北京理工大學(xué)《深度學(xué)習(xí)》2021-2022學(xué)年第一學(xué)期期末試卷_第1頁(yè)
北京理工大學(xué)《深度學(xué)習(xí)》2021-2022學(xué)年第一學(xué)期期末試卷_第2頁(yè)
北京理工大學(xué)《深度學(xué)習(xí)》2021-2022學(xué)年第一學(xué)期期末試卷_第3頁(yè)
北京理工大學(xué)《深度學(xué)習(xí)》2021-2022學(xué)年第一學(xué)期期末試卷_第4頁(yè)
北京理工大學(xué)《深度學(xué)習(xí)》2021-2022學(xué)年第一學(xué)期期末試卷_第5頁(yè)
已閱讀5頁(yè),還剩1頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

自覺(jué)遵守考場(chǎng)紀(jì)律如考試作弊此答卷無(wú)效密自覺(jué)遵守考場(chǎng)紀(jì)律如考試作弊此答卷無(wú)效密封線第1頁(yè),共3頁(yè)北京理工大學(xué)《深度學(xué)習(xí)》

2021-2022學(xué)年第一學(xué)期期末試卷院(系)_______班級(jí)_______學(xué)號(hào)_______姓名_______題號(hào)一二三四總分得分批閱人一、單選題(本大題共20個(gè)小題,每小題2分,共40分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在進(jìn)行深度學(xué)習(xí)中的圖像生成任務(wù)時(shí),生成對(duì)抗網(wǎng)絡(luò)(GAN)是一種常用的模型。假設(shè)我們要生成逼真的人臉圖像。以下關(guān)于GAN的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.GAN由生成器和判別器組成,它們通過(guò)相互對(duì)抗來(lái)提高生成圖像的質(zhì)量B.生成器的目標(biāo)是生成盡可能逼真的圖像,以欺騙判別器C.判別器的任務(wù)是區(qū)分輸入的圖像是真實(shí)的還是由生成器生成的D.GAN的訓(xùn)練過(guò)程穩(wěn)定,不容易出現(xiàn)模式崩潰等問(wèn)題2、機(jī)器學(xué)習(xí)中,批量歸一化(BatchNormalization)通常應(yīng)用于()A.輸入層B.隱藏層C.輸出層D.以上都可以3、在進(jìn)行特征選擇時(shí),有多種方法可以評(píng)估特征的重要性。假設(shè)我們有一個(gè)包含多個(gè)特征的數(shù)據(jù)集。以下關(guān)于特征重要性評(píng)估方法的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.信息增益通過(guò)計(jì)算特征引入前后信息熵的變化來(lái)衡量特征的重要性B.卡方檢驗(yàn)可以檢驗(yàn)特征與目標(biāo)變量之間的獨(dú)立性,從而評(píng)估特征的重要性C.隨機(jī)森林中的特征重要性評(píng)估是基于特征對(duì)模型性能的貢獻(xiàn)程度D.所有的特征重要性評(píng)估方法得到的結(jié)果都是完全準(zhǔn)確和可靠的,不需要進(jìn)一步驗(yàn)證4、想象一個(gè)市場(chǎng)營(yíng)銷的項(xiàng)目,需要根據(jù)客戶的購(gòu)買(mǎi)歷史、瀏覽行為和人口統(tǒng)計(jì)信息來(lái)預(yù)測(cè)其未來(lái)的購(gòu)買(mǎi)傾向。同時(shí),要能夠解釋模型的決策依據(jù)以指導(dǎo)營(yíng)銷策略的制定。以下哪種模型和策略可能是最適用的?()A.