2025屆福建省永春縣第一中學(xué)高三第一次模擬考試數(shù)學(xué)試卷含解析_第1頁
2025屆福建省永春縣第一中學(xué)高三第一次模擬考試數(shù)學(xué)試卷含解析_第2頁
2025屆福建省永春縣第一中學(xué)高三第一次模擬考試數(shù)學(xué)試卷含解析_第3頁
2025屆福建省永春縣第一中學(xué)高三第一次模擬考試數(shù)學(xué)試卷含解析_第4頁
2025屆福建省永春縣第一中學(xué)高三第一次模擬考試數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2025屆福建省永春縣第一中學(xué)高三第一次模擬考試數(shù)學(xué)試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若雙曲線的焦距為,則的一個焦點(diǎn)到一條漸近線的距離為()A. B. C. D.2.的展開式中的常數(shù)項(xiàng)為()A.-60 B.240 C.-80 D.1803.若(),,則()A.0或2 B.0 C.1或2 D.14.已知F是雙曲線(k為常數(shù))的一個焦點(diǎn),則點(diǎn)F到雙曲線C的一條漸近線的距離為()A.2k B.4k C.4 D.25.把函數(shù)圖象上各點(diǎn)的橫坐標(biāo)伸長為原來的2倍,縱坐標(biāo)不變,再將圖象向右平移個單位,那么所得圖象的一個對稱中心為()A. B. C. D.6.已知函數(shù),,且,則()A.3 B.3或7 C.5 D.5或87.已知數(shù)列是以1為首項(xiàng),2為公差的等差數(shù)列,是以1為首項(xiàng),2為公比的等比數(shù)列,設(shè),,則當(dāng)時,的最大值是()A.8 B.9 C.10 D.118.已知是雙曲線的左右焦點(diǎn),過的直線與雙曲線的兩支分別交于兩點(diǎn)(A在右支,B在左支)若為等邊三角形,則雙曲線的離心率為()A. B. C. D.9.已知集合,,則集合子集的個數(shù)為()A. B. C. D.10.已知集合,則全集則下列結(jié)論正確的是()A. B. C. D.11.已知、是雙曲線的左右焦點(diǎn),過點(diǎn)與雙曲線的一條漸近線平行的直線交雙曲線另一條漸近線于點(diǎn),若點(diǎn)在以線段為直徑的圓外,則雙曲線離心率的取值范圍是()A. B. C. D.12.若雙曲線的一條漸近線與直線垂直,則該雙曲線的離心率為()A.2 B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若滿足約束條件,則的最大值為__________.14.給出以下式子:①tan25°+tan35°tan25°tan35°;②2(sin35°cos25°+cos35°cos65°);③其中,結(jié)果為的式子的序號是_____.15.已知,滿足約束條件則的最大值為__________.16.過圓的圓心且與直線垂直的直線方程為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,三棱柱中,與均為等腰直角三角形,,側(cè)面是菱形.(1)證明:平面平面;(2)求二面角的余弦值.18.(12分)已知函數(shù).(1)若在處取得極值,求的值;(2)求在區(qū)間上的最小值;(3)在(1)的條件下,若,求證:當(dāng)時,恒有成立.19.(12分)這次新冠肺炎疫情,是新中國成立以來在我國發(fā)生的傳播速度最快、感染范圍最廣、防控難度最大的一次重大突發(fā)公共衛(wèi)生事件.中華民族歷史上經(jīng)歷過很多磨難,但從來沒有被壓垮過,而是愈挫愈勇,不斷在磨難中成長,從磨難中奮起.在這次疫情中,全國人民展現(xiàn)出既有責(zé)任擔(dān)當(dāng)之勇、又有科學(xué)防控之智.某校高三學(xué)生也展開了對這次疫情的研究,一名同學(xué)在數(shù)據(jù)統(tǒng)計中發(fā)現(xiàn),從2020年2月1日至2月7日期間,日期和全國累計報告確診病例數(shù)量(單位:萬人)之間的關(guān)系如下表:日期1234567全國累計報告確診病例數(shù)量(萬人)1.41.72.02.42.83.13.5(1)根據(jù)表中的數(shù)據(jù),運(yùn)用相關(guān)系數(shù)進(jìn)行分析說明,是否可以用線性回歸模型擬合與的關(guān)系?(2)求出關(guān)于的線性回歸方程(系數(shù)精確到0.01).并預(yù)測2月10日全國累計報告確診病例數(shù).參考數(shù)據(jù):,,,.參考公式:相關(guān)系數(shù)回歸方程中斜率和截距的最小二乘估計公式分別為:,.20.(12分)已知多面體中,、均垂直于平面,,,,是的中點(diǎn).(1)求證:平面;(2)求直線與平面所成角的正弦值.21.(12分)在直角坐標(biāo)系中,直線l過點(diǎn),且傾斜角為,以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為.求直線l的參數(shù)方程和曲線C的直角坐標(biāo)方程,并判斷曲線C是什么曲線;設(shè)直線l與曲線C相交與M,N兩點(diǎn),當(dāng),求的值.22.(10分)在直角坐標(biāo)系中,曲線上的任意一點(diǎn)到直線的距離比點(diǎn)到點(diǎn)的距離小1.(1)求動點(diǎn)的軌跡的方程;(2)若點(diǎn)是圓上一動點(diǎn),過點(diǎn)作曲線的兩條切線,切點(diǎn)分別為,求直線斜率的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】

