版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
綏化市重點中學2025屆高三第二次調(diào)研數(shù)學試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.下列說法正確的是()A.“若,則”的否命題是“若,則”B.“若,則”的逆命題為真命題C.,使成立D.“若,則”是真命題2.已知是函數(shù)的極大值點,則的取值范圍是A. B.C. D.3.高三珠海一模中,經(jīng)抽樣分析,全市理科數(shù)學成績X近似服從正態(tài)分布,且.從中隨機抽取參加此次考試的學生500名,估計理科數(shù)學成績不低于110分的學生人數(shù)約為()A.40 B.60 C.80 D.1004.已知函數(shù)滿足:當時,,且對任意,都有,則()A.0 B.1 C.-1 D.5.已知數(shù)列,,,…,是首項為8,公比為得等比數(shù)列,則等于()A.64 B.32 C.2 D.46.設(shè)命題p:>1,n2>2n,則p為()A. B.C. D.7.中國古典樂器一般按“八音”分類.這是我國最早按樂器的制造材料來對樂器進行分類的方法,最先見于《周禮·春官·大師》,分為“金、石、土、革、絲、木、匏(páo)、竹”八音,其中“金、石、木、革”為打擊樂器,“土、匏、竹”為吹奏樂器,“絲”為彈撥樂器.現(xiàn)從“八音”中任取不同的“兩音”,則含有打擊樂器的概率為()A. B. C. D.8.已知,函數(shù)在區(qū)間上恰有個極值點,則正實數(shù)的取值范圍為()A. B. C. D.9.設(shè)雙曲線的左右焦點分別為,點.已知動點在雙曲線的右支上,且點不共線.若的周長的最小值為,則雙曲線的離心率的取值范圍是()A. B. C. D.10.偶函數(shù)關(guān)于點對稱,當時,,求()A. B. C. D.11.設(shè)是雙曲線的左、右焦點,若雙曲線右支上存在一點,使(為坐標原點),且,則雙曲線的離心率為()A. B. C. D.12.設(shè)等比數(shù)列的前項和為,若,則的值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.正四棱柱中,,.若是側(cè)面內(nèi)的動點,且,則與平面所成角的正切值的最大值為___________.14.展開式中的系數(shù)為_________.(用數(shù)字做答)15.直線是圓:與圓:的公切線,并且分別與軸正半軸,軸正半軸相交于,兩點,則的面積為_________16.在某批次的某種燈泡中,隨機抽取200個樣品.并對其壽命進行追蹤調(diào)查,將結(jié)果列成頻率分布表如下:壽命(天)頻數(shù)頻率40600.30.4200.1合計2001某人從燈泡樣品中隨機地購買了個,如果這個燈泡的壽命情況恰好與按四個組分層抽樣所得的結(jié)果相同,則的最小值為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,側(cè)面為等邊三角形,且垂直于底面,,分別是的中點.(1)證明:平面平面;(2)已知點在棱上且,求直線與平面所成角的余弦值.18.(12分)如圖,橢圓的左、右頂點分別為,,上、下頂點分別為,,且,為等邊三角形,過點的直線與橢圓在軸右側(cè)的部分交于、兩點.(1)求橢圓的標準方程;(2)求四邊形面積的取值范圍.19.(12分)如圖,在四面體中,.(1)求證:平面平面;(2)若,求四面體的體積.20.(12分)已知橢圓的上頂點為,圓與軸的正半軸交于點,與有且僅有兩個交點且都在軸上,(為坐標原點).(1)求橢圓的方程;(2)已知點,不過點且斜率為的直線與橢圓交于兩點,證明:直線與直線的斜率互為相反數(shù).21.(12分)在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)).以為極點,軸的正半軸為極軸建立極坐標系,直線的極坐標方程為(),將曲線向左平移2個單位長度得到曲線.(1)求曲線的普通方程和極坐標方程;(2)設(shè)直線與曲線交于兩點,求的取值范圍.22.(10分)已知.(1)若是上的增函數(shù),求的取值范圍;(2)若函數(shù)有兩個極值點,判斷函數(shù)零點的個數(shù).