建立邏輯回歸模型,通過(guò)系數(shù)分析解釋變量的影響,但對(duì)于復(fù)雜的非線性關(guān)系可能不敏感B.運(yùn)用決策樹(shù)集成算法,如梯度提升樹(shù)(GradientBoostingTree),準(zhǔn)確性較高,且可以通過(guò)特征重要性評(píng)估解釋模型,但局部解釋性相對(duì)較弱C.采用深度學(xué)習(xí)中的多層卷積神經(jīng)網(wǎng)絡(luò),預(yù)測(cè)能力強(qiáng),但幾乎無(wú)法提供直觀的解釋D.構(gòu)建基于規(guī)則的分類器,明確的規(guī)則易于理解,但可能無(wú)法處理復(fù)雜的數(shù)據(jù)模式和不確定性5、考慮一個(gè)情感分析任務(wù),判斷一段文本所表達(dá)的情感是積極、消極還是中性。在特征提取方面,可以使用詞袋模型、TF-IDF等方法。如果文本數(shù)據(jù)量較大,且包含豐富的語(yǔ)義信息,以下哪種特征提取方法可能表現(xiàn)更好?()A.詞袋模型,簡(jiǎn)單直觀,計(jì)算速度快B.TF-IDF,考慮了詞的頻率和文檔的分布C.基于深度學(xué)習(xí)的詞向量表示,能夠捕捉語(yǔ)義和上下文信息D.以上方法效果相同,取決于模型的復(fù)雜程度6、假設(shè)正在進(jìn)行一個(gè)異常檢測(cè)任務(wù),例如檢測(cè)網(wǎng)絡(luò)中的異常流量。如果正常數(shù)據(jù)的模式較為復(fù)雜,以下哪種方法可能更適合用于發(fā)現(xiàn)異常?()A.基于統(tǒng)計(jì)的方法B.基于距離的方法C.基于密度的方法D.基于分類的方法7、某機(jī)器學(xué)習(xí)項(xiàng)目需要對(duì)圖像中的物體進(jìn)行實(shí)例分割,除了常見(jiàn)的深度學(xué)習(xí)模型,以下哪種技術(shù)可以提高分割的精度?()A.多尺度訓(xùn)練B.數(shù)據(jù)增強(qiáng)C.模型融合D.以上技術(shù)都可以8、在處理自然語(yǔ)言處理任務(wù)時(shí),詞嵌入(WordEmbedding)是一種常用的技術(shù)。假設(shè)我們要對(duì)一段文本進(jìn)行情感分析。以下關(guān)于詞嵌入的描述,哪一項(xiàng)是錯(cuò)誤的?()A.詞嵌入將單詞表示為低維實(shí)數(shù)向量,捕捉單詞之間的語(yǔ)義關(guān)系B.Word2Vec和GloVe是常見(jiàn)的詞嵌入模型,可以學(xué)習(xí)到單詞的分布式表示C.詞嵌入向量的維度通常是固定的,且不同單詞的向量維度必須相同D.詞嵌入可以直接用于文本分類任務(wù),無(wú)需進(jìn)行進(jìn)一步的特征工程9、在使用樸素貝葉斯算法進(jìn)行分類時(shí),以下關(guān)于樸素貝葉斯的假設(shè)和特點(diǎn),哪一項(xiàng)是不正確的?()A.假設(shè)特征之間相互獨(dú)立,簡(jiǎn)化了概率計(jì)算B.對(duì)于連續(xù)型特征,通常需要先進(jìn)行離散化處理C.樸素貝葉斯算法對(duì)輸入數(shù)據(jù)的分布沒(méi)有要求,適用于各種類型的數(shù)據(jù)D.樸素貝葉斯算法在處理高維度數(shù)據(jù)時(shí)性能較差,容易出現(xiàn)過(guò)擬合10、假設(shè)正在研究一個(gè)語(yǔ)音合成任務(wù),需要生成自然流暢的語(yǔ)音。以下哪種技術(shù)在語(yǔ)音合成中起到關(guān)鍵作用?()A.聲碼器B.文本到語(yǔ)音轉(zhuǎn)換模型C.語(yǔ)音韻律模型D.以上技術(shù)都很重要11、在一個(gè)異常檢測(cè)的任務(wù)中,數(shù)據(jù)分布呈現(xiàn)多峰且存在離群點(diǎn)。以下哪種異常檢測(cè)算法可能表現(xiàn)較好?()A.