吉林省梅河口市博文學(xué)校2025屆高考數(shù)學(xué)全真模擬密押卷含解析_第1頁(yè)
吉林省梅河口市博文學(xué)校2025屆高考數(shù)學(xué)全真模擬密押卷含解析_第2頁(yè)
吉林省梅河口市博文學(xué)校2025屆高考數(shù)學(xué)全真模擬密押卷含解析_第3頁(yè)
吉林省梅河口市博文學(xué)校2025屆高考數(shù)學(xué)全真模擬密押卷含解析_第4頁(yè)
吉林省梅河口市博文學(xué)校2025屆高考數(shù)學(xué)全真模擬密押卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩14頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

吉林省梅河口市博文學(xué)校2025屆高考數(shù)學(xué)全真模擬密押卷注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.要得到函數(shù)的導(dǎo)函數(shù)的圖像,只需將的圖像()A.向右平移個(gè)單位長(zhǎng)度,再把各點(diǎn)的縱坐標(biāo)伸長(zhǎng)到原來的3倍B.向右平移個(gè)單位長(zhǎng)度,再把各點(diǎn)的縱坐標(biāo)縮短到原來的倍C.向左平移個(gè)單位長(zhǎng)度,再把各點(diǎn)的縱坐標(biāo)縮短到原來的倍D.向左平移個(gè)單位長(zhǎng)度,再把各點(diǎn)的縱坐標(biāo)伸長(zhǎng)到原來的3倍2.馬林●梅森是17世紀(jì)法國(guó)著名的數(shù)學(xué)家和修道士,也是當(dāng)時(shí)歐洲科學(xué)界一位獨(dú)特的中心人物,梅森在歐幾里得、費(fèi)馬等人研究的基礎(chǔ)上對(duì)2p﹣1作了大量的計(jì)算、驗(yàn)證工作,人們?yōu)榱思o(jì)念梅森在數(shù)論方面的這一貢獻(xiàn),將形如2P﹣1(其中p是素?cái)?shù))的素?cái)?shù),稱為梅森素?cái)?shù).若執(zhí)行如圖所示的程序框圖,則輸出的梅森素?cái)?shù)的個(gè)數(shù)是()A.3 B.4 C.5 D.63.執(zhí)行如下的程序框圖,則輸出的是()A. B.C. D.4.在中,角所對(duì)的邊分別為,已知,.當(dāng)變化時(shí),若存在最大值,則正數(shù)的取值范圍為A. B. C. D.5.設(shè)為自然對(duì)數(shù)的底數(shù),函數(shù),若,則()A. B. C. D.6.半徑為2的球內(nèi)有一個(gè)內(nèi)接正三棱柱,則正三棱柱的側(cè)面積的最大值為()A. B. C. D.7.要得到函數(shù)的圖象,只需將函數(shù)圖象上所有點(diǎn)的橫坐標(biāo)()A.伸長(zhǎng)到原來的2倍(縱坐標(biāo)不變),再將得到的圖象向右平移個(gè)單位長(zhǎng)度B.伸長(zhǎng)到原來的2倍(縱坐標(biāo)不變),再將得到的圖像向左平移個(gè)單位長(zhǎng)度C.縮短到原來的倍(縱坐標(biāo)不變),再將得到的圖象向左平移個(gè)單位長(zhǎng)度D.縮短到原來的倍(縱坐標(biāo)不變),再將得到的圖象向右平移個(gè)單位長(zhǎng)度8.已知等比數(shù)列的前項(xiàng)和為,且滿足,則的值是()A. B. C. D.9.在的展開式中,含的項(xiàng)的系數(shù)是()A.74 B.121 C. D.10.已知是兩條不重合的直線,是兩個(gè)不重合的平面,下列命題正確的是()A.若,,,,則B.若,,,則C.若,,,則D.若,,,則11.已知△ABC中,.點(diǎn)P為BC邊上的動(dòng)點(diǎn),則的最小值為()A.2 B. C. D.12.已知平面平面,且是正方形,在正方形內(nèi)部有一點(diǎn),滿足與平面所成的角相等,則點(diǎn)的軌跡長(zhǎng)度為()A. B.16 C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知集合,.若,則實(shí)數(shù)a的值是______.14.某校名學(xué)生參加軍事冬令營(yíng)活動(dòng),活動(dòng)期間各自扮演一名角色進(jìn)行分組游戲,角色按級(jí)別從小到大共種,分別為士兵、排長(zhǎng)、連長(zhǎng)、營(yíng)長(zhǎng)、團(tuán)長(zhǎng)、旅長(zhǎng)、師長(zhǎng)、軍長(zhǎng)和司令.游戲分組有兩種方式,可以人一組或者人一組.如果人一組,則必須角色相同;如果人一組,則人角色相同或者人為級(jí)別連續(xù)的個(gè)不同角色.已知這名學(xué)生扮演的角色有名士兵和名司令,其余角色各人,現(xiàn)在新加入名學(xué)生,將這名學(xué)生分成組進(jìn)行游戲,則新加入的學(xué)生可以扮演的角色的種數(shù)為________.15.如圖,已知扇形的半徑為1,面積為,則_____.16.已知是第二象限角,且,,則____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,底面是直角梯形,,,,是正三角形,,是的中點(diǎn).(1)證明:;(2)求直線與平面所成角的正弦值.18.(12分)已知函數(shù).(1)解關(guān)于的不等式;(2)若函數(shù)的圖象恒在直線的上方,求實(shí)數(shù)的取值范圍19.(12分)是數(shù)列的前項(xiàng)和,且.(1)求數(shù)列的通項(xiàng)公式;(2)若,求數(shù)列中最小的項(xiàng).20.(12分)如圖,在四棱錐中,底面是矩形,四條側(cè)棱長(zhǎng)均相等.(1)求證:平面;(2)求證:平面平面.21.(12分)已知函數(shù)(1)若函數(shù)有且只有一個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍;(2)若函數(shù)對(duì)恒成立,求實(shí)數(shù)的取值范圍.22.(10分)如圖,為等腰直角三角形,,D為AC上一點(diǎn),將沿BD折起,得到三棱錐,且使得在底面BCD的投影E在線段BC上,連接AE.(1)證明:;(2)若,求二面角的余弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】

