版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
新疆沙雅縣第二中學(xué)2025屆高三沖刺模擬數(shù)學(xué)試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.甲、乙、丙、丁四位同學(xué)高考之后計(jì)劃去三個(gè)不同社區(qū)進(jìn)行幫扶活動(dòng),每人只能去一個(gè)社區(qū),每個(gè)社區(qū)至少一人.其中甲必須去社區(qū),乙不去社區(qū),則不同的安排方法種數(shù)為()A.8 B.7 C.6 D.52.已知函數(shù)是定義在R上的奇函數(shù),且滿足,當(dāng)時(shí),(其中e是自然對(duì)數(shù)的底數(shù)),若,則實(shí)數(shù)a的值為()A. B.3 C. D.3.設(shè)等差數(shù)列的前項(xiàng)和為,若,則()A.10 B.9 C.8 D.74.已知是空間中兩個(gè)不同的平面,是空間中兩條不同的直線,則下列說法正確的是()A.若,且,則B.若,且,則C.若,且,則D.若,且,則5.將函數(shù)圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來的3倍(縱坐標(biāo)不變),再向右平移個(gè)單位長(zhǎng)度,則所得函數(shù)圖象的一個(gè)對(duì)稱中心為()A. B. C. D.6.函數(shù)的大致圖象為A. B.C. D.7.一個(gè)組合體的三視圖如圖所示(圖中網(wǎng)格小正方形的邊長(zhǎng)為1),則該幾何體的體積是()A. B. C. D.8.設(shè)不等式組表示的平面區(qū)域?yàn)?,若從圓:的內(nèi)部隨機(jī)選取一點(diǎn),則取自的概率為()A. B. C. D.9.在中,,分別為,的中點(diǎn),為上的任一點(diǎn),實(shí)數(shù),滿足,設(shè)、、、的面積分別為、、、,記(),則取到最大值時(shí),的值為()A.-1 B.1 C. D.10.如圖,在中,點(diǎn)為線段上靠近點(diǎn)的三等分點(diǎn),點(diǎn)為線段上靠近點(diǎn)的三等分點(diǎn),則()A. B. C. D.11.某部隊(duì)在一次軍演中要先后執(zhí)行六項(xiàng)不同的任務(wù),要求是:任務(wù)A必須排在前三項(xiàng)執(zhí)行,且執(zhí)行任務(wù)A之后需立即執(zhí)行任務(wù)E,任務(wù)B、任務(wù)C不能相鄰,則不同的執(zhí)行方案共有()A.36種 B.44種 C.48種 D.54種12.設(shè)復(fù)數(shù)滿足,則在復(fù)平面內(nèi)的對(duì)應(yīng)點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空題:本題共4小題,每小題5分,共20分。13.若正三棱柱的所有棱長(zhǎng)均為2,點(diǎn)為側(cè)棱上任意一點(diǎn),則四棱錐的體積為__________.14.如圖,兩個(gè)同心圓的半徑分別為和,為大圓的一條直徑,過點(diǎn)作小圓的切線交大圓于另一點(diǎn),切點(diǎn)為,點(diǎn)為劣弧上的任一點(diǎn)(不包括兩點(diǎn)),則的最大值是__________.15.在平面直角坐標(biāo)系中,已知點(diǎn),,若圓上有且僅有一對(duì)點(diǎn),使得的面積是的面積的2倍,則的值為_______.16.在△ABC中,∠BAC=,AD為∠BAC的角平分線,且,若AB=2,則BC=_______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),.(1)若曲線在點(diǎn)處的切線方程為,求,;(2)當(dāng)時(shí),,求實(shí)數(shù)的取值范圍.18.(12分)已知函數(shù)f(x)=x-lnx,g(x)=x2-ax.(1)求函數(shù)f(x)在區(qū)間[t,t+1](t>0)上的最小值m(t);(2)令h(x)=g(x)-f(x),A(x1,h(x1)),B(x2,h(x2))(x1≠x2)是函數(shù)h(x)圖像上任意兩點(diǎn),且滿足>1,求實(shí)數(shù)a的取值范圍;(3)若?x∈(0,1],使f(x)≥成立,求實(shí)數(shù)a的最大值.19.