根據(jù)焦距即可求得參數(shù),再根據(jù)點(diǎn)到直線的距離公式即可求得結(jié)果.【詳解】因?yàn)殡p曲線的焦距為,故可得,解得,不妨?。挥纸裹c(diǎn),其中一條漸近線為,由點(diǎn)到直線的距離公式即可求的.故選:B.【點(diǎn)睛】本題考查由雙曲線的焦距求方程,以及雙曲線的幾何性質(zhì),屬綜合基礎(chǔ)題.2、D【解析】

求的展開式中的常數(shù)項(xiàng),可轉(zhuǎn)化為求展開式中的常數(shù)項(xiàng)和項(xiàng),再求和即可得出答案.【詳解】由題意,中常數(shù)項(xiàng)為,中項(xiàng)為,所以的展開式中的常數(shù)項(xiàng)為:.故選:D【點(diǎn)睛】本題主要考查二項(xiàng)式定理的應(yīng)用和二項(xiàng)式展開式的通項(xiàng)公式,考查學(xué)生計算能力,屬于基礎(chǔ)題.3、A【解析】

利用復(fù)數(shù)的模的運(yùn)算列方程,解方程求得的值.【詳解】由于(),,所以,解得或.故選:A【點(diǎn)睛】本小題主要考查復(fù)數(shù)模的運(yùn)算,屬于基礎(chǔ)題.4、D【解析】

分析可得,再去絕對值化簡成標(biāo)準(zhǔn)形式,進(jìn)而根據(jù)雙曲線的性質(zhì)求解即可.【詳解】當(dāng)時,等式不是雙曲線的方程;當(dāng)時,,可化為,可得虛半軸長,所以點(diǎn)F到雙曲線C的一條漸近線的距離為2.故選:D【點(diǎn)睛】本題考查雙曲線的方程與點(diǎn)到直線的距離.屬于基礎(chǔ)題.5、D【解析】

試題分析:把函數(shù)圖象上各點(diǎn)的橫坐標(biāo)伸長為原來的倍(縱坐標(biāo)不變),可得的圖象;再將圖象向右平移個單位,可得的圖象,那么所得圖象的一個對稱中心為,故選D.考點(diǎn):三角函數(shù)的圖象與性質(zhì).6、B【解析】

根據(jù)函數(shù)的對稱軸以及函數(shù)值,可得結(jié)果.【詳解】函數(shù),若,則的圖象關(guān)于對稱,又,所以或,所以的值是7或3.故選:B.【點(diǎn)睛】本題考查的是三角函數(shù)的概念及性質(zhì)和函數(shù)的對稱性問題,屬基礎(chǔ)題7、B【解析】

根據(jù)題意計算,,,解不等式得到答案.【詳解】∵是以1為首項(xiàng),2為公差的等差數(shù)列,∴.∵是以1為首項(xiàng),2為公比的等比數(shù)列,∴.∴.∵,∴,解得.則當(dāng)時,的最大值是9.故選:.【點(diǎn)睛】本題考查了等差數(shù)列,等比數(shù)列,f分組求和,意在考查學(xué)生對于數(shù)列公式方法的靈活運(yùn)用.8、D【解析】

根據(jù)雙曲線的定義可得的邊長為,然后在中應(yīng)用余弦定理得的等式,從而求得離心率.【詳解】由題意,,又,∴,∴,在中,即,∴.故選:D.【點(diǎn)睛】本題考查求雙曲線的離心率,解題關(guān)鍵是應(yīng)用雙曲線的定義把到兩焦點(diǎn)距離用表示,然后用余弦定理建立關(guān)系式.9、B【解析】