先求得,再根據(jù)三角函數(shù)圖像變換的知識(shí),選出正確選項(xiàng).【詳解】依題意,所以由向左平移個(gè)單位長(zhǎng)度,再把各點(diǎn)的縱坐標(biāo)伸長(zhǎng)到原來的3倍得到的圖像.故選:D【點(diǎn)睛】本小題主要考查復(fù)合函數(shù)導(dǎo)數(shù)的計(jì)算,考查誘導(dǎo)公式,考查三角函數(shù)圖像變換,屬于基礎(chǔ)題.2、C【解析】

模擬程序的運(yùn)行即可求出答案.【詳解】解:模擬程序的運(yùn)行,可得:p=1,S=1,輸出S的值為1,滿足條件p≤7,執(zhí)行循環(huán)體,p=3,S=7,輸出S的值為7,滿足條件p≤7,執(zhí)行循環(huán)體,p=5,S=31,輸出S的值為31,滿足條件p≤7,執(zhí)行循環(huán)體,p=7,S=127,輸出S的值為127,滿足條件p≤7,執(zhí)行循環(huán)體,p=9,S=511,輸出S的值為511,此時(shí),不滿足條件p≤7,退出循環(huán),結(jié)束,故若執(zhí)行如圖所示的程序框圖,則輸出的梅森素?cái)?shù)的個(gè)數(shù)是5,故選:C.【點(diǎn)睛】本題主要考查程序框圖,屬于基礎(chǔ)題.3、A【解析】

