新高考數(shù)學(xué)二輪復(fù)習(xí)分層訓(xùn)練專題10 導(dǎo)數(shù)在函數(shù)中的應(yīng)用(解析版)_第1頁
新高考數(shù)學(xué)二輪復(fù)習(xí)分層訓(xùn)練專題10 導(dǎo)數(shù)在函數(shù)中的應(yīng)用(解析版)_第2頁
新高考數(shù)學(xué)二輪復(fù)習(xí)分層訓(xùn)練專題10 導(dǎo)數(shù)在函數(shù)中的應(yīng)用(解析版)_第3頁
新高考數(shù)學(xué)二輪復(fù)習(xí)分層訓(xùn)練專題10 導(dǎo)數(shù)在函數(shù)中的應(yīng)用(解析版)_第4頁
新高考數(shù)學(xué)二輪復(fù)習(xí)分層訓(xùn)練專題10 導(dǎo)數(shù)在函數(shù)中的應(yīng)用(解析版)_第5頁
已閱讀5頁,還剩42頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

答案第=page11頁,共=sectionpages22頁專題10導(dǎo)數(shù)在函數(shù)中的應(yīng)用【練基礎(chǔ)】一、單選題1.(2023·云南昆明·昆明一中??寄M預(yù)測)函數(shù)SKIPIF1<0,則滿足不等式SKIPIF1<0的實數(shù)x的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】對函數(shù)求導(dǎo),可知函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,根據(jù)單調(diào)性可得SKIPIF1<0,進(jìn)而求出實數(shù)x的取值范圍.【詳解】由題意,函數(shù)SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;而SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0可得SKIPIF1<0,即SKIPIF1<0,易知SKIPIF1<0,故選:D.2.(2023·浙江·永嘉中學(xué)校聯(lián)考模擬預(yù)測)已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0(SKIPIF1<0為自然對數(shù)的底數(shù)),則(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】根據(jù)三角函數(shù)的性質(zhì)可得SKIPIF1<0,進(jìn)而可得SKIPIF1<0,然后構(gòu)造函數(shù)SKIPIF1<0,根據(jù)導(dǎo)數(shù)可得SKIPIF1<0,進(jìn)而可得SKIPIF1<0,即得.【詳解】因為SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,由SKIPIF1<0,可得SKIPIF1<0,函數(shù)SKIPIF1<0單調(diào)遞增,由SKIPIF1<0,可得SKIPIF1<0,函數(shù)SKIPIF1<0函數(shù)單調(diào)遞減,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0.故選:A.3.(2023·甘肅蘭州·??家荒#┮阎猄KIPIF1<0是偶函數(shù),在(-∞,0)上滿足SKIPIF1<0恒成立,則下列不等式成立的是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】由題干條件得到SKIPIF1<0時,SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,結(jié)合SKIPIF1<0為偶函數(shù),得到SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,從而判斷出大小關(guān)系.【詳解】SKIPIF1<0時,SKIPIF1<0即SKIPIF1<0,∴SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,又SKIPIF1<0為偶函數(shù),∴SKIPIF1<0在SKIPIF1<0上單調(diào)遞增.∴SKIPIF1<0,∴SKIPIF1<0.故選:A.4.(2023·內(nèi)蒙古赤峰·統(tǒng)考模擬預(yù)測)已知函數(shù)SKIPIF1<0存在唯一的極值點,則實數(shù)a的取值范圍為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】根據(jù)導(dǎo)數(shù)結(jié)合已知得出SKIPIF1<0在SKIPIF1<0沒有變號零點,即SKIPIF1<0在SKIPIF1<0沒有變號零點,令SKIPIF1<0,通過導(dǎo)數(shù)求出其在SKIPIF1<0上的最值,即可得出實數(shù)a的取值范圍.【詳解】SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0函數(shù)SKIPIF1<0存在唯一的極值點,且SKIPIF1<0在SKIPIF1<0上有一個變號零點SKIPIF1<0,SKIPIF1<0在SKIPIF1<0沒有變號零點,即SKIPIF1<0在SKIPIF1<0沒有變號零點,令SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,則函數(shù)SKIPIF1<0單調(diào)遞增;當(dāng)SKIPIF1<0時,SKIPIF1<0,則函數(shù)SKIPIF1<0單調(diào)遞減;則SKIPIF1<0,則SKIPIF1<0,故實數(shù)a的取值范圍為SKIPIF1<0,故選:B.5.