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】選項A,否命題為“若,則”,故A不正確.選項B,逆命題為“若,則”,為假命題,故B不正確.選項C,由題意知對,都有,故C不正確.選項D,命題的逆否命題“若,則”為真命題,故“若,則”是真命題,所以D正確.選D.2、B【解析】
方法一:令,則,,當,時,,單調(diào)遞減,∴時,,,且,∴,即在上單調(diào)遞增,時,,,且,∴,即在上單調(diào)遞減,∴是函數(shù)的極大值點,∴滿足題意;當時,存在使得,即,又在上單調(diào)遞減,∴時,,所以,這與是函數(shù)的極大值點矛盾.綜上,.故選B.方法二:依據(jù)極值的定義,要使是函數(shù)的極大值點,須在的左側(cè)附近,,即;在的右側(cè)附近,,即.易知,時,與相切于原點,所以根據(jù)與的圖象關(guān)系,可得,故選B.3、D【解析】
由正態(tài)分布的性質(zhì),根據(jù)題意,得到,求出概率,再由題中數(shù)據(jù),即可求出結(jié)果.【詳解】由題意,成績X近似服從正態(tài)分布,則正態(tài)分布曲線的對稱軸為,根據(jù)正態(tài)分布曲線的對稱性,求得,所以該市某校有500人中,估計該校數(shù)學成績不低于110分的人數(shù)為人,故選:.【點睛】本題考查正態(tài)分布的圖象和性質(zhì),考查學生分析問題的能力,難度容易.4、C【解析】
由題意可知,代入函數(shù)表達式即可得解.【詳解】由可知函數(shù)是周期為4的函數(shù),.故選:C.【點睛】本題考查了分段函數(shù)和函數(shù)周期的應用,屬于基礎(chǔ)題.5、A【解析】
根據(jù)題意依次計算得到答案.【詳解】根據(jù)題意知:,,故,,.故選:.【點睛】本題考查了數(shù)列值的計算,意在考查學生的計算能力.6、C【解析】根據(jù)命題的否定,可以寫出:,所以選C.7、B【解析】
分別求得所有基本事件個數(shù)和滿足題意的基本事件個數(shù),根據(jù)古典概型概率公式可求得結(jié)果.【詳解】從“八音”中任取不同的“兩音”共有種取法;“兩音”中含有打擊樂器的取法共有種取法;所求概率.故選:.【點睛】本題考查古典概型概率問題的求解,關(guān)鍵是能夠利用組合的知識求得基本事件總數(shù)和滿足題意的基本事件個數(shù).8、B【解析】
先利用向量數(shù)量積和三角恒等變換求出,函數(shù)在區(qū)間上恰有個極值點即為三個最值點,解出,,再建立不等式求出的范圍,進而求得的范圍.【詳解】解:令,解得對稱軸,,又函數(shù)在區(qū)間恰有個極值點,只需解得.故選:.【點睛】本題考查利用向量的數(shù)量積運算和三角恒等變換與三角函數(shù)性質(zhì)的綜合問題.(1)利用三角恒等變換及輔助角公式把三角函數(shù)關(guān)系式化成或的形式;(2)根據(jù)自變量的范圍確定的范圍,根據(jù)相應的正弦曲線或余弦曲線求值域或最值或參數(shù)范圍.9、A【解析】
依題意可得即可得到,從而求出雙曲線的離心率的取值范圍;【詳解】解:依題意可得如下圖象,所以則所以所以所以,即故選:A【點睛】本題考查雙曲線的簡單幾何性質(zhì),屬于中檔題.10、D【解析】
推導出函數(shù)是以為周期的周期函數(shù),由此可得出,代值計算即可.【詳解】由于偶函數(shù)的圖象關(guān)于點對稱,則,,,則,所以,函數(shù)是以為周期的周期函數(shù),由于當時,,則.故選:D.【點睛】本題考查利用函數(shù)的對稱性和奇偶性求函數(shù)值,推導出函數(shù)的周期性是解答的關(guān)鍵,考查推理能力與計算能力,屬于中等題.11、D【解析】
利用向量運算可得,即,由為的中位線,得到,所以,再根據(jù)雙曲線定義即可求得離心率.【詳解】取的中點,則由得,即;在中,為的中位線,所以,所以;由雙曲線定義知,且,所以,解得,故選:D【點睛】本題綜合考查向量運算與雙曲線的相關(guān)性質(zhì),難度一般.12、C【解析】