列出每一步算法循環(huán),可得出輸出結(jié)果的值.【詳解】滿足,執(zhí)行第一次循環(huán),,;成立,執(zhí)行第二次循環(huán),,;成立,執(zhí)行第三次循環(huán),,;成立,執(zhí)行第四次循環(huán),,;成立,執(zhí)行第五次循環(huán),,;成立,執(zhí)行第六次循環(huán),,;成立,執(zhí)行第七次循環(huán),,;成立,執(zhí)行第八次循環(huán),,;不成立,跳出循環(huán)體,輸出的值為,故選:A.【點(diǎn)睛】本題考查算法與程序框圖的計(jì)算,解題時(shí)要根據(jù)算法框圖計(jì)算出算法的每一步,考查分析問題和計(jì)算能力,屬于中等題.4、C【解析】

因?yàn)椋?,所以根?jù)正弦定理可得,所以,,所以,其中,,因?yàn)榇嬖谧畲笾担杂?,可得,所以,所以,解得,所以正?shù)的取值范圍為,故選C.5、D【解析】

利用與的關(guān)系,求得的值.【詳解】依題意,所以故選:D【點(diǎn)睛】本小題主要考查函數(shù)值的計(jì)算,屬于基礎(chǔ)題.6、B【解析】

設(shè)正三棱柱上下底面的中心分別為,底面邊長(zhǎng)與高分別為,利用,可得,進(jìn)一步得到側(cè)面積,再利用基本不等式求最值即可.【詳解】如圖所示.設(shè)正三棱柱上下底面的中心分別為,底面邊長(zhǎng)與高分別為,則,在中,,化為,,,當(dāng)且僅當(dāng)時(shí)取等號(hào),此時(shí).故選:B.【點(diǎn)睛】本題考查正三棱柱與球的切接問題,涉及到基本不等式求最值,考查學(xué)生的計(jì)算能力,是一道中檔題.7、B【解析】

分析:根據(jù)三角函數(shù)的圖象關(guān)系進(jìn)行判斷即可.詳解:將函數(shù)圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來的2倍(縱坐標(biāo)不變),

得到再將得到的圖象向左平移個(gè)單位長(zhǎng)度得到故選B.點(diǎn)睛:本題主要考查三角函數(shù)的圖象變換,結(jié)合和的關(guān)系是解決本題的關(guān)鍵.8、C【解析】

利用先求出,然后計(jì)算出結(jié)果.【詳解】根據(jù)題意,當(dāng)時(shí),,,故當(dāng)時(shí),,數(shù)列是等比數(shù)列,則,故,解得,故選.【點(diǎn)睛】本題主要考查了等比數(shù)列前項(xiàng)和的表達(dá)形式,只要求出數(shù)列中的項(xiàng)即可得到結(jié)果,較為基礎(chǔ).9、D【解析】

根據(jù),利用通項(xiàng)公式得到含的項(xiàng)為:,進(jìn)而得到其系數(shù),【詳解】因?yàn)樵?,所以含的?xiàng)為:,所以含的項(xiàng)的系數(shù)是的系數(shù)是,,故選:D【點(diǎn)睛】本題主要考查二項(xiàng)展開式及通項(xiàng)公式和項(xiàng)的系數(shù),還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題,10、B【解析】

根據(jù)空間中線線、線面位置關(guān)系,逐項(xiàng)判斷即可得出結(jié)果.【詳解】A選項(xiàng),若,,,,則或與相交;故A錯(cuò);B選項(xiàng),若,,則,又,是兩個(gè)不重合的平面,則,故B正確;C選項(xiàng),若,,則或或與相交,又,是兩個(gè)不重合的平面,則或與相交;故C錯(cuò);D選項(xiàng),若,,則或或與相交,又,是兩個(gè)不重合的平面,則或與相交;故D錯(cuò);故選B【點(diǎn)睛】本題主要考查與線面、線線相關(guān)的命題,熟記線線、線面位置關(guān)系,即可求解,屬于常考題型.11、D【解析】

以BC的中點(diǎn)為坐標(biāo)原點(diǎn),建立直角坐標(biāo)系,可得,設(shè),運(yùn)用向量的坐標(biāo)表示,求得點(diǎn)A的軌跡,進(jìn)而得到關(guān)于a的二次函數(shù),可得最小值.【詳解】以BC的中點(diǎn)為坐標(biāo)原點(diǎn),建立如圖的直角坐標(biāo)系,可得,設(shè),由,可得,即,則,當(dāng)時(shí),的最小值為.故選D.【點(diǎn)睛】本題考查向量數(shù)量積的坐標(biāo)表示,考查轉(zhuǎn)化思想和二次函數(shù)的值域解法,考查運(yùn)算能力,屬于中檔題.12、C【解析】

