




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共3頁北京理工大學(xué)
《機(jī)器學(xué)習(xí)初步》2021-2022學(xué)年第一學(xué)期期末試卷題號一二三四總分得分批閱人一、單選題(本大題共15個小題,每小題1分,共15分.在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在機(jī)器學(xué)習(xí)中,數(shù)據(jù)預(yù)處理是非常重要的環(huán)節(jié)。以下關(guān)于數(shù)據(jù)預(yù)處理的說法中,錯誤的是:數(shù)據(jù)預(yù)處理包括數(shù)據(jù)清洗、數(shù)據(jù)歸一化、數(shù)據(jù)標(biāo)準(zhǔn)化等步驟。目的是提高數(shù)據(jù)的質(zhì)量和可用性。那么,下列關(guān)于數(shù)據(jù)預(yù)處理的說法錯誤的是()A.數(shù)據(jù)清洗可以去除數(shù)據(jù)中的噪聲和異常值B.數(shù)據(jù)歸一化將數(shù)據(jù)映射到[0,1]區(qū)間,便于不同特征之間的比較C.數(shù)據(jù)標(biāo)準(zhǔn)化將數(shù)據(jù)的均值和標(biāo)準(zhǔn)差調(diào)整為特定的值D.數(shù)據(jù)預(yù)處理對模型的性能影響不大,可以忽略2、假設(shè)正在構(gòu)建一個語音識別系統(tǒng),需要對輸入的語音信號進(jìn)行預(yù)處理和特征提取。語音信號具有時變、非平穩(wěn)等特點(diǎn),在預(yù)處理階段,以下哪種操作通常不是必需的?()A.去除背景噪聲B.對語音信號進(jìn)行分幀和加窗C.將語音信號轉(zhuǎn)換為頻域表示D.對語音信號進(jìn)行壓縮編碼,減少數(shù)據(jù)量3、假設(shè)正在進(jìn)行一個目標(biāo)檢測任務(wù),例如在圖像中檢測出人物和車輛。以下哪種深度學(xué)習(xí)框架在目標(biāo)檢測中被廣泛應(yīng)用?()A.TensorFlowB.PyTorchC.CaffeD.以上框架都常用于目標(biāo)檢測4、在機(jī)器學(xué)習(xí)中,強(qiáng)化學(xué)習(xí)是一種通過與環(huán)境交互來學(xué)習(xí)最優(yōu)策略的方法。假設(shè)一個機(jī)器人要通過強(qiáng)化學(xué)習(xí)來學(xué)習(xí)如何在復(fù)雜的環(huán)境中行走。以下關(guān)于強(qiáng)化學(xué)習(xí)的描述,哪一項(xiàng)是不正確的?()A.強(qiáng)化學(xué)習(xí)中的智能體根據(jù)環(huán)境的反饋(獎勵或懲罰)來調(diào)整自己的行為策略B.Q-learning是一種基于值函數(shù)的強(qiáng)化學(xué)習(xí)算法,通過估計(jì)狀態(tài)-動作值來選擇最優(yōu)動作C.策略梯度算法直接優(yōu)化策略函數(shù),通過計(jì)算策略的梯度來更新策略參數(shù)D.強(qiáng)化學(xué)習(xí)不需要對環(huán)境進(jìn)行建模,只需要不斷嘗試不同的動作就能找到最優(yōu)策略5、在進(jìn)行機(jī)器學(xué)習(xí)模型的訓(xùn)練時,過擬合是一個常見的問題。假設(shè)我們正在訓(xùn)練一個決策樹模型來預(yù)測客戶是否會購買某種產(chǎn)品,給定了客戶的個人信息和購買歷史等數(shù)據(jù)。以下關(guān)于過擬合的描述和解決方法,哪一項(xiàng)是錯誤的?()A.過擬合表現(xiàn)為模型在訓(xùn)練集上表現(xiàn)很好,但在測試集上表現(xiàn)不佳B.增加訓(xùn)練數(shù)據(jù)的數(shù)量可以有效地減少過擬合的發(fā)生C.對決策樹進(jìn)行剪枝操作,即刪除一些不重要的分支,可以防止過擬合D.降低模型的復(fù)雜度,例如減少決策樹的深度,會導(dǎo)致模型的擬合能力下降,無法解決過擬合問題6、某研究團(tuán)隊(duì)正在開發(fā)一個用于疾病預(yù)測的機(jī)器學(xué)習(xí)模型,需要考慮模型的魯棒性和穩(wěn)定性。以下哪種方法可以用于評估模型在不同數(shù)據(jù)集和條件下的性能?()A.交叉驗(yàn)證B.留一法C.自助法D.以上方法都可以7、假設(shè)在一個醫(yī)療診斷的場景中,需要通過機(jī)器學(xué)習(xí)算法來預(yù)測患者是否患有某種疾病。