版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
河南省九校2025屆高考數(shù)學(xué)倒計(jì)時(shí)模擬卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.某校團(tuán)委對(duì)“學(xué)生性別與中學(xué)生追星是否有關(guān)”作了一次調(diào)查,利用列聯(lián)表,由計(jì)算得,參照下表:0.010.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.828得到正確結(jié)論是()A.有99%以上的把握認(rèn)為“學(xué)生性別與中學(xué)生追星無關(guān)”B.有99%以上的把握認(rèn)為“學(xué)生性別與中學(xué)生追星有關(guān)”C.在犯錯(cuò)誤的概率不超過0.5%的前提下,認(rèn)為“學(xué)生性別與中學(xué)生追星無關(guān)”D.在犯錯(cuò)誤的概率不超過0.5%的前提下,認(rèn)為“學(xué)生性別與中學(xué)生追星有關(guān)”2.已知函數(shù),若恒成立,則滿足條件的的個(gè)數(shù)為()A.0 B.1 C.2 D.33.展開式中x2的系數(shù)為()A.-1280 B.4864 C.-4864 D.12804.己知,,,則()A. B. C. D.5.蒙特卡洛算法是以概率和統(tǒng)計(jì)的理論、方法為基礎(chǔ)的一種計(jì)算方法,將所求解的問題同一定的概率模型相聯(lián)系;用均勻投點(diǎn)實(shí)現(xiàn)統(tǒng)計(jì)模擬和抽樣,以獲得問題的近似解,故又稱統(tǒng)計(jì)模擬法或統(tǒng)計(jì)實(shí)驗(yàn)法.現(xiàn)向一邊長(zhǎng)為的正方形模型內(nèi)均勻投點(diǎn),落入陰影部分的概率為,則圓周率()A. B.C. D.6.為了加強(qiáng)“精準(zhǔn)扶貧”,實(shí)現(xiàn)偉大復(fù)興的“中國(guó)夢(mèng)”,某大學(xué)派遣甲、乙、丙、丁、戊五位同學(xué)參加三個(gè)貧困縣的調(diào)研工作,每個(gè)縣至少去1人,且甲、乙兩人約定去同一個(gè)貧困縣,則不同的派遣方案共有()A.24 B.36 C.48 D.647.已知函數(shù)的圖像上有且僅有四個(gè)不同的關(guān)于直線對(duì)稱的點(diǎn)在的圖像上,則的取值范圍是()A. B. C. D.8.已知,則()A. B. C. D.29.在展開式中的常數(shù)項(xiàng)為A.1 B.2 C.3 D.710.已知復(fù)數(shù),若,則的值為()A.1 B. C. D.11.《算數(shù)書》竹簡(jiǎn)于上世紀(jì)八十年代在湖北省江陵縣張家山出土,這是我國(guó)現(xiàn)存最早的有系統(tǒng)的數(shù)學(xué)典籍.其中記載有求“囷蓋”的術(shù):“置如其周,令相承也.又以高乘之,三十六成一”.該術(shù)相當(dāng)于給出了由圓錐的底面周長(zhǎng)與高,計(jì)算其體積的近似公式.它實(shí)際上是將圓錐體積公式中的圓周率近似取為3.那么近似公式相當(dāng)于將圓錐體積公式中的圓周率近似取為()A. B. C. D.12.關(guān)于函數(shù),有下列三個(gè)結(jié)論:①是的一個(gè)周期;②在上單調(diào)遞增;③的值域?yàn)?則上述結(jié)論中,正確的個(gè)數(shù)為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.某中學(xué)高一年級(jí)有學(xué)生1200人,高二年級(jí)有學(xué)生900人,高三年級(jí)有學(xué)生1500人,現(xiàn)按年級(jí)用分層抽樣的方法從這三個(gè)年級(jí)的學(xué)生中抽取一個(gè)容量為720的樣本進(jìn)行某項(xiàng)研究,則應(yīng)從高三年級(jí)學(xué)生中抽取_____人.14.已知的展開式中含有的項(xiàng)的系數(shù)是,則展開式中各項(xiàng)系數(shù)和為______.15.