根據(jù)與平面所成的角相等,判斷出,建立平面直角坐標(biāo)系,求得點(diǎn)的軌跡方程,由此求得點(diǎn)的軌跡長(zhǎng)度.【詳解】由于平面平面,且交線為,,所以平面,平面.所以和分別是直線與平面所成的角,所以,所以,即,所以.以為原點(diǎn)建立平面直角坐標(biāo)系如下圖所示,則,,設(shè)(點(diǎn)在第一象限內(nèi)),由得,即,化簡(jiǎn)得,由于點(diǎn)在第一象限內(nèi),所以點(diǎn)的軌跡是以為圓心,半徑為的圓在第一象限的部分.令代入原的方程,解得,故,由于,所以,所以點(diǎn)的軌跡長(zhǎng)度為.故選:C【點(diǎn)睛】本小題主要考查線面角的概念和運(yùn)用,考查動(dòng)點(diǎn)軌跡方程的求法,考查空間想象能力和邏輯推理能力,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于難題.二、填空題:本題共4小題,每小題5分,共20分。13、9【解析】

根據(jù)集合交集的定義即得.【詳解】集合,,,,則a的值是9.故答案為:9【點(diǎn)睛】本題考查集合的交集,是基礎(chǔ)題.14、【解析】

對(duì)新加入的學(xué)生所扮演的角色進(jìn)行分類討論,分析各種情況下個(gè)學(xué)生所扮演的角色的分組,綜合可得出結(jié)論.【詳解】依題意,名學(xué)生分成組,則一定是個(gè)人組和個(gè)人組.①若新加入的學(xué)生是士兵,則可以將這個(gè)人分組如下;名士兵;士兵、排長(zhǎng)、連長(zhǎng)各名;營(yíng)長(zhǎng)、團(tuán)長(zhǎng)、旅長(zhǎng)各名;師長(zhǎng)、軍長(zhǎng)、司令各名;名司令.所以新加入的學(xué)生可以是士兵,由對(duì)稱性可知也可以是司令;②若新加入的學(xué)生是排長(zhǎng),則可以將這個(gè)人分組如下:名士兵;連長(zhǎng)、營(yíng)長(zhǎng)、團(tuán)長(zhǎng)各名;旅長(zhǎng)、師長(zhǎng)、軍長(zhǎng)各名;名司令;名排長(zhǎng).所以新加入的學(xué)生可以是排長(zhǎng),由對(duì)稱性可知也可以是軍長(zhǎng);③若新加入的學(xué)生是連長(zhǎng),則可以將這個(gè)人分組如下:名士兵;士兵、排長(zhǎng)、連長(zhǎng)各名;連長(zhǎng)、營(yíng)長(zhǎng)、團(tuán)長(zhǎng)各名;旅長(zhǎng)、師長(zhǎng)、軍長(zhǎng)各名;名司令.所以新加入的學(xué)生可以是連長(zhǎng),由對(duì)稱性可知也可以是師長(zhǎng);④若新加入的學(xué)生是營(yíng)長(zhǎng),則可以將這個(gè)人分組如下:名士兵;排長(zhǎng)、連長(zhǎng)、營(yíng)長(zhǎng)各名;營(yíng)長(zhǎng)、團(tuán)長(zhǎng)、旅長(zhǎng)各名;師長(zhǎng)、軍長(zhǎng)、司令各名;名司令.所以新加入的學(xué)生可以是營(yíng)長(zhǎng),由對(duì)稱性可知也可以是旅長(zhǎng);⑤若新加入的學(xué)生是團(tuán)長(zhǎng),則可以將這個(gè)人分組如下:名士兵;排長(zhǎng)、連長(zhǎng)、營(yíng)長(zhǎng)各名;旅長(zhǎng)、師長(zhǎng)、軍長(zhǎng)各名;名司令;名團(tuán)長(zhǎng).所以新加入的學(xué)生可以是團(tuán)長(zhǎng).綜上所述,新加入學(xué)生可以扮演種角色.故答案為:.【點(diǎn)睛】本題考查分類計(jì)數(shù)原理的應(yīng)用,解答的關(guān)鍵就是對(duì)新加入的學(xué)生所扮演的角色進(jìn)行分類討論,屬于中等題.15、【解析】