(12分)已知函數(shù),曲線在點(diǎn)處的切線方程為.(1)求,的值;(2)證明函數(shù)存在唯一的極大值點(diǎn),且.20.(12分)若數(shù)列前n項(xiàng)和為,且滿足(t為常數(shù),且)(1)求數(shù)列的通項(xiàng)公式:(2)設(shè),且數(shù)列為等比數(shù)列,令,.求證:.21.(12分)已知曲線的參數(shù)方程為(為參數(shù)),曲線的參數(shù)方程為(為參數(shù)).(1)求和的普通方程;(2)過坐標(biāo)原點(diǎn)作直線交曲線于點(diǎn)(異于),交曲線于點(diǎn),求的最小值.22.(10分)已知函數(shù)(1)若,不等式的解集;(2)若,求實(shí)數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】根據(jù)題意滿足條件的安排為:A(甲,乙)B(丙)C(?。籄(甲,乙)B(丁)C(丙);A(甲,丙)B(丁)C(乙);A(甲,?。〣(丙)C(乙);A(甲)B(丙,?。〤(乙);A(甲)B(?。〤(乙,丙);A(甲)B(丙)C(丁,乙);共7種,選B.2、B【解析】
根據(jù)題意,求得函數(shù)周期,利用周期性和函數(shù)值,即可求得.【詳解】由已知可知,,所以函數(shù)是一個(gè)以4為周期的周期函數(shù),所以,解得,故選:B.【點(diǎn)睛】本題考查函數(shù)周期的求解,涉及對(duì)數(shù)運(yùn)算,屬綜合基礎(chǔ)題.3、B【解析】
根據(jù)題意,解得,,得到答案.【詳解】,解得,,故.故選:.【點(diǎn)睛】本題考查了等差數(shù)列的求和,意在考查學(xué)生的計(jì)算能力.4、D【解析】
利用線面平行和垂直的判定定理和性質(zhì)定理,對(duì)選項(xiàng)做出判斷,舉出反例排除.【詳解】解:對(duì)于,當(dāng),且,則與的位置關(guān)系不定,故錯(cuò);對(duì)于,當(dāng)時(shí),不能判定,故錯(cuò);對(duì)于,若,且,則與的位置關(guān)系不定,故錯(cuò);對(duì)于,由可得,又,則故正確.故選:.【點(diǎn)睛】本題考查空間線面位置關(guān)系.判斷線面位置位置關(guān)系利用好線面平行和垂直的判定定理和性質(zhì)定理.一般可借助正方體模型,以正方體為主線直觀感知并準(zhǔn)確判斷.5、D【解析】
先化簡(jiǎn)函數(shù)解析式,再根據(jù)函數(shù)的圖象變換規(guī)律,可得所求函數(shù)的解析式為,再由正弦函數(shù)的對(duì)稱性得解.【詳解】,
將函數(shù)圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來的3倍,所得函數(shù)的解析式為,
再向右平移個(gè)單位長(zhǎng)度,所得函數(shù)的解析式為,,可得函數(shù)圖象的一個(gè)對(duì)稱中心為,故選D.【點(diǎn)睛】三角函數(shù)的圖象與性質(zhì)是高考考查的熱點(diǎn)之一,經(jīng)常考查定義域、值域、周期性、對(duì)稱性、奇偶性、單調(diào)性、最值等,其中公式運(yùn)用及其變形能力、運(yùn)算能力、方程思想等可以在這些問題中進(jìn)行體現(xiàn),在復(fù)習(xí)時(shí)要注意基礎(chǔ)知識(shí)的理解與落實(shí).三角函數(shù)的性質(zhì)由函數(shù)的解析式確定,在解答三角函數(shù)性質(zhì)的綜合試題時(shí)要抓住函數(shù)解析式這個(gè)關(guān)鍵,在函數(shù)解析式較為復(fù)雜時(shí)要注意使用三角恒等變換公式把函數(shù)解析式化為一個(gè)角的一個(gè)三角函數(shù)形式,然后利用正弦(余弦)函數(shù)的性質(zhì)求解.6、A【解析】
因?yàn)?,所以函?shù)是偶函數(shù),排除B、D,又,排除C,故選A.7、C【解析】
根據(jù)組合幾何體的三視圖還原出幾何體,幾何體是圓柱中挖去一個(gè)三棱柱,從而解得幾何體的體積.【詳解】由幾何體的三視圖可得,幾何體的結(jié)構(gòu)是在一個(gè)底面半徑為1的圓、高為2的圓柱中挖去一個(gè)底面腰長(zhǎng)為的等腰直角三角形、高為2的棱柱,故此幾何體的體積為圓柱的體積減去三棱柱的體積,即,故選C.【點(diǎn)睛】本題考查了幾何體的三視圖問題、組合幾何體的體積問題,解題的關(guān)鍵是要能由三視圖還原出組合幾何體,然后根據(jù)幾何體的結(jié)構(gòu)求出其體積.8、B【解析】