收集了大量患者的生理指標(biāo)、病史和生活習(xí)慣等數(shù)據(jù)。在選擇算法時,需要考慮模型的準(zhǔn)確性、可解釋性以及對新數(shù)據(jù)的泛化能力。以下哪種算法可能是最適合的?()A.決策樹算法,因?yàn)樗軌蚯逦卣故緵Q策過程,具有較好的可解釋性,但可能在復(fù)雜數(shù)據(jù)上的準(zhǔn)確性有限B.支持向量機(jī)算法,對高維數(shù)據(jù)有較好的處理能力,準(zhǔn)確性較高,但模型解釋相對困難C.隨機(jī)森林算法,由多個決策樹組成,準(zhǔn)確性較高且具有一定的抗噪能力,但可解釋性一般D.深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)算法,能夠自動提取特征,準(zhǔn)確性可能很高,但模型非常復(fù)雜,難以解釋8、假設(shè)要開發(fā)一個疾病診斷的輔助系統(tǒng),能夠根據(jù)患者的醫(yī)學(xué)影像(如X光、CT等)和臨床數(shù)據(jù)做出診斷建議。以下哪種模型融合策略可能是最有效的?()A.簡單平均多個模型的預(yù)測結(jié)果,計(jì)算簡單,但可能無法充分利用各個模型的優(yōu)勢B.基于加權(quán)平均的融合,根據(jù)模型的性能或重要性分配權(quán)重,但權(quán)重的確定可能具有主觀性C.采用堆疊(Stacking)方法,將多個模型的輸出作為新的特征輸入到一個元模型中進(jìn)行融合,但可能存在過擬合風(fēng)險D.基于注意力機(jī)制的融合,動態(tài)地根據(jù)輸入數(shù)據(jù)為不同模型分配權(quán)重,能夠更好地適應(yīng)不同情況,但實(shí)現(xiàn)較復(fù)雜9、機(jī)器學(xué)習(xí)中的算法選擇需要考慮多個因素。以下關(guān)于算法選擇的說法中,錯誤的是:算法選擇需要考慮數(shù)據(jù)的特點(diǎn)、問題的類型、計(jì)算資源等因素。不同的算法適用于不同的場景。那么,下列關(guān)于算法選擇的說法錯誤的是()A.對于小樣本數(shù)據(jù)集,優(yōu)先選擇復(fù)雜的深度學(xué)習(xí)算法B.對于高維度數(shù)據(jù),優(yōu)先選擇具有降維功能的算法C.對于實(shí)時性要求高的任務(wù),優(yōu)先選擇計(jì)算速度快的算法D.對于不平衡數(shù)據(jù)集,優(yōu)先選擇對不平衡數(shù)據(jù)敏感的算法10、在一個圖像分類任務(wù)中,如果需要快速進(jìn)行模型的訓(xùn)練和預(yù)測,以下哪種輕量級模型架構(gòu)可能比較適合?()A.MobileNetB.ResNetC.InceptionD.VGG11、假設(shè)要對一個復(fù)雜的數(shù)據(jù)集進(jìn)行降維,以便于可視化和后續(xù)分析。以下哪種降維方法可能是最有效的?()A.主成分分析(PCA),尋找數(shù)據(jù)的主要方向,但可能丟失一些局部信息B.線性判別分析(LDA),考慮類別信息,但對非線性結(jié)構(gòu)不敏感C.t-分布隨機(jī)鄰域嵌入(t-SNE),能夠保持?jǐn)?shù)據(jù)的局部結(jié)構(gòu),但計(jì)算復(fù)雜度高D.以上方法結(jié)合使用,根據(jù)數(shù)據(jù)特點(diǎn)和分析目的選擇合適的降維策略12、在強(qiáng)化學(xué)習(xí)中,智能體通過與環(huán)境交互來學(xué)習(xí)最優(yōu)策略。如果智能體在某個狀態(tài)下采取的行動總是導(dǎo)致低獎勵,它應(yīng)該()A.繼續(xù)采取相同的行動,希望情況會改善B.隨機(jī)選擇其他行動C.根據(jù)策略網(wǎng)絡(luò)的輸出選擇行動D.調(diào)整策略以避免采取該行動13、某研究需要對一個大型數(shù)據(jù)集進(jìn)行降維,同時希望保留數(shù)據(jù)的主要特征。以下哪種降維方法在這種情況下可能較為合適?()A.主成分分析(PCA)B.線性判別分析(LDA)C.t-分布隨機(jī)鄰域嵌入(t-SNE)D.自編碼器14、當(dāng)使用支持向量機(jī)(SVM)進(jìn)行分類任務(wù)時,如果數(shù)據(jù)不是線性可分的,通常會采用以下哪種方法()A.增加樣本數(shù)量B.降低維度C.使用核函數(shù)將數(shù)據(jù)映射到高維空間D.更換分類算法15、在進(jìn)行異常檢測時,以下關(guān)于異常檢測方法的描述,哪一項(xiàng)是不正確的?