(2023·全國·模擬預(yù)測)函數(shù)SKIPIF1<0恰有3個零點,則SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】對函數(shù)SKIPIF1<0進(jìn)行求導(dǎo),令SKIPIF1<0,借助SKIPIF1<0分析SKIPIF1<0的單調(diào)性,極值和最值情況即可求解【詳解】由SKIPIF1<0可得SKIPIF1<0,令SKIPIF1<0,所以SKIPIF1<0,因為SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,因為SKIPIF1<0,所以當(dāng)SKIPIF1<0時,SKIPIF1<0單調(diào)遞減;當(dāng)SKIPIF1<0時,SKIPIF1<0單調(diào)遞增,所以SKIPIF1<0,即SKIPIF1<0,要使函數(shù)SKIPIF1<0恰有3個零點,則需SKIPIF1<0,解得SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,所以存在SKIPIF1<0,使得SKIPIF1<0,所以當(dāng)SKIPIF1<0或SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0單調(diào)遞增;當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0單調(diào)遞減;因為SKIPIF1<0,所以SKIPIF1<0,因為SKIPIF1<0當(dāng)SKIPIF1<0趨向于正無窮時,指數(shù)函數(shù)SKIPIF1<0的增長速率遠(yuǎn)遠(yuǎn)超過一次函數(shù)SKIPIF1<0,且趨向于正無窮,則SKIPIF1<0趨向于正無窮,所以存在SKIPIF1<0,使得SKIPIF1<0綜上,當(dāng)SKIPIF1<0時,函數(shù)SKIPIF1<0恰有3個零點,故選:A【點睛】關(guān)鍵點睛:這道題的關(guān)鍵之處是發(fā)現(xiàn)SKIPIF1<0,故只需要存在SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0即可6.(2023·四川德陽·統(tǒng)考一模)函數(shù)SKIPIF1<0的大致圖像為(

)A. B.C. D.【答案】A【分析】根據(jù)函數(shù)的奇偶性和符號判斷.【詳解】SKIPIF1<0,∴SKIPIF1<0是奇函數(shù);令SKIPIF1<0,則有SKIPIF1<0,SKIPIF1<0是增函數(shù),∴當(dāng)SKIPIF1<0時,SKIPIF1<0,即SKIPIF1<0;故選:A.7.(2022·四川達(dá)州·統(tǒng)考一模)曲線SKIPIF1<0在點SKIPIF1<0處的切線平分圓SKIPIF1<0,則(

)A.SKIPIF1<0有兩個零點B.SKIPIF1<0有極大值C.SKIPIF1<0在SKIPIF1<0上為增函數(shù)D.當(dāng)SKIPIF1<0時,SKIPIF1<0【答案】D【分析】根據(jù)導(dǎo)數(shù)幾何意義確定在點SKIPIF1<0處的切線方程為SKIPIF1<0,由于平分圓,所以得SKIPIF1<0,于是得函數(shù)SKIPIF1<0,結(jié)合導(dǎo)數(shù)確定函數(shù)的零點,單調(diào)性,極值即可判斷.【詳解】解:因為SKIPIF1<0,所以SKIPIF1<0,曲線在點SKIPIF1<0處的切線斜率SKIPIF1<0,又SKIPIF1<0,則切線方程為:SKIPIF1<0,即SKIPIF1<0,若該切線平分圓SKIPIF1<0,則切線過圓心SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,對于A,SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0有一個零點,故A不正確;對于B,SKIPIF1<0,解得SKIPIF1<0,所以當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0單調(diào)遞減,當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0單調(diào)遞增,所以SKIPIF1<0有極小值SKIPIF1<0,故B不正確;對于C,由B可知,C不正確;對于D,由B可知SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,且SKIPIF1<0,所以當(dāng)SKIPIF1<0時,SKIPIF1<0,故D正確.故選:D.8.(2023·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0,函數(shù)SKIPIF1<0有四個不同的零點,從小到大依次為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的取值范圍為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】根據(jù)導(dǎo)函數(shù)判斷函數(shù)SKIPIF1<0的單調(diào)性,畫出函數(shù)圖像,將SKIPIF1<0有四個零點轉(zhuǎn)化為SKIPIF1<0的圖像與SKIPIF1<0有四個不同交點,分析可知SKIPIF1<0,由韋達(dá)定理可得SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,由導(dǎo)函數(shù)分析函數(shù)單調(diào)性,即可求出范圍.