畫出不等式組表示的可行域,求得陰影部分扇形對(duì)應(yīng)的圓心角,根據(jù)幾何概型概率計(jì)算公式,計(jì)算出所求概率.【詳解】作出中在圓內(nèi)部的區(qū)域,如圖所示,因?yàn)橹本€,的傾斜角分別為,,所以由圖可得取自的概率為.故選:B【點(diǎn)睛】本小題主要考查幾何概型的計(jì)算,考查線性可行域的畫法,屬于基礎(chǔ)題.9、D【解析】
根據(jù)三角形中位線的性質(zhì),可得到的距離等于△的邊上高的一半,從而得到,由此結(jié)合基本不等式求最值,得到當(dāng)取到最大值時(shí),為的中點(diǎn),再由平行四邊形法則得出,根據(jù)平面向量基本定理可求得,從而可求得結(jié)果.【詳解】如圖所示:因?yàn)槭恰鞯闹形痪€,所以到的距離等于△的邊上高的一半,所以,由此可得,當(dāng)且僅當(dāng)時(shí),即為的中點(diǎn)時(shí),等號(hào)成立,所以,由平行四邊形法則可得,,將以上兩式相加可得,所以,又已知,根據(jù)平面向量基本定理可得,從而.故選:D【點(diǎn)睛】本題考查了向量加法的平行四邊形法則,考查了平面向量基本定理的應(yīng)用,考查了基本不等式求最值,屬于中檔題.10、B【解析】
,將,代入化簡(jiǎn)即可.【詳解】.故選:B.【點(diǎn)睛】本題考查平面向量基本定理的應(yīng)用,涉及到向量的線性運(yùn)算、數(shù)乘運(yùn)算,考查學(xué)生的運(yùn)算能力,是一道中檔題.11、B【解析】
分三種情況,任務(wù)A排在第一位時(shí),E排在第二位;任務(wù)A排在第二位時(shí),E排在第三位;任務(wù)A排在第三位時(shí),E排在第四位,結(jié)合任務(wù)B和C不能相鄰,分別求出三種情況的排列方法,即可得到答案.【詳解】六項(xiàng)不同的任務(wù)分別為A、B、C、D、E、F,如果任務(wù)A排在第一位時(shí),E排在第二位,剩下四個(gè)位置,先排好D、F,再在D、F之間的3個(gè)空位中插入B、C,此時(shí)共有排列方法:;如果任務(wù)A排在第二位時(shí),E排在第三位,則B,C可能分別在A、E的兩側(cè),排列方法有,可能都在A、E的右側(cè),排列方法有;如果任務(wù)A排在第三位時(shí),E排在第四位,則B,C分別在A、E的兩側(cè);所以不同的執(zhí)行方案共有種.【點(diǎn)睛】本題考查了排列組合問題,考查了學(xué)生的邏輯推理能力,屬于中檔題.12、C【解析】
化簡(jiǎn)得到,得到答案.【詳解】,故,對(duì)應(yīng)點(diǎn)在第三象限.故選:.【點(diǎn)睛】本題考查了復(fù)數(shù)的化簡(jiǎn)和對(duì)應(yīng)象限,意在考查學(xué)生的計(jì)算能力.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
依題意得,再求點(diǎn)到平面的距離為點(diǎn)到直線的距離,用公式所以即可得出答案.【詳解】解:正三棱柱的所有棱長(zhǎng)均為2,則,點(diǎn)到平面的距離為點(diǎn)到直線的距離所以,所以.故答案為:【點(diǎn)睛】本題考查椎體的體積公式,考查運(yùn)算能力,是基礎(chǔ)題.14、【解析】
以為坐標(biāo)原點(diǎn),所在的直線為軸,的垂直平分線為軸,建立平面直角坐標(biāo)系,從而可得、,,,然后利用向量數(shù)量積的坐標(biāo)運(yùn)算可得,再根據(jù)輔助角公式以及三角函數(shù)的性質(zhì)即可求解.【詳解】以為坐標(biāo)原點(diǎn),所在的直線為軸,的垂直平分線為軸,建立平面直角坐標(biāo)系,則、,由,且,所以,所以,即又平分,所以,則,設(shè),則,,所以,所以,,所以的最大值是.故答案為:【點(diǎn)睛】本題考查了向量數(shù)量積的坐標(biāo)運(yùn)算、利用向量解決幾何問題,同時(shí)考查了輔助角公式以及三角函數(shù)的性質(zhì),屬于中檔題.15、【解析】
寫出所在直線方程,求出圓心到直線的距離,結(jié)合題意可得關(guān)于的等式,求解得答案.【詳解】解:直線的方程為,即.圓的圓心到直線的距離,由的面積是的面積的2倍的點(diǎn),有且僅有一對(duì),可得點(diǎn)到的距離是點(diǎn)到直線的距離的2倍,可得過圓的圓心,如圖:由,解得.故答案為:.【點(diǎn)睛】本題考查直線和圓的位置關(guān)系以及點(diǎn)到直線的距離公式應(yīng)用,考查數(shù)形結(jié)合的解題思想方法,屬于中檔題.16、【解析】
