從而實(shí)現(xiàn)特征選擇B.L2正則化通過(guò)對(duì)模型參數(shù)的平方和進(jìn)行懲罰,使參數(shù)值變小C.正則化參數(shù)越大,對(duì)模型的約束越強(qiáng),可能導(dǎo)致模型欠擬合D.同時(shí)使用L1和L2正則化(ElasticNet)總是比單獨(dú)使用L1或L2正則化效果好14、假設(shè)正在開(kāi)發(fā)一個(gè)用于圖像識(shí)別的深度學(xué)習(xí)模型,需要選擇合適的超參數(shù)。以下哪種方法可以用于自動(dòng)搜索和優(yōu)化超參數(shù)?()A.隨機(jī)搜索B.網(wǎng)格搜索C.基于模型的超參數(shù)優(yōu)化D.以上方法都可以15、當(dāng)處理不平衡數(shù)據(jù)集(即某個(gè)類(lèi)別在數(shù)據(jù)中占比極?。r(shí),以下哪種方法可以提高模型對(duì)少數(shù)類(lèi)別的識(shí)別能力()A.對(duì)多數(shù)類(lèi)別進(jìn)行欠采樣B.對(duì)少數(shù)類(lèi)別進(jìn)行過(guò)采樣C.調(diào)整分類(lèi)閾值D.以上方法都可以二、簡(jiǎn)答題(本大題共4個(gè)小題,共20分)1、(本題5分)解釋如何使用機(jī)器學(xué)習(xí)進(jìn)行圖像風(fēng)格遷移。2、(本題5分)談?wù)勗谒こ讨?,機(jī)器學(xué)習(xí)的應(yīng)用。3、(本題5分)簡(jiǎn)述在音頻處理中,機(jī)器學(xué)習(xí)的應(yīng)用。4、(本題5分)解釋如何使用協(xié)同過(guò)濾算法進(jìn)行推薦。三、論述題(本大題共5個(gè)小題,共25分)1、(本題5分)探討機(jī)器學(xué)習(xí)在電子商務(wù)領(lǐng)域的應(yīng)用,如用戶行為分析、商品推薦等,分析其對(duì)電商企業(yè)的價(jià)值。2、(本題5分)分析機(jī)器學(xué)習(xí)中的時(shí)間序列分析算法及其應(yīng)用。時(shí)間序列分析可以用于預(yù)測(cè)未來(lái)的趨勢(shì)和變化,機(jī)器學(xué)習(xí)算法在其中發(fā)揮了重要作用。介紹常見(jiàn)的時(shí)間序列分析算法,并討論其在金融、氣象等領(lǐng)域的應(yīng)用。3、(本題5分)探討機(jī)器學(xué)習(xí)在智能家居領(lǐng)域的應(yīng)用,如智能家電控制、家庭安全監(jiān)控等,分析其對(duì)生活品質(zhì)的提升。4、(本題5分)結(jié)合實(shí)際案例,論述無(wú)監(jiān)督學(xué)習(xí)在數(shù)據(jù)挖掘中的應(yīng)用。探討聚類(lèi)算法、主成分分析等無(wú)監(jiān)督學(xué)習(xí)方法的優(yōu)勢(shì)和挑戰(zhàn)。5、(本題5分)分析機(jī)器學(xué)習(xí)中的時(shí)間序列預(yù)測(cè)模型的選擇與評(píng)估。時(shí)間序列

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論