【詳解】解:SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0,SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0,畫出SKIPIF1<0的圖像如下圖,SKIPIF1<0有四個零點即SKIPIF1<0的圖像與SKIPIF1<0有四個不同交點,由圖可得SKIPIF1<0,SKIPIF1<0是方程SKIPIF1<0,即SKIPIF1<0SKIPIF1<0的兩根,SKIPIF1<0是方程SKIPIF1<0,即SKIPIF1<0SKIPIF1<0的兩根,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0當(dāng)SKIPIF1<0時,SKIPIF1<0,即SKIPIF1<0.故選:A.二:多選擇9.(2023·江蘇泰州·泰州中學(xué)校考一模)已知函數(shù)SKIPIF1<0的導(dǎo)函數(shù)SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,則(

)A.SKIPIF1<0是函數(shù)SKIPIF1<0的一個極大值點B.SKIPIF1<0C.函數(shù)SKIPIF1<0在SKIPIF1<0處切線的斜率小于零D.SKIPIF1<0【答案】AB【分析】根據(jù)導(dǎo)數(shù)符號與單調(diào)性的關(guān)系,以及極值的定義逐項分析判斷.【詳解】令SKIPIF1<0,解得SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,令SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,故SKIPIF1<0是函數(shù)SKIPIF1<0的一個極大值點,SKIPIF1<0,A、B正確;∵SKIPIF1<0,則SKIPIF1<0,故函數(shù)SKIPIF1<0在SKIPIF1<0處切線的斜率大于零,C錯誤;又∵SKIPIF1<0,則SKIPIF1<0,但無法確定函數(shù)值的正負(fù),D錯誤;故選:AB.10.(2023·全國·高三專題練習(xí))已知m,n關(guān)于x方程SKIPIF1<0的兩個根,且SKIPIF1<0,則(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】ACD【分析】根據(jù)函數(shù)的圖象可得SKIPIF1<0,結(jié)合條件可得SKIPIF1<0,SKIPIF1<0,利用對勾函數(shù)的性質(zhì)可判斷A,構(gòu)造函數(shù)SKIPIF1<0,根據(jù)函數(shù)的單調(diào)性可判斷B,構(gòu)造函數(shù)SKIPIF1<0,利用導(dǎo)數(shù)研究函數(shù)的性質(zhì)結(jié)合條件可判斷CD.【詳解】畫出函數(shù)SKIPIF1<0與SKIPIF1<0的大致圖象,由題可知SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,可得SKIPIF1<0,SKIPIF1<0,由對勾函數(shù)的性質(zhì)可知SKIPIF1<0,故A正確;設(shè)函數(shù)SKIPIF1<0,因為函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,又SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,故B錯誤;設(shè)函數(shù)SKIPIF1<0,則SKIPIF1<0,由SKIPIF1<0,可得SKIPIF1<0單調(diào)遞增,由SKIPIF1<0,可得SKIPIF1<0單調(diào)遞減,因為SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,故C正確;又SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,故D正確.故選:ACD.【點睛】關(guān)鍵點點睛:本題關(guān)鍵點是構(gòu)造合適的函數(shù),構(gòu)造函數(shù)時往往從兩方面著手:①根據(jù)不等式的“形狀”變換函數(shù)“形狀”;②若是選擇題,可根據(jù)選項的共性歸納構(gòu)造恰當(dāng)?shù)暮瘮?shù).11.(2023春·湖北襄陽·高三襄陽市襄州區(qū)第一高級中學(xué)??奸_學(xué)考試)已知函數(shù)SKIPIF1<0,SKIPIF1<0是SKIPIF1<0的導(dǎo)數(shù),下列說法正確的是(

)A.曲線SKIPIF1<0在SKIPIF1<0處的切線方程為SKIPIF1<0B.SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減C.對于任意的SKIPIF1<0總滿足SKIPIF1<0D.直線SKIPIF1<0與SKIPIF1<0在SKIPIF1<0上有一個交點且橫坐標(biāo)取值范圍為SKIPIF1<0【答案】ACD【分析】求出函數(shù)SKIPIF1<0的導(dǎo)數(shù)SKIPIF1<0,利用導(dǎo)數(shù)幾何意義求出切線方程判斷A;確定給定區(qū)間上單調(diào)性判斷B;構(gòu)造函數(shù)推理論證不等式判斷C;利用零點存在性定理判斷D作答.