首先求出,再根據(jù)含有個元素的集合有個子集,計算可得.【詳解】解:,,,子集的個數(shù)為.故選:.【點(diǎn)睛】考查列舉法、描述法的定義,以及交集的運(yùn)算,集合子集個數(shù)的計算公式,屬于基礎(chǔ)題.10、D【解析】

化簡集合,根據(jù)對數(shù)函數(shù)的性質(zhì),化簡集合,按照集合交集、并集、補(bǔ)集定義,逐項(xiàng)判斷,即可求出結(jié)論.【詳解】由,則,故,由知,,因此,,,,故選:D【點(diǎn)睛】本題考查集合運(yùn)算以及集合間的關(guān)系,求解不等式是解題的關(guān)鍵,屬于基礎(chǔ)題.11、A【解析】雙曲線﹣=1的漸近線方程為y=x,不妨設(shè)過點(diǎn)F1與雙曲線的一條漸過線平行的直線方程為y=(x﹣c),與y=﹣x聯(lián)立,可得交點(diǎn)M(,﹣),∵點(diǎn)M在以線段F1F1為直徑的圓外,∴|OM|>|OF1|,即有+>c1,∴>3,即b1>3a1,∴c1﹣a1>3a1,即c>1a.則e=>1.∴雙曲線離心率的取值范圍是(1,+∞).故選:A.點(diǎn)睛:解決橢圓和雙曲線的離心率的求值及范圍問題其關(guān)鍵就是確立一個關(guān)于a,b,c的方程或不等式,再根據(jù)a,b,c的關(guān)系消掉b得到a,c的關(guān)系式,建立關(guān)于a,b,c的方程或不等式,要充分利用橢圓和雙曲線的幾何性質(zhì)、點(diǎn)的坐標(biāo)的范圍等.12、B【解析】

由題中垂直關(guān)系,可得漸近線的方程,結(jié)合,構(gòu)造齊次關(guān)系即得解【詳解】雙曲線的一條漸近線與直線垂直.∴雙曲線的漸近線方程為.,得.則離心率.故選:B【點(diǎn)睛】本題考查了雙曲線的漸近線和離心率,考查了學(xué)生綜合分析,概念理解,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、4【解析】

作出可行域如圖所示:由,解得.目標(biāo)函數(shù),即為,平移斜率為-1的直線,經(jīng)過點(diǎn)時,.14、①②③【解析】

由已知分別結(jié)合和差角的正切及正弦余弦公式進(jìn)行化簡即可求解.【詳解】①∵tan60°=tan(25°+35°),tan25°+tan35°tan25°tan35°;tan25°tan35°,,②2(sin35°cos25°+cos35°cos65°)=2(sin35°cos25°+cos35°sin25°),=2sin60°;③tan(45°+15°)=tan60°;故答案為:①②③【點(diǎn)睛】本題主要考查了兩角和與差的三角公式在三角化簡求值中的應(yīng)用,屬于中檔試題.15、1【解析】

先畫出約束條件的可行域,根據(jù)平移法判斷出最優(yōu)點(diǎn),代入目標(biāo)函數(shù)的解析式,易可得到目標(biāo)函數(shù)的最大值.【詳解】解:由約束條件得如圖所示的三角形區(qū)域,由于,則,要求的最大值,則求的截距的最小值,顯然當(dāng)平行直線過點(diǎn)時,取得最大值為:.故答案為:1.【點(diǎn)睛】本題考查線性規(guī)劃求最值問題,我們常用幾何法求最值.16、【解析】

根據(jù)與已知直線垂直關(guān)系,設(shè)出所求直線方程,將已知圓圓心坐標(biāo)代入,即可求解.【詳解】圓心為,所求直線與直線垂直,設(shè)為,圓心代入,可得,所以所求的直線方程為.故答案為:.【點(diǎn)睛】本題考查圓的方程、直線方程求法,注意直線垂直關(guān)系的靈活應(yīng)用,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)【解析】

(1)取中點(diǎn),連接,,通過證明,得,結(jié)合可證線面垂直,繼而可證面面垂直.(2)設(shè),建立空間直角坐標(biāo)系,求出平面和平面的法向量,繼而可求二面角的余弦值.【詳解】解析:(1)取中點(diǎn),連接,,由已知可得,,,∵側(cè)面是菱形,∴,,,即,∵,∴平面,∴平面平面.(2)設(shè),則,建立如圖所示空間直角坐標(biāo)系,則,,,,,,,,設(shè)平面的法向量為,則,令得.同理可求得平面的法向量,∴.【點(diǎn)睛】本題考查了面面垂直的判定,考查了二面角的求解.一般在求二面角或者線面角的問題時,常建立空間直角坐標(biāo)系,通過求面的法向量、線的方向向量,繼而求解.特別地,對于線面角問題,法向量與方向向量的余角才是所求的線面角,即兩個向量夾角的余弦值為線面角的正弦值.18、(1)2;(2);(3)證明見解析【解析】