由,求出長(zhǎng)度關(guān)系,利用角平分線以及面積關(guān)系,求出邊,再由余弦定理,即可求解.【詳解】,,,,.故答案為:.【點(diǎn)睛】本題考查共線向量的應(yīng)用、面積公式、余弦定理解三角形,考查計(jì)算求解能力,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】
(1)對(duì)函數(shù)求導(dǎo),運(yùn)用可求得的值,再由在直線上,可求得的值;(2)由已知可得恒成立,構(gòu)造函數(shù),對(duì)函數(shù)求導(dǎo),討論和0的大小關(guān)系,結(jié)合單調(diào)性求出最大值即可求得的范圍.【詳解】(1)由題得,因?yàn)樵邳c(diǎn)與相切所以,∴(2)由得,令,只需,設(shè)(),當(dāng)時(shí),,在時(shí)為增函數(shù),所以,舍;當(dāng)時(shí),開口向上,對(duì)稱軸為,,所以在時(shí)為增函數(shù),所以,舍;當(dāng)時(shí),二次函數(shù)開口向下,且,所以在時(shí)有一個(gè)零點(diǎn),在時(shí),在時(shí),①當(dāng)即時(shí),在小于零,所以在時(shí)為減函數(shù),所以,符合題意;②當(dāng)即時(shí),在大于零,所以在時(shí)為增函數(shù),所以,舍.綜上所述:實(shí)數(shù)的取值范圍為【點(diǎn)睛】本題考查函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間及函數(shù)的最小值,屬于中檔題.處理函數(shù)單調(diào)性問題時(shí),注意利用導(dǎo)函數(shù)的正負(fù),特別是已知單調(diào)性問題,轉(zhuǎn)化為函數(shù)導(dǎo)數(shù)恒不小于零,或恒小于零,再分離參數(shù)求解,求函數(shù)最值時(shí)分析好單調(diào)性再求極值,從而求出函數(shù)最值.18、(1)m(t)=(2)a≤2-2.(3)a≤2-2.【解析】
(1)是研究在動(dòng)區(qū)間上的最值問題,這類問題的研究方法就是通過討論函數(shù)的極值點(diǎn)與所研究的區(qū)間的大小關(guān)系來進(jìn)行求解.(2)注意到函數(shù)h(x)的圖像上任意不同兩點(diǎn)A,B連線的斜率總大于1,等價(jià)于h(x1)-h(huán)(x2)<x1-x2(x1<x2)恒成立,從而構(gòu)造函數(shù)F(x)=h(x)-x在(0,+∞)上單調(diào)遞增,進(jìn)而等價(jià)于F′(x)≥0在(0,+∞)上恒成立來加以研究.(3)用處理恒成立問題來處理有解問題,先分離變量轉(zhuǎn)化為求對(duì)應(yīng)函數(shù)的最值,得到a≤,再利用導(dǎo)數(shù)求函數(shù)M(x)=的最大值,這要用到二次求導(dǎo),才可確定函數(shù)單調(diào)性,進(jìn)而確定函數(shù)最值.【詳解】(1)f′(x)=1-,x>0,令f′(x)=0,則x=1.當(dāng)t≥1時(shí),f(x)在[t,t+1]上單調(diào)遞增,f(x)的最小值為f(t)=t-lnt;當(dāng)0<t<1時(shí),f(x)在區(qū)間(t,1)上為減函數(shù),在區(qū)間(1,t+1)上為增函數(shù),f(x)的最小值為f(1)=1.綜上,m(t)=(2)h(x)=x2-(a+1)x+lnx,不妨取0<x1<x2,則x1-x2<0,則由,可得h(x1)-h(huán)(x2)<x1-x2,變形得h(x1)-x1<h(x2)-x2恒成立.令F(x)=h(x)-x=x2-(a+2)x+lnx,x>0,則F(x)=x2-(a+2)x+lnx在(0,+∞)上單調(diào)遞增,故F′(x)=2x-(a+2)+≥0在(0,+∞)上恒成立,所以2x+≥a+2在(0,+∞)上恒成立.因?yàn)?x+≥2,當(dāng)且僅當(dāng)x=時(shí)取“=”,所以a≤2-2.(3)因?yàn)閒(x)≥,所以a(x+1)≤2x2-xlnx.因?yàn)閤∈(0,1],則x+1∈(1,2],所以?x∈(0,1],使得a≤成立.