【詳解】SKIPIF1<0,則SKIPIF1<0,而SKIPIF1<0,因此,曲線SKIPIF1<0在點SKIPIF1<0處的切線方程為SKIPIF1<0,A正確;SKIPIF1<0,則SKIPIF1<0,設(shè)SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,則函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0,因此SKIPIF1<0對任意的SKIPIF1<0恒成立,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,B錯誤;SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0由選項B知,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,而SKIPIF1<0,則SKIPIF1<0,即有SKIPIF1<0,因此函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0,即有SKIPIF1<0,所以對任意的SKIPIF1<0,總滿足SKIPIF1<0,C正確;令SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,由選項B知,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,即有函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,而SKIPIF1<0,SKIPIF1<0,存在SKIPIF1<0,使得SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0,于是得函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,而SKIPIF1<0,則有SKIPIF1<0,又SKIPIF1<0,因此存在SKIPIF1<0,使得SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,于是得函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,則SKIPIF1<0,又SKIPIF1<0,從而存在唯一SKIPIF1<0,使得SKIPIF1<0,顯然當(dāng)SKIPIF1<0時,SKIPIF1<0,又SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,因此函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,SKIPIF1<0,有SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,從而函數(shù)SKIPIF1<0在SKIPIF1<0上有唯一零點SKIPIF1<0,所以直線SKIPIF1<0與SKIPIF1<0在SKIPIF1<0上有一個交點且橫坐標(biāo)取值范圍為SKIPIF1<0,D正確.故選:ACD【點睛】結(jié)論點睛:函數(shù)y=f(x)是區(qū)間D上的可導(dǎo)函數(shù),則曲線y=f(x)在點SKIPIF1<0SKIPIF1<0處的切線方程為:SKIPIF1<0.12.(2023·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0,則下列結(jié)論正確的是(

)A.當(dāng)m>0時,函數(shù)SKIPIF1<0的圖象在點SKIPIF1<0處的切線的斜率為SKIPIF1<0B.當(dāng)m=l時,函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減C.當(dāng)m=l時,函數(shù)SKIPIF1<0的最小值為1D.若SKIPIF1<0對SKIPIF1<0恒成立,則SKIPIF1<0【答案】ABD【分析】A.由m>0直接求導(dǎo)求解判斷;B.由m=l,利用導(dǎo)數(shù)法求解判斷;C.由m=l,利用導(dǎo)數(shù)法求解判斷;D.將SKIPIF1<0對SKIPIF1<0恒成立,轉(zhuǎn)化為SKIPIF1<0對SKIPIF1<0恒成立,利用SKIPIF1<0的單調(diào)性轉(zhuǎn)化為SKIPIF1<0對SKIPIF1<0恒成立求解判斷.【詳解】解:SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0,故A正確;當(dāng)m=l時,SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上遞增,又SKIPIF1<0,即SKIPIF1<0在SKIPIF1<0上成立,所以SKIPIF1<0在SKIPIF1<0上遞減,故B正確;當(dāng)m=l時,SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上遞增,又SKIPIF1<0,SKIPIF1<0,所以存在SKIPIF1<0,有SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0,故C錯誤;若SKIPIF1<0對SKIPIF1<0恒成立,則SKIPIF1<0對SKIPIF1<0恒成立,設(shè)SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上遞增,則SKIPIF1<0對SKIPIF1<0恒成立,即SKIPIF1<0對SKIPIF1<0恒成立,設(shè)SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0,故D正確.故選:ABD三:填空題13.(2023·廣西柳州·統(tǒng)考模擬預(yù)測)①SKIPIF1<0,②SKIPIF1<0,③SKIPIF1<0,④SKIPIF1<0,上述不等式正確的有______(填序號)【答案】②④【分析】由指數(shù)對數(shù)的運算法則和不等式的性質(zhì)比較大小.【詳解】對于①:SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,不等式①錯誤;對于②:SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,不等式②正確對于③:SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,不等式③錯誤;對于④:SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上恒成立,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,∴SKIPIF1<0,SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,不等式④正確.