(1)先求出函數(shù)的定義域和導(dǎo)數(shù),由已知函數(shù)在處取得極值,得到,即可求解的值;(2)由(1)得,定義域?yàn)?,分,和三種情況討論,分別求得函數(shù)的最小值,即可得到結(jié)論;(3)由,得到,把,只需證,構(gòu)造新函數(shù),利用導(dǎo)數(shù)求得函數(shù)的單調(diào)性與最值,即可求解.【詳解】(1)由,定義域?yàn)?,則,因?yàn)楹瘮?shù)在處取得極值,所以,即,解得,經(jīng)檢驗(yàn),滿足題意,所以.(2)由(1)得,定義域?yàn)椋?dāng)時,有,在區(qū)間上單調(diào)遞增,最小值為,當(dāng)時,由得,且,當(dāng)時,,單調(diào)遞減;當(dāng)時,,單調(diào)遞增;所以在區(qū)間上單調(diào)遞增,最小值為,當(dāng)時,則,當(dāng)時,,單調(diào)遞減;當(dāng)時,,單調(diào)遞增;所以在處取得最小值,綜上可得:當(dāng)時,在區(qū)間上的最小值為1,當(dāng)時,在區(qū)間上的最小值為.(3)由得,當(dāng)時,,則,欲證,只需證,即證,即,設(shè),則,當(dāng)時,,在區(qū)間上單調(diào)遞增,當(dāng)時,,即,故,即當(dāng)時,恒有成立.【點(diǎn)睛】本題主要考查導(dǎo)數(shù)在函數(shù)中的綜合應(yīng)用,以及不等式的證明,著重考查了轉(zhuǎn)化與化歸思想、分類討論、及邏輯推理能力與計算能力,對于此類問題,通常要構(gòu)造新函數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,求出最值,進(jìn)而得出相應(yīng)的含參不等式,從而求出參數(shù)的取值范圍;也可分離變量,構(gòu)造新函數(shù),直接把問題轉(zhuǎn)化為函數(shù)的最值問題.19、(1)可以用線性回歸模型擬合與的關(guān)系;(2),預(yù)測2月10日全國累計報告確診病例數(shù)約有4.5萬人.【解析】

(1)根據(jù)已知數(shù)據(jù),利用公式求得,再根據(jù)的值越大說明它們的線性相關(guān)性越高來判斷.(2)由(1)的相關(guān)數(shù)據(jù),求得,,寫出回歸方程,然后將代入回歸方程求解.【詳解】(1)由已知數(shù)據(jù)得,,,所以,,所以.因?yàn)榕c的相關(guān)近似為0.99,說明它們的線性相關(guān)性相當(dāng)高,從而可以用線性回歸模型擬合與的關(guān)系.(2)由(1)得,,,所以,關(guān)于的回歸方程為:,2月10日,即代入回歸方程得:.所以預(yù)測2月10日全國累計報告確診病例數(shù)約有4.5萬人.【點(diǎn)睛】本題主要考查線性回歸分析和回歸方程的求解及應(yīng)用,還考查了運(yùn)算求解的能力,屬于中檔題.20、(1)見解析;(2).【解析】

(1)取的中點(diǎn),連接、,推導(dǎo)出四邊形為平行四邊形,可得出,由此能證明平面;(2)由,得平面,則點(diǎn)到平面的距離等于點(diǎn)到平面的距離,在平面內(nèi)過點(diǎn)作于點(diǎn),就是到平面的距離,也就是點(diǎn)到平面的距離,由此能求出直線與平面所成角的正弦值.【詳解】(1)取的中點(diǎn),連接、,、分別為、的中點(diǎn),則且,、均垂直于平面,且,則,且,所以,四邊形為平行四邊形,則,平面,平面,因此,平面;(2)由,平面,平面,平面,點(diǎn)到平面的距離等于點(diǎn)到平面的距離,在平面內(nèi)過點(diǎn)作于點(diǎn),平面,平面,,,,平面,即就是到平面的距離,也就是點(diǎn)到平面的距離,設(shè),則到平面的距離,,因此,直線與平面所成角

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論