()A.基于統(tǒng)計(jì)的方法通過計(jì)算數(shù)據(jù)的均值、方差等統(tǒng)計(jì)量來判斷異常值B.基于距離的方法通過計(jì)算樣本之間的距離來識別異常點(diǎn)C.基于密度的方法認(rèn)為異常點(diǎn)的局部密度顯著低于正常點(diǎn)D.所有的異常檢測方法都能準(zhǔn)確地檢測出所有的異常,不存在漏檢和誤檢的情況二、簡答題(本大題共4個小題,共20分)1、(本題5分)解釋Isomap降維方法的特點(diǎn)。2、(本題5分)簡述機(jī)器學(xué)習(xí)在生物信息學(xué)數(shù)據(jù)庫中的應(yīng)用。3、(本題5分)簡述在生物信息學(xué)中,機(jī)器學(xué)習(xí)的應(yīng)用場景。4、(本題5分)機(jī)器學(xué)習(xí)在藝術(shù)創(chuàng)作中的創(chuàng)新點(diǎn)在哪里?三、論述題(本大題共5個小題,共25分)1、(本題5分)機(jī)器學(xué)習(xí)中的模型調(diào)優(yōu)方法有哪些?結(jié)合具體案例,分析如何選擇合適的參數(shù)以提高模型性能。2、(本題5分)分析機(jī)器學(xué)習(xí)在天文學(xué)中的恒星分類中的應(yīng)用,討論其對天文學(xué)研究的貢獻(xiàn)。3、(本題5分)論述在自然語言處理的語義理解任務(wù)中,機(jī)器學(xué)習(xí)算法的應(yīng)用和挑戰(zhàn)。研究如何捕捉文本中的深層語義信息。4、(本題5分)分析機(jī)器學(xué)習(xí)在智能交通領(lǐng)域的應(yīng)用。舉例說明機(jī)器學(xué)習(xí)在交通流量預(yù)測、交通信號控制、車輛識別等方面的應(yīng)用,并探討其對智能交通系統(tǒng)的影響及未來發(fā)展趨勢。5、(本題5分)論述深度學(xué)習(xí)中的膠囊網(wǎng)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 規(guī)范的采血流程
- 安徽省A10聯(lián)盟2024-2025學(xué)年高二下學(xué)期3月階段考試 數(shù)學(xué)試題(人教A版)D卷【含答案】
- 江蘇省江陰初級中學(xué)2024-2025學(xué)年高三下學(xué)期八校聯(lián)考數(shù)學(xué)試題含解析
- 曲靖醫(yī)學(xué)高等??茖W(xué)校《集裝箱與多式聯(lián)運(yùn)2》2023-2024學(xué)年第二學(xué)期期末試卷
- 山東省臨沂市臨沭縣一中2025年高三高中數(shù)學(xué)試題競賽模擬(二)數(shù)學(xué)試題含解析
- 錫林郭勒職業(yè)學(xué)院《環(huán)境科學(xué)專業(yè)英語》2023-2024學(xué)年第二學(xué)期期末試卷
- 汪清縣2024-2025學(xué)年三年級數(shù)學(xué)第二學(xué)期期末統(tǒng)考試題含解析
- 山東服裝職業(yè)學(xué)院《數(shù)學(xué)模型建立》2023-2024學(xué)年第一學(xué)期期末試卷
- 江西衛(wèi)生職業(yè)學(xué)院《急救醫(yī)學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 曲阜師范大學(xué)《景觀設(shè)計(jì)與規(guī)劃》2023-2024學(xué)年第二學(xué)期期末試卷
- 浙江省臺州市2025屆高三下學(xué)期4月二模試題 英語 含解析
- 第三單元 運(yùn)算律 單元測試 人教版 數(shù)學(xué) 四年級下冊
- 2024-2025學(xué)年人教版八年級地理下學(xué)期全冊教案
- 4.3.1 呼吸道對空氣的處理 課件人教版(2024)七年級下冊
- 人教版數(shù)學(xué)六年級下冊4.3.2圖形的放大與縮小練習(xí)卷含答案
- 《民航重大安全隱患判定標(biāo)準(zhǔn)(2024 年修訂版)》知識培訓(xùn)
- 2024年保安員資格考試初級理論知識試題庫【模擬題】
- 浙江國企招聘2025上半年湖州市交通投資集團(tuán)有限公司招聘11人筆試參考題庫附帶答案詳解
- 《教育系統(tǒng)重大事故隱患判定指南》解讀
- 2025年安徽省示范高中皖北協(xié)作區(qū)第27屆聯(lián)考物理+答案
- 灌溉排水工程項(xiàng)目可行性研究報告編制
評論
0/150
提交評論