故答案為:②④14.(2023·上海靜安·統(tǒng)考一模)已知函數(shù)SKIPIF1<0,若函數(shù)SKIPIF1<0只有一個零點SKIPIF1<0,則實數(shù)SKIPIF1<0的取值范圍為________.【答案】SKIPIF1<0【分析】對SKIPIF1<0分類討論:SKIPIF1<0,SKIPIF1<0和SKIPIF1<0,分別求出對應(yīng)情況下的實根情況列不等式,即可求解.【詳解】函數(shù)SKIPIF1<0的導(dǎo)函數(shù)為SKIPIF1<0.當(dāng)SKIPIF1<0時,令SKIPIF1<0,解得:SKIPIF1<0,所以函數(shù)SKIPIF1<0有兩個零點,不符合題意.當(dāng)SKIPIF1<0時,要使函數(shù)SKIPIF1<0只有一個零點SKIPIF1<0,只需SKIPIF1<0的極大值小于0或SKIPIF1<0的極小值大于0.令SKIPIF1<0,解得:SKIPIF1<0或SKIPIF1<0.列表:SKIPIF1<0SKIPIF1<00SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0+0-0+SKIPIF1<0單增極大值單減極小值單增所以極大值SKIPIF1<0不符合題意.所以極小值SKIPIF1<0,解得:SKIPIF1<0;當(dāng)SKIPIF1<0時,要使函數(shù)SKIPIF1<0只有一個零點SKIPIF1<0,只需SKIPIF1<0極大值小于0或SKIPIF1<0的極小值大于0..令SKIPIF1<0,解得:SKIPIF1<0或SKIPIF1<0.列表:SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<00SKIPIF1<0SKIPIF1<0-0+0-SKIPIF1<0單減極小值單增極大值單減所以極大值SKIPIF1<0不符合題意.所以極小值SKIPIF1<0,解得:SKIPIF1<0.綜上所述:實數(shù)SKIPIF1<0的取值范圍為SKIPIF1<0.故答案為:SKIPIF1<0.15.(2023·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0,若對SKIPIF1<0,都有SKIPIF1<0成立,則實數(shù)a的最大值為___________.【答案】SKIPIF1<0【分析】將SKIPIF1<0變形為SKIPIF1<0,令SKIPIF1<0,則函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,即SKIPIF1<0在SKIPIF1<0上恒成立,轉(zhuǎn)化為最值問題即可.【詳解】SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0,整理得SKIPIF1<0,令SKIPIF1<0,則函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,即SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,SKIPIF1<0在SKIPIF1<0上恒成立,即SKIPIF1<0在SKIPIF1<0上恒成立,即SKIPIF1<0在SKIPIF1<0上恒成立,即SKIPIF1<0在SKIPIF1<0上恒成立,又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0實數(shù)a的最大值為SKIPIF1<0故答案為:SKIPIF1<0.16.(2022·全國·模擬預(yù)測)已知函數(shù)SKIPIF1<0,若存在唯一整數(shù)SKIPIF1<0,使得SKIPIF1<0成立,則實數(shù)a的取值范圍為______.【答案】SKIPIF1<0【分析】首先將不等式整理為SKIPIF1<0,分別構(gòu)造函數(shù)SKIPIF1<0與SKIPIF1<0,然后利用導(dǎo)數(shù)研究SKIPIF1<0的函數(shù)性質(zhì)并將作出其圖象,進(jìn)而將原問題轉(zhuǎn)化為兩函數(shù)圖像的交點問題,結(jié)合函數(shù)圖象即可求出參數(shù)SKIPIF1<0的取值范圍.【詳解】已知SKIPIF1<0,即SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,易知SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,又SKIPIF1<0,SKIPIF1<0,所以存在實數(shù)SKIPIF1<0,使得SKIPIF1<0,且當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0是過定點SKIPIF1<0的直線,所以畫出函數(shù)SKIPIF1<0和SKIPIF1<0的大致圖象如圖所示,令SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,由圖可知若存在唯一整數(shù)SKIPIF1<0,使得SKIPIF1<0成立,則需SKIPIF1<0,而SKIPIF1<0,所以SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,即實數(shù)a的取值范圍是SKIPIF1<0.