求得等比數(shù)列的公比,然后利用等比數(shù)列的求和公式可求得的值.【詳解】設(shè)等比數(shù)列的公比為,,,,因此,.故選:C.【點睛】本題考查等比數(shù)列求和公式的應用,解答的關(guān)鍵就是求出等比數(shù)列的公比,考查計算能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、2.【解析】
如圖,以為原點建立空間直角坐標系,設(shè)點,由得,證明為與平面所成角,令,用三角函數(shù)表示出,求解三角函數(shù)的最大值得到結(jié)果.【詳解】如圖,以為原點建立空間直角坐標系,設(shè)點,則,,又,得即;又平面,為與平面所成角,令,當時,最大,即與平面所成角的正切值的最大值為2.故答案為:2【點睛】本題主要考查了立體幾何中的動點問題,考查了直線與平面所成角的計算.對于這類題,一般是建立空間直角坐標,在動點坐標內(nèi)引入?yún)?shù),將最值問題轉(zhuǎn)化為函數(shù)的最值問題求解,考查了學生的運算求解能力和直觀想象能力.14、210【解析】
轉(zhuǎn)化,只有中含有,即得解.【詳解】只有中含有,其中的系數(shù)為故答案為:210【點睛】本題考查了二項式系數(shù)的求解,考查了學生概念理解,轉(zhuǎn)化劃歸,數(shù)學運算的能力,屬于中檔題.15、【解析】
根據(jù)題意畫出圖形,設(shè),利用三角形相似求得的值,代入三角形的面積公式,即可求解.【詳解】如圖所示,設(shè),由與相似,可得,解得,再由與相似,可得,解得,由三角形的面積公式,可得的面積為.故答案為:.【點睛】本題主要考查了直線與圓的位置關(guān)系的應用,以及三角形相似的應用,著重考查了數(shù)形結(jié)合思想,以及推理與運算能力,屬于基礎(chǔ)題.16、10【解析】
先求出a,b,根據(jù)分層抽樣的比例引入正整數(shù)k表示n,從而得出的最小值.【詳解】由題意得,a=0.2,b=80,由表可知,燈泡樣品第一組有40個,第二組有60個,第三組有80個,第四組有20個,所以四個組的比例為2:3:4:1,所以按分層抽樣法,購買的燈泡數(shù)為n=2k+3k+4k+k=10k(),所以的最小值為10.【點睛】本題考查分層抽樣基本原理的應用,涉及抽樣比、總體數(shù)量、每層樣本數(shù)量的計算,屬于基礎(chǔ)題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2).【解析】
(1)由平面幾何知識可得出四邊形是平行四邊形,可得面,再由面面平行的判定可證得面面平行;(2)由(1)可知,兩兩垂直,故建立空間直角坐標系,可求得面PAB的法向量,再運用線面角的向量求法,可求得直線與平面所成角的余弦值.【詳解】(1),,又,,,而、分別是、的中點,,故面,又且,故四邊形是平行四邊形,面,又,是面內(nèi)的兩條相交直線,故面面.(2)由(1)可知,兩兩垂直,故建系如圖所示,則,,,,設(shè)是平面PAB的法向量,,令,則,,直線NE與平面所成角的余弦值為.【點睛】本題考查空間的面面平行的判定,以及線面角的空間向量的求解方法,屬于中檔題.18、(1);(2).【解析】