若函數(shù)(a>0且a≠1)在定義域[m,n]上的值域是[m2,n2](1<m<n),則a的取值范圍是_______.16.如圖,的外接圓半徑為,為邊上一點(diǎn),且,,則的面積為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(Ⅰ)求函數(shù)的極值;(Ⅱ)若,且,求證:.18.(12分)已知數(shù)列,,數(shù)列滿足,n.(1)若,,求數(shù)列的前2n項(xiàng)和;(2)若數(shù)列為等差數(shù)列,且對(duì)任意n,恒成立.①當(dāng)數(shù)列為等差數(shù)列時(shí),求證:數(shù)列,的公差相等;②數(shù)列能否為等比數(shù)列?若能,請(qǐng)寫出所有滿足條件的數(shù)列;若不能,請(qǐng)說明理由.19.(12分)已知函數(shù),(Ⅰ)當(dāng)時(shí),證明;(Ⅱ)已知點(diǎn),點(diǎn),設(shè)函數(shù),當(dāng)時(shí),試判斷的零點(diǎn)個(gè)數(shù).20.(12分)設(shè)拋物線的焦點(diǎn)為,準(zhǔn)線為,為拋物線過焦點(diǎn)的弦,已知以為直徑的圓與相切于點(diǎn).(1)求的值及圓的方程;(2)設(shè)為上任意一點(diǎn),過點(diǎn)作的切線,切點(diǎn)為,證明:.21.(12分)已知函數(shù),.(1)求函數(shù)在處的切線方程;(2)當(dāng)時(shí),證明:對(duì)任意恒成立.22.(10分)已知函數(shù).當(dāng)時(shí),求不等式的解集;,,求a的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
通過與表中的數(shù)據(jù)6.635的比較,可以得出正確的選項(xiàng).【詳解】解:,可得有99%以上的把握認(rèn)為“學(xué)生性別與中學(xué)生追星有關(guān)”,故選B.【點(diǎn)睛】本題考查了獨(dú)立性檢驗(yàn)的應(yīng)用問題,屬于基礎(chǔ)題.2、C【解析】
由不等式恒成立問題分類討論:①當(dāng),②當(dāng),③當(dāng),考查方程的解的個(gè)數(shù),綜合①②③得解.【詳解】①當(dāng)時(shí),,滿足題意,②當(dāng)時(shí),,,,,故不恒成立,③當(dāng)時(shí),設(shè),,令,得,,得,下面考查方程的解的個(gè)數(shù),設(shè)(a),則(a)由導(dǎo)數(shù)的應(yīng)用可得:(a)在為減函數(shù),在,為增函數(shù),則(a),即有一解,又,均為增函數(shù),所以存在1個(gè)使得成立,綜合①②③得:滿足條件的的個(gè)數(shù)是2個(gè),故選:.【點(diǎn)睛】本題考查了不等式恒成立問題及利用導(dǎo)數(shù)研究函數(shù)的解得個(gè)數(shù),重點(diǎn)考查了分類討論的數(shù)學(xué)思想方法,屬難度較大的題型.3、A【解析】
根據(jù)二項(xiàng)式展開式的公式得到具體為:化簡(jiǎn)求值即可.【詳解】根據(jù)二項(xiàng)式的展開式得到可以第一個(gè)括號(hào)里出項(xiàng),第二個(gè)括號(hào)里出項(xiàng),或者第一個(gè)括號(hào)里出,第二個(gè)括號(hào)里出,具體為:化簡(jiǎn)得到-1280x2故得到答案為:A.【點(diǎn)睛】求二項(xiàng)展開式有關(guān)問題的常見類型及解題策略:(1)求展開式中的特定項(xiàng).可依據(jù)條件寫出第項(xiàng),再由特定項(xiàng)的特點(diǎn)求出值即可.(2)已知展開式的某項(xiàng),求特定項(xiàng)的系數(shù).可由某項(xiàng)得出參數(shù)項(xiàng),再由通項(xiàng)寫出第項(xiàng),由特定項(xiàng)得出值,最后求出其參數(shù).4、B【解析】