故答案為:SKIPIF1<0【點睛】關(guān)鍵點點睛:解決本題的關(guān)鍵是將不等式變形為SKIPIF1<0,并構(gòu)造函數(shù)SKIPIF1<0與SKIPIF1<0,將原問題轉(zhuǎn)化為兩函數(shù)圖像的交點問題,進(jìn)而通過導(dǎo)數(shù)畫出SKIPIF1<0與SKIPIF1<0的大致圖像,通過數(shù)形結(jié)合的方法求出參數(shù)SKIPIF1<0的取值范圍,該方法是解決函數(shù)整數(shù)解問題或者零點問題的一種重要手段.四:解答題17.(2023·云南昆明·昆明一中??寄M預(yù)測)已知函數(shù)SKIPIF1<0.(1)若SKIPIF1<0且SKIPIF1<0存在零點,求實數(shù)a的取值范圍;(2)若SKIPIF1<0,求SKIPIF1<0的最大值.【答案】(1)SKIPIF1<0(2)SKIPIF1<0.【分析】(1)利用函數(shù)的導(dǎo)數(shù)與單調(diào)性的關(guān)系確定函數(shù)的零點,極值點即可求解;(2)根據(jù)SKIPIF1<0不同取值進(jìn)行分類討論,利用函數(shù)SKIPIF1<0的單調(diào)性與導(dǎo)數(shù)的關(guān)系,討論函數(shù)的極值,進(jìn)而可求解.【詳解】(1)因為SKIPIF1<0,所以SKIPIF1<0,①當(dāng)SKIPIF1<0時,SKIPIF1<0,此時SKIPIF1<0在SKIPIF1<0單調(diào)遞增,SKIPIF1<0所以SKIPIF1<0在SKIPIF1<0存在唯一零點,所以SKIPIF1<0在SKIPIF1<0存在唯一零點;②當(dāng)SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0無零點;③當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,此時SKIPIF1<0在SKIPIF1<0單調(diào)遞減,SKIPIF1<0單調(diào)遞增,所以SKIPIF1<0,且SKIPIF1<0,若SKIPIF1<0存在零點,則只需要SKIPIF1<0即可,所以SKIPIF1<0,由①②③可得,實數(shù)SKIPIF1<0的取值范圍SKIPIF1<0;(2)①當(dāng)SKIPIF1<0時,SKIPIF1<0,此時SKIPIF1<0在SKIPIF1<0單調(diào)遞增,SKIPIF1<0當(dāng)SKIPIF1<0時SKIPIF1<0與SKIPIF1<0恒成立矛盾;②當(dāng)SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,③當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,此時SKIPIF1<0在SKIPIF1<0單調(diào)遞減,SKIPIF1<0單調(diào)遞增,所以SKIPIF1<0,令SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0單調(diào)遞增,SKIPIF1<0單調(diào)遞減,SKIPIF1<0,所以SKIPIF1<0由①②③可得,SKIPIF1<0的最大值為SKIPIF1<0.18.(2023·全國·高三專題練習(xí))設(shè)函數(shù)SKIPIF1<0.(1)討論函數(shù)SKIPIF1<0的單調(diào)性;(2)當(dāng)SKIPIF1<0時,記SKIPIF1<0,是否存在整數(shù)t,使得關(guān)于x的不等式SKIPIF1<0有解?若存在,請求出t的最小值;若不存在,請說明理由.【答案】(1)答案見解析(2)存在,t的最小值為0【分析】(1)求導(dǎo)SKIPIF1<0,根據(jù)一元二次不等式的解法,再分SKIPIF1<0,SKIPIF1<0,SKIPIF1<0討論求解;(2)由SKIPIF1<0,得到SKIPIF1<0,求導(dǎo)得到SKIPIF1<0,確定其范圍,再由不等式SKIPIF1<0有解求解.【詳解】(1)解:由題意得函數(shù)的定義域為SKIPIF1<0,SKIPIF1<0

,①當(dāng)SKIPIF1<0時,SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0在SKIPIF1<0單調(diào)遞增,SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0在SKIPIF1<0單調(diào)遞減;②當(dāng)SKIPIF1<0時,SKIPIF1<0恒成立,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;③當(dāng)SKIPIF1<0時,SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0在SKIPIF1<0單調(diào)遞增,SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0在SKIPIF1<0單調(diào)遞減;綜上,當(dāng)SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0單調(diào)遞增,在SKIPIF1<0單調(diào)遞減;當(dāng)SKIPIF1<0時,SKIPIF1<0恒成立,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;當(dāng)SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0單調(diào)遞增,在SKIPIF1<0單調(diào)遞減.