(1)根據(jù)坐標和為等邊三角形可得,進而得到橢圓方程;(2)①當直線斜率不存在時,易求坐標,從而得到所求面積;②當直線的斜率存在時,設(shè)方程為,與橢圓方程聯(lián)立得到韋達定理的形式,并確定的取值范圍;利用,代入韋達定理的結(jié)論可求得關(guān)于的表達式,采用換元法將問題轉(zhuǎn)化為,的值域的求解問題,結(jié)合函數(shù)單調(diào)性可求得值域;結(jié)合兩種情況的結(jié)論可得最終結(jié)果.【詳解】(1),,為等邊三角形,,橢圓的標準方程為.(2)設(shè)四邊形的面積為.①當直線的斜率不存在時,可得,,.②當直線的斜率存在時,設(shè)直線的方程為,設(shè),,聯(lián)立得:,,,.,,,,面積.令,則,,令,則,,在定義域內(nèi)單調(diào)遞減,.綜上所述:四邊形面積的取值范圍是.【點睛】本題考查直線與橢圓的綜合應用問題,涉及到橢圓方程的求解、橢圓中的四邊形面積的取值范圍的求解問題;關(guān)鍵是能夠?qū)⑺竺娣e表示為關(guān)于某一變量的函數(shù),將問題轉(zhuǎn)化為函數(shù)值域的求解問題.19、(1)證明見解析;(2).【解析】
(1)取中點,連接,根據(jù)等腰三角形的性質(zhì)得到,利用全等三角形證得,由此證得平面,進而證得平面平面.(2)由(1)知平面,即是四面體的面上的高,結(jié)合錐體體積公式,求得四面體的體積.【詳解】(1)證明:如圖,取中點,連接,由則,則,故故,平面.又平面,故平面平面(2)由(1)知平面,即是四面體的面上的高,且.在中,,由勾股定理易知故四面體的體積【點睛】本小題主要考查面面垂直的證明,考查錐體體積計算,考查空間想象能力和邏輯推理能力,屬于中檔題.20、(1)(2)證明見解析【解析】
(1)根據(jù)條件可得,進而得到,即可得到橢圓方程;(2)設(shè)直線的方程為,聯(lián)立,分別表示出直線和直線斜率,相加利用根與系數(shù)關(guān)系即可得到.【詳解】解:(1)圓與有且僅有兩個交點且都在軸上,所以,又,,解得,故橢圓的方程為;(2)設(shè)直線的方程為,聯(lián)立,整理可得,則,解得,設(shè)點,,則,,所以,故直線與直線的斜率互為相反數(shù).【點睛】本題考查直線與橢圓的位置關(guān)系,涉及橢圓的幾何性質(zhì),關(guān)鍵是求出橢圓的標準方程,屬于中檔題.21、(1)的極坐標方程為,普通方程為;(2)【解析】
(1)根據(jù)三角函數(shù)恒等變換可得,,可得曲線的普通方程,再運用圖像的平移得依題意得曲線的普通方程為,利用極坐標與平面直角坐標互化的公式可得方程;(2)法一:將代入曲線的極坐標方程得,運用韋達定理可得,根據(jù),可求得的范圍;法二:設(shè)直線的參數(shù)方程為(為參數(shù),為直線的傾斜角),代入曲線的普通方程得,運用韋達定理可得,根據(jù),可求得的范圍;【詳解】(1),,即曲線的普通方程為,依題意得曲線的普通方程為,令,得曲線的極坐標方程為;(2)法一:將代入曲線的極坐標方程得,則,,,異號,,,;法二:設(shè)直線的參數(shù)方程為(為參數(shù),為直線的傾斜角),代入曲線的普通方程得,則,,,異號,,.【點睛】本題考查參數(shù)方程與
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 探秘書海:字里行間的智慧
- 一年來的財務工作總結(jié)
- 2023年員工三級安全培訓考試題及完整答案(全優(yōu))
- 2023年-2024年項目安全培訓考試題含答案(精練)
- 2023-2024年項目部安全管理人員安全培訓考試題原創(chuàng)題
- 2023-2024年企業(yè)主要負責人安全培訓考試題答案可打印
- 新生軍訓心得體會400字10篇
- 科學實驗教學
- 藥物代謝預測與智能模擬研究-洞察分析
- 鐵路運營成本控制-洞察分析
- 通力電梯KCE電氣系統(tǒng)學習指南
- 風電場崗位任職資格考試題庫大全-下(填空題2-2)
- 九年級數(shù)學特長生選拔考試試題
- 幼兒園交通安全宣傳課件PPT
- 門窗施工組織設(shè)計與方案
- 健身健美(課堂PPT)
- (完整版)財務管理學課后習題答案-人大版
- 錨索試驗總結(jié)(共11頁)
- 移動腳手架安全交底
- 人教版“課標”教材《統(tǒng)計與概率》教學內(nèi)容、具體目標和要求
- 矩形鋼板水箱的設(shè)計與計算
評論
0/150
提交評論