先將三個(gè)數(shù)通過指數(shù),對(duì)數(shù)運(yùn)算變形,再判斷.【詳解】因?yàn)?,,所以,故選:B.【點(diǎn)睛】本題主要考查指數(shù)、對(duì)數(shù)的大小比較,還考查推理論證能力以及化歸與轉(zhuǎn)化思想,屬于中檔題.5、A【解析】
計(jì)算出黑色部分的面積與總面積的比,即可得解.【詳解】由,∴.故選:A【點(diǎn)睛】本題考查了面積型幾何概型的概率的計(jì)算,屬于基礎(chǔ)題.6、B【解析】
根據(jù)題意,有兩種分配方案,一是,二是,然后各自全排列,再求和.【詳解】當(dāng)按照進(jìn)行分配時(shí),則有種不同的方案;當(dāng)按照進(jìn)行分配,則有種不同的方案.故共有36種不同的派遣方案,故選:B.【點(diǎn)睛】本題考查排列組合、數(shù)學(xué)文化,還考查數(shù)學(xué)建模能力以及分類討論思想,屬于中檔題.7、D【解析】
根據(jù)對(duì)稱關(guān)系可將問題轉(zhuǎn)化為與有且僅有四個(gè)不同的交點(diǎn);利用導(dǎo)數(shù)研究的單調(diào)性從而得到的圖象;由直線恒過定點(diǎn),通過數(shù)形結(jié)合的方式可確定;利用過某一點(diǎn)曲線切線斜率的求解方法可求得和,進(jìn)而得到結(jié)果.【詳解】關(guān)于直線對(duì)稱的直線方程為:原題等價(jià)于與有且僅有四個(gè)不同的交點(diǎn)由可知,直線恒過點(diǎn)當(dāng)時(shí),在上單調(diào)遞減;在上單調(diào)遞增由此可得圖象如下圖所示:其中、為過點(diǎn)的曲線的兩條切線,切點(diǎn)分別為由圖象可知,當(dāng)時(shí),與有且僅有四個(gè)不同的交點(diǎn)設(shè),,則,解得:設(shè),,則,解得:,則本題正確選項(xiàng):【點(diǎn)睛】本題考查根據(jù)直線與曲線交點(diǎn)個(gè)數(shù)確定參數(shù)范圍的問題;涉及到過某一點(diǎn)的曲線切線斜率的求解問題;解題關(guān)鍵是能夠通過對(duì)稱性將問題轉(zhuǎn)化為直線與曲線交點(diǎn)個(gè)數(shù)的問題,通過確定直線恒過的定點(diǎn),采用數(shù)形結(jié)合的方式來進(jìn)行求解.8、B【解析】
結(jié)合求得的值,由此化簡(jiǎn)所求表達(dá)式,求得表達(dá)式的值.【詳解】由,以及,解得..故選:B【點(diǎn)睛】本小題主要考查利用同角三角函數(shù)的基本關(guān)系式化簡(jiǎn)求值,考查二倍角公式,屬于中檔題.9、D【解析】
求出展開項(xiàng)中的常數(shù)項(xiàng)及含的項(xiàng),問題得解。【詳解】展開項(xiàng)中的常數(shù)項(xiàng)及含的項(xiàng)分別為:,,所以展開式中的常數(shù)項(xiàng)為:.故選:D【點(diǎn)睛】本題主要考查了二項(xiàng)式定理中展開式的通項(xiàng)公式及轉(zhuǎn)化思想,考查計(jì)算能力,屬于基礎(chǔ)題。10、D【解析】由復(fù)數(shù)模的定義可得:,求解關(guān)于實(shí)數(shù)的方程可得:.本題選擇D選項(xiàng).11、C【解析】
將圓錐的體積用兩種方式表達(dá),即,解出即可.【詳解】設(shè)圓錐底面圓的半徑為r,則,又,故,所以,.故選:C.【點(diǎn)睛】本題利用古代數(shù)學(xué)問題考查圓錐體積計(jì)算的實(shí)際應(yīng)用,考查學(xué)生的運(yùn)算求解能力、創(chuàng)新能力.12、B【解析】
利用三角函數(shù)的性質(zhì),逐個(gè)判斷即可求出.【詳解】①因?yàn)?,所以是的一個(gè)周期,①正確;②因?yàn)椋?,所以在上不單調(diào)遞增,②錯(cuò)誤;③因?yàn)椋允桥己瘮?shù),又是的一個(gè)周期,所以可以只考慮時(shí),的值域.當(dāng)時(shí),,在上單調(diào)遞增,所以,的值域?yàn)椋坼e(cuò)誤;綜上,正確的個(gè)數(shù)只有一個(gè),故選B.【點(diǎn)睛】本題主要考查三角函數(shù)的性質(zhì)應(yīng)用.二、填空題:本題共4小題,每小題5分,共20分。13、1.【解析】