(2)當(dāng)SKIPIF1<0時,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0單調(diào)遞增,又SKIPIF1<0,SKIPIF1<0,所以存在唯一的SKIPIF1<0,使得SKIPIF1<0,且當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0單調(diào)遞減;當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0單調(diào)遞增;所以SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0,即SKIPIF1<0,若關(guān)于x的不等式SKIPIF1<0有解,則SKIPIF1<0,又t為整數(shù),所以SKIPIF1<0,所以存在整數(shù)t滿足題意,且t的最小值為0.【點睛】方法點睛:若不等式SKIPIF1<0有解,則SKIPIF1<0;若不等式SKIPIF1<0恒成立,則SKIPIF1<0.19.(2023·全國·模擬預(yù)測)已知函數(shù)SKIPIF1<0.(1)當(dāng)SKIPIF1<0時,求SKIPIF1<0的最小值;(2)設(shè)SKIPIF1<0,SKIPIF1<0,證明:SKIPIF1<0有且僅有SKIPIF1<0個零點.(參考數(shù)據(jù):SKIPIF1<0,SKIPIF1<0.)【詳解】(1)已知SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,即SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,即SKIPIF1<0,所以SKIPIF1<0的最小值為SKIPIF1<0(2)因為SKIPIF1<0,所以SKIPIF1<0.①當(dāng)SKIPIF1<0時,設(shè)SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0單調(diào)遞增.又SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0,使得SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0單調(diào)遞減,當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0單調(diào)遞增,故SKIPIF1<0,SKIPIF1<0.所以SKIPIF1<0在SKIPIF1<0上存在唯一零點SKIPIF1<0,顯然SKIPIF1<0,故SKIPIF1<0是SKIPIF1<0的一個零點.②當(dāng)SKIPIF1<0時,SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,再設(shè)SKIPIF1<0,于是SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,且SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0,使得SKIPIF1<0.當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0單調(diào)遞增,當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0單調(diào)遞減,因為SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0,使得SKIPIF1<0.當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0單調(diào)遞增,當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0單調(diào)遞減,又因為SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上無零點.③當(dāng)SKIPIF1<0時,SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0上單調(diào)遞減.又因為SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上存在唯一零點SKIPIF1<0.④當(dāng)SKIPIF1<0時,因為SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,此時SKIPIF1<0無零點.綜上所述,SKIPIF1<0在SKIPIF1<0上有且僅有SKIPIF1<0個零點.【點睛】關(guān)鍵點睛:這道題的關(guān)鍵地方是第二問要分四種情況進(jìn)行討論,然后對函數(shù)進(jìn)行多次求導(dǎo),得到原函數(shù)的單調(diào)性和正負(fù)情況20.(2023·湖北·校聯(lián)考模擬預(yù)測)已知函數(shù)SKIPIF1<0.(注:SKIPIF1<0…是自然對數(shù)的底數(shù))(1)當(dāng)SKIPIF1<0時,求曲線SKIPIF1<0在點SKIPIF1<0處的切線方程;(2)若SKIPIF1<0只有一個極值點,求實數(shù)m的取值范圍;(3)若存在SKIPIF1<0,對與任意的SKIPIF1<0,使得SKIPIF1<0恒成立,求SKIPIF1<0的最小值.【答案】(1)SKIPIF1<0(2)SKIPIF1<0(3)SKIPIF1<0【分析】(1)根據(jù)導(dǎo)數(shù)的幾何意義SKIPIF1<0,結(jié)合點斜式求切線方程;(2)討論SKIPIF1<0的符號,判斷SKIPIF1<0的單調(diào)性,進(jìn)而確定SKIPIF1<0的零點;(3)要使SKIPIF1<0取到最小值,則SKIPIF1<0取最大,分析可得SKIPIF1<0,結(jié)合零點代換處理即可.【詳解】(1)(1)當(dāng)SKIPIF1<0時,SKIPIF1<0,故

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論