基于密度的局部異常因子(LOF)算法,能夠發(fā)現(xiàn)局部密度差異較大的異常點(diǎn),但對(duì)參數(shù)敏感B.一類支持向量機(jī)(One-ClassSVM),適用于高維數(shù)據(jù),但對(duì)數(shù)據(jù)分布的假設(shè)較強(qiáng)C.基于聚類的異常檢測(cè),將遠(yuǎn)離聚類中心的點(diǎn)視為異常,但聚類效果對(duì)結(jié)果影響較大D.以上算法結(jié)合使用,根據(jù)數(shù)據(jù)特點(diǎn)選擇合適的方法或進(jìn)行組合12、某研究團(tuán)隊(duì)正在開(kāi)發(fā)一個(gè)用于預(yù)測(cè)股票價(jià)格的機(jī)器學(xué)習(xí)模型,需要考慮市場(chǎng)的動(dòng)態(tài)性和不確定性。以下哪種模型可能更適合處理這種復(fù)雜的時(shí)間序列數(shù)據(jù)?()A.長(zhǎng)短時(shí)記憶網(wǎng)絡(luò)(LSTM)結(jié)合注意力機(jī)制B.門(mén)控循環(huán)單元(GRU)與卷積神經(jīng)網(wǎng)絡(luò)(CNN)的組合C.隨機(jī)森林與自回歸移動(dòng)平均模型(ARMA)的融合D.以上模型都有可能13、在一個(gè)監(jiān)督學(xué)習(xí)問(wèn)題中,我們需要評(píng)估模型在新數(shù)據(jù)上的泛化能力。如果數(shù)據(jù)集較小且存在類別不平衡的情況,以下哪種評(píng)估指標(biāo)需要特別謹(jǐn)慎地使用?()A.準(zhǔn)確率(Accuracy)B.召回率(Recall)C.F1值D.均方誤差(MSE)14、在構(gòu)建一個(gè)機(jī)器學(xué)習(xí)模型時(shí),我們通常需要對(duì)數(shù)據(jù)進(jìn)行預(yù)處理。假設(shè)我們有一個(gè)包含大量缺失值的數(shù)據(jù)集,以下哪種處理缺失值的方法是較為合理的()A.直接刪除包含缺失值的樣本B.用平均值填充缺失值C.用隨機(jī)值填充缺失值D.不處理缺失值,直接使用原始數(shù)據(jù)15、在評(píng)估機(jī)器學(xué)習(xí)模型的性能時(shí),通常會(huì)使用多種指標(biāo)。假設(shè)我們有一個(gè)二分類模型,用于預(yù)測(cè)患者是否患有某種疾病。以下關(guān)于模型評(píng)估指標(biāo)的描述,哪一項(xiàng)是不正確的?()A.準(zhǔn)確率是正確分類的樣本數(shù)占總樣本數(shù)的比例,但在類別不平衡的情況下可能不準(zhǔn)確B.召回率是被正確預(yù)測(cè)為正例的樣本數(shù)占實(shí)際正例樣本數(shù)的比例C.F1分?jǐn)?shù)是準(zhǔn)確率和召回率的調(diào)和平均值,綜合考慮了模型的準(zhǔn)確性和全面性D.均方誤差(MSE)常用于二分類問(wèn)題的模型評(píng)估,值越小表示模型性能越好16、在一個(gè)深度學(xué)習(xí)模型的訓(xùn)練過(guò)程中,出現(xiàn)了梯度消失的問(wèn)題。以下哪種方法可以嘗試解決這個(gè)問(wèn)題?()A.使用ReLU激活函數(shù)B.增加網(wǎng)絡(luò)層數(shù)C.減小學(xué)習(xí)率D.以上方法都可能有效17、在一個(gè)文本生成任務(wù)中,例如生成詩(shī)歌或故事,以下哪種方法常用于生成自然語(yǔ)言文本?()A.基于規(guī)則的方法B.基于模板的方法C.基于神經(jīng)網(wǎng)絡(luò)的方法,如TransformerD.以上都不是18、在進(jìn)行強(qiáng)化學(xué)習(xí)中的策略優(yōu)化時(shí),以下關(guān)于策略優(yōu)化方法的描述,哪一項(xiàng)是不正確的?()A.