先求得高三學(xué)生占的比例,再利用分層抽樣的定義和方法,即可求解.【詳解】由題意,高三學(xué)生占的比例為,所以應(yīng)從高三年級(jí)學(xué)生中抽取的人數(shù)為.【點(diǎn)睛】本題主要考查了分層抽樣的定義和方法,其中解答中熟記分層抽樣的定義和抽取的方法是解答的關(guān)鍵,著重考查了運(yùn)算與求解能力,屬于基礎(chǔ)題.14、1【解析】
由二項(xiàng)式定理及展開式通項(xiàng)公式得:,解得,令得:展開式中各項(xiàng)系數(shù)和,得解.【詳解】解:由的展開式的通項(xiàng),令,得含有的項(xiàng)的系數(shù)是,解得,令得:展開式中各項(xiàng)系數(shù)和為,故答案為:1.【點(diǎn)睛】本題考查了二項(xiàng)式定理及展開式通項(xiàng)公式,屬于中檔題.15、(1,)【解析】
在定義域[m,n]上的值域是[m2,n2],等價(jià)轉(zhuǎn)化為與的圖像在(1,)上恰有兩個(gè)交點(diǎn),考慮相切狀態(tài)可求a的取值范圍.【詳解】由題意知:與的圖像在(1,)上恰有兩個(gè)交點(diǎn)考查臨界情形:與切于,.故答案為:.【點(diǎn)睛】本題主要考查導(dǎo)數(shù)的幾何意義,把已知條件進(jìn)行等價(jià)轉(zhuǎn)化是求解的關(guān)鍵,側(cè)重考查數(shù)學(xué)抽象的核心素養(yǎng).16、【解析】
先由正弦定理得到,再在三角形ABD、ADC中分別由正弦定理進(jìn)一步得到B=C,最后利用面積公式計(jì)算即可.【詳解】依題意可得,由正弦定理得,即,由圖可知是鈍角,所以,,在三角形ABD中,,,在三角形ADC中,由正弦定理得即,所以,,故,,,故的面積為.故答案為:.【點(diǎn)睛】本題考查正弦定理解三角形,考查學(xué)生的基本計(jì)算能力,要靈活運(yùn)用正弦定理公式及三角形面積公式,本題屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)極大值為:,無極小值;(Ⅱ)見解析.【解析】
(Ⅰ)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間即可求出函數(shù)的極值;(Ⅱ)得到,根據(jù)函數(shù)的單調(diào)性問題轉(zhuǎn)化為證明,即證,令,根據(jù)函數(shù)的單調(diào)性證明即可.【詳解】(Ⅰ)的定義域?yàn)榍伊?,得;令,得在上單調(diào)遞增,在上單調(diào)遞減函數(shù)的極大值為,無極小值(Ⅱ),,即由(Ⅰ)知在上單調(diào)遞增,在上單調(diào)遞減且,則要證,即證,即證,即證即證由于,即,即證令則恒成立在遞增在恒成立【點(diǎn)睛】本題考查了函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用以及分類討論思想,轉(zhuǎn)化思想,考查不等式的證明,考查運(yùn)算求解能力及化歸與轉(zhuǎn)化思想,關(guān)鍵是能夠構(gòu)造出合適的函數(shù),將問題轉(zhuǎn)化為函數(shù)最值的求解問題,屬于難題.18、(1)(2)①見解析②數(shù)列不能為等比數(shù)列,見解析【解析】
(1)根據(jù)數(shù)列通項(xiàng)公式的特點(diǎn),奇數(shù)項(xiàng)為等差數(shù)列,偶數(shù)項(xiàng)為等比數(shù)列,選用分組求和的方法進(jìn)行求解;(2)①設(shè)數(shù)列的公差為,數(shù)列的公差為,當(dāng)n為奇數(shù)時(shí),得出;當(dāng)n為偶數(shù)時(shí),得出,從而可證數(shù)列,的公差相等;②利用反證法,先假設(shè)可以為等比數(shù)列,結(jié)合題意得出矛盾,進(jìn)而得出數(shù)列不能為等比數(shù)列.