令M(x)=,則M′(x)=.令y=2x2+3x-lnx-1,則由y′==0可得x=或x=-1(舍).當(dāng)x∈時(shí),y′<0,則函數(shù)y=2x2+3x-lnx-1在上單調(diào)遞減;當(dāng)x∈時(shí),y′>0,則函數(shù)y=2x2+3x-lnx-1在上單調(diào)遞增.所以y≥ln4->0,所以M′(x)>0在x∈(0,1]時(shí)恒成立,所以M(x)在(0,1]上單調(diào)遞增.所以只需a≤M(1),即a≤1.所以實(shí)數(shù)a的最大值為1.【點(diǎn)睛】本題考查了函數(shù)與導(dǎo)數(shù)綜合問題,考查了學(xué)生綜合分析,轉(zhuǎn)化與劃歸,數(shù)學(xué)運(yùn)算能力,屬于難題.19、(1)(2)證明見解析【解析】
(1)求導(dǎo),可得(1),(1),結(jié)合已知切線方程即可求得,的值;(2)利用導(dǎo)數(shù)可得,,再構(gòu)造新函數(shù),利用導(dǎo)數(shù)求其最值即可得證.【詳解】(1)函數(shù)的定義域?yàn)椋?,則(1),(1),故曲線在點(diǎn),(1)處的切線方程為,又曲線在點(diǎn),(1)處的切線方程為,,;(2)證明:由(1)知,,則,令,則,易知在單調(diào)遞減,又,(1),故存在,使得,且當(dāng)時(shí),,單調(diào)遞增,當(dāng),時(shí),,單調(diào)遞減,由于,(1),(2),故存在,使得,且當(dāng)時(shí),,,單調(diào)遞增,當(dāng),時(shí),,,單調(diào)遞減,故函數(shù)存在唯一的極大值點(diǎn),且,即,則,令,則,故在上單調(diào)遞增,由于,故(2),即,.【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義以及利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,極值及最值,考查推理論證能力,屬于中檔題.20、(1)(2)詳見解析【解析】
(1)利用可得的遞推關(guān)系,從而可求其通項(xiàng).(2)由為等比數(shù)列可得,從而可得的通項(xiàng),利用錯(cuò)位相減法可得的前項(xiàng)和,利用不等式的性質(zhì)可證.【詳解】(1)由題意,得:(t為常數(shù),且),當(dāng)時(shí),得,得.由,故,,故.(2)由,由為等比數(shù)列可知:,又,故,化
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年中國(guó)精密流體控制設(shè)備行業(yè)市場(chǎng)運(yùn)行態(tài)勢(shì)、進(jìn)出口貿(mào)易及發(fā)展趨勢(shì)預(yù)測(cè)報(bào)告
- 幼兒園管理?xiàng)l例中的安全要點(diǎn)培訓(xùn)
- 二零二五年度跨境電商銀行過橋墊資借款合同
- 二零二五年度旅游景區(qū)停車場(chǎng)特許經(jīng)營(yíng)合同
- 二零二五年度汽修廠汽車維修行業(yè)市場(chǎng)拓展與品牌合作合同
- 2025年度私人土地買賣合同范本:土地用途限制
- 2025年度科技創(chuàng)新企業(yè)試用期員工責(zé)任合同
- 二零二五年度租賃房屋裝修合同范本(含驗(yàn)收標(biāo)準(zhǔn))
- 2025年度咖啡連鎖品牌加盟管理合同
- 二零二五年度物流行業(yè)員工權(quán)益保護(hù)合同
- 供銷合同(完整版)
- 二零二五年企業(yè)存單質(zhì)押擔(dān)保貸款合同樣本3篇
- 鍋爐安裝、改造、維修質(zhì)量保證手冊(cè)
- 油氣行業(yè)人才需求預(yù)測(cè)-洞察分析
- (2024)河南省公務(wù)員考試《行測(cè)》真題及答案解析
- 1000只肉羊養(yǎng)殖基地建設(shè)項(xiàng)目可行性研究報(bào)告
- 《勞保用品安全培訓(xùn)》課件
- 2024版房屋市政工程生產(chǎn)安全重大事故隱患判定標(biāo)準(zhǔn)內(nèi)容解讀
- 2024院感年終總結(jié)報(bào)告
- 學(xué)校文印室外包服務(wù) 投標(biāo)方案(技術(shù)方案)
- 技術(shù)咨詢合同書(浙江省科學(xué)技術(shù)廳監(jiān)制)
評(píng)論
0/150
提交評(píng)論