策略梯度方法通過(guò)直接計(jì)算策略的梯度來(lái)更新策略參數(shù)B.信賴域策略優(yōu)化(TrustRegionPolicyOptimization,TRPO)通過(guò)限制策略更新的幅度來(lái)保證策略的改進(jìn)C.近端策略優(yōu)化(ProximalPolicyOptimization,PPO)是一種基于策略梯度的改進(jìn)算法,具有更好的穩(wěn)定性和收斂性D.所有的策略優(yōu)化方法在任何強(qiáng)化學(xué)習(xí)任務(wù)中都能取得相同的效果,不需要根據(jù)任務(wù)特點(diǎn)進(jìn)行選擇19、在進(jìn)行深度學(xué)習(xí)模型的訓(xùn)練時(shí),優(yōu)化算法對(duì)模型的收斂速度和性能有重要影響。假設(shè)我們正在訓(xùn)練一個(gè)多層感知機(jī)(MLP)模型。以下關(guān)于優(yōu)化算法的描述,哪一項(xiàng)是不正確的?()A.隨機(jī)梯度下降(SGD)算法是一種常用的優(yōu)化算法,通過(guò)不斷調(diào)整模型參數(shù)來(lái)最小化損失函數(shù)B.動(dòng)量(Momentum)方法可以加速SGD的收斂,減少震蕩C.Adagrad算法根據(jù)每個(gè)參數(shù)的歷史梯度自適應(yīng)地調(diào)整學(xué)習(xí)率,對(duì)稀疏特征效果較好D.所有的優(yōu)化算法在任何情況下都能使模型快速收斂到最優(yōu)解,不需要根據(jù)模型和數(shù)據(jù)特點(diǎn)進(jìn)行選擇20、深度學(xué)習(xí)是機(jī)器學(xué)習(xí)的一個(gè)重要分支,它利用深度神經(jīng)網(wǎng)絡(luò)進(jìn)行學(xué)習(xí)。以下關(guān)于深度學(xué)習(xí)的說(shuō)法中,錯(cuò)誤的是:深度神經(jīng)網(wǎng)絡(luò)具有多層結(jié)構(gòu),可以自動(dòng)學(xué)習(xí)數(shù)據(jù)的特征表示。深度學(xué)習(xí)在圖像識(shí)別、語(yǔ)音識(shí)別等領(lǐng)域取得了巨大的成功。那么,下列關(guān)于深度學(xué)習(xí)的說(shuō)法錯(cuò)誤的是()A.卷積神經(jīng)網(wǎng)絡(luò)是一種專門(mén)用于處理圖像數(shù)據(jù)的深度神經(jīng)網(wǎng)絡(luò)B.循環(huán)神經(jīng)網(wǎng)絡(luò)適用于處理序列數(shù)據(jù),如文本、時(shí)間序列等C.深度神經(jīng)網(wǎng)絡(luò)的訓(xùn)練需要大量的計(jì)算資源和時(shí)間D.深度學(xué)習(xí)算法可以自動(dòng)學(xué)習(xí)到最優(yōu)的特征表示,不需要人工設(shè)計(jì)特征二、簡(jiǎn)答題(本大題共3個(gè)小題,共15分)1、(本題5分)機(jī)器學(xué)習(xí)在影視制作中的特效生成是如何實(shí)現(xiàn)的?2、(本題5分)說(shuō)明機(jī)器學(xué)習(xí)在口腔醫(yī)學(xué)中的診斷輔助。3、(本題5分)說(shuō)明機(jī)器學(xué)習(xí)在宗教研究中的數(shù)據(jù)分析。三、應(yīng)用題(本大題共5個(gè)小題,共25分)1、(本題5分)運(yùn)用K-Means聚類對(duì)市場(chǎng)細(xì)分進(jìn)行分析。2、(本題5分)使用Adaboost算法對(duì)圖像中的車牌進(jìn)行識(shí)別。3、(本題5分)通過(guò)主成分分析降低圖像數(shù)據(jù)的維度

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論