【詳解】(1)因?yàn)椋?,所以,且,由題意可知,數(shù)列是以1為首項(xiàng),2為公差的等差數(shù)列,數(shù)列是首項(xiàng)和公比均為4的等比數(shù)列,所以;(2)①證明:設(shè)數(shù)列的公差為,數(shù)列的公差為,當(dāng)n為奇數(shù)時(shí),,若,則當(dāng)時(shí),,即,與題意不符,所以,當(dāng)n為偶數(shù)時(shí),,,若,則當(dāng)時(shí),,即,與題意不符,所以,綜上,,原命題得證;②假設(shè)可以為等比數(shù)列,設(shè)公比為q,因?yàn)?,所以,所以,,因?yàn)楫?dāng)時(shí),,所以當(dāng)n為偶數(shù),且時(shí),,即當(dāng)n為偶數(shù),且時(shí),不成立,與題意矛盾,所以數(shù)列不能為等比數(shù)列.【點(diǎn)睛】本題主要考查數(shù)列的求和及數(shù)列的綜合,數(shù)列求和時(shí)一般是結(jié)合通項(xiàng)公式的特征選取合適的求和方法,數(shù)列綜合題要回歸基本量,充分挖掘題目已知信息,細(xì)思細(xì)算,本題綜合性較強(qiáng),難度較大,側(cè)重考查邏輯推理和數(shù)學(xué)運(yùn)算的核心素養(yǎng).19、(Ⅰ)詳見解析;(Ⅱ)1.【解析】
(Ⅰ)令,;則.易得,.即可證明;(Ⅱ),分①,②,③當(dāng)時(shí),討論的零點(diǎn)個(gè)數(shù)即可.【詳解】解:(Ⅰ)令,;則.令,,易得在遞減,在遞增,∴,∴在恒成立.∵在遞減,在遞增.∴.∵;(Ⅱ)∵點(diǎn),點(diǎn),∴,.①當(dāng)時(shí),可知,∴∴,,∴.∴在單調(diào)遞增,,.∴在上有一個(gè)零點(diǎn),②當(dāng)時(shí),,,∴,∴在恒成立,∴在無零點(diǎn).③當(dāng)時(shí),,.∴在單調(diào)遞減,,.∴在存在一個(gè)零點(diǎn).綜上,的零點(diǎn)個(gè)數(shù)為1..【點(diǎn)睛】本題考查了利用導(dǎo)數(shù)解決函數(shù)零點(diǎn)問題,考查了分類討論思想,屬于壓軸題.20、(1)2,;(2)證明見解析.【解析】
(1)由題意得的方程為,根據(jù)為拋物線過焦點(diǎn)的弦,以為直徑的圓與相切于點(diǎn)..利用拋物線和圓的對(duì)稱性,可得,圓心為,半徑為2.(2)設(shè),的方程為,代入的方程,得,根據(jù)直線與拋物線相切,令,得,代入,解得.將代入的方程,得,得到點(diǎn)N的坐標(biāo)為,然后求解.【詳解】(1)解:由題
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 科技助力小學(xué)科學(xué)教育發(fā)展研究
- 二零二五年度綠色環(huán)保辦公樓轉(zhuǎn)讓代理合同3篇
- 2025年度商業(yè)區(qū)車棚投資建設(shè)合同模板4篇
- 甲方向乙方以2025年度房產(chǎn)抵扣債務(wù)的協(xié)議3篇
- 二零二五年度輪胎制造企業(yè)供應(yīng)鏈管理合同4篇
- 家庭安全如何進(jìn)行專業(yè)急救處理
- 個(gè)人車庫(kù)交易協(xié)議樣式一
- 2025版升壓站安裝與電力設(shè)施安全防護(hù)合同3篇
- 二零二四年度專業(yè)高空維修升降機(jī)租賃合同含緊急搶修服務(wù)3篇
- 2025版?zhèn)€人消費(fèi)貸款擔(dān)保服務(wù)合同規(guī)范文本3篇
- 新媒體論文開題報(bào)告范文
- 2024年云南省中考數(shù)學(xué)試題含答案解析
- 國(guó)家中醫(yī)藥管理局發(fā)布的406種中醫(yī)優(yōu)勢(shì)病種診療方案和臨床路徑目錄
- 2024年全國(guó)甲卷高考化學(xué)試卷(真題+答案)
- 汽車修理廠管理方案
- 人教版小學(xué)數(shù)學(xué)一年級(jí)上冊(cè)小學(xué)生口算天天練
- (正式版)JBT 5300-2024 工業(yè)用閥門材料 選用指南
- 三年級(jí)數(shù)學(xué)添括號(hào)去括號(hào)加減簡(jiǎn)便計(jì)算練習(xí)400道及答案
- 蘇教版五年級(jí)上冊(cè)數(shù)學(xué)簡(jiǎn)便計(jì)算300題及答案
- 澳洲牛肉行業(yè)分析
- 計(jì)算機(jī)江蘇對(duì)口單招文化綜合理論試卷
評(píng)論
0/150
提交評(píng)論