根據(jù)題意,利用扇形面積公式求出圓心角,再根據(jù)等腰三角形性質(zhì)求出,利用向量的數(shù)量積公式求出.【詳解】設(shè)角,則,,所以在等腰三角形中,,則.故答案為:.【點(diǎn)睛】本題考查扇形的面積公式和向量的數(shù)量積公式,屬于基礎(chǔ)題.16、【解析】

由是第二象限角,且,可得,由及兩角和的正切公式可得的值.【詳解】解:由是第二象限角,且,可得,,由,可得,代入,可得,故答案為:.【點(diǎn)睛】本題主要考查同角三角函數(shù)的基本關(guān)系及兩角和的正切公式,相對(duì)不難,注意運(yùn)算的準(zhǔn)確性.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見證明;(2)【解析】

(1)設(shè)是的中點(diǎn),連接、,先證明是平行四邊形,再證明平面,即(2)以為坐標(biāo)原點(diǎn),的方向?yàn)檩S的正方向,建空間直角坐標(biāo)系,分別計(jì)算各個(gè)點(diǎn)坐標(biāo),計(jì)算平面法向量,利用向量的夾角公式得到直線與平面所成角的正弦值.【詳解】(1)證明:設(shè)是的中點(diǎn),連接、,是的中點(diǎn),,,,,,,是平行四邊形,,,,,,,,由余弦定理得,,,,平面,,;(2)由(1)得平面,,平面平面,過點(diǎn)作,垂足為,平面,以為坐標(biāo)原點(diǎn),的方向?yàn)檩S的正方向,建立如圖的空間直角坐標(biāo)系,則,,,,設(shè)是平面的一個(gè)法向量,則,,令,則,,,直線與平面所成角的正弦值為.【點(diǎn)睛】本題考查了線面垂直,線線垂直,利用空間直角坐標(biāo)系解決線面夾角問題,意在考查學(xué)生的空間想象能力和計(jì)算能力.18、(1)(2)【解析】

(1)零點(diǎn)分段法分,,三種情況討論即可;(2)只需找到的最小值即可.【詳解】(1)由.若時(shí),,解得;若時(shí),,解得;若時(shí),,解得;故不等式的解集為.(2)由,有,得,故實(shí)數(shù)的取值范圍為.【點(diǎn)睛】本題考查絕對(duì)值不等式的解法以及不等式恒成立問題,考查學(xué)生的運(yùn)算能力,是一道基礎(chǔ)題.19、(1);(2).【解析】

(1)由可得出,兩式作差可求得數(shù)列的通項(xiàng)公式;(2)求得,利用數(shù)列的單調(diào)性的定義判斷數(shù)列的單調(diào)性,由此可求得數(shù)列的最小項(xiàng)的值.【詳解】(1)對(duì)任意的,由得,兩式相減得,因此,數(shù)列的通項(xiàng)公式為;(2)由(1)得,則.當(dāng)時(shí),,即,;當(dāng)時(shí),,即,.所以,數(shù)列的最小項(xiàng)為.【點(diǎn)睛】本題考查利用與的關(guān)系求通項(xiàng),同時(shí)也考查了利用數(shù)列的單調(diào)性求數(shù)列中的最小項(xiàng),考查推理能力與計(jì)算能力,屬于中等題.20、(1)證明見解析;(2)證明見解析.【解析】

證明:(1)在矩形中,,又平面,平面,所以平面.(2)連結(jié),交于點(diǎn),連結(jié),在矩形中,點(diǎn)為的中點(diǎn),又,故,,又,平面,所以平面,又平面,所以平面平面.21、(1);(2).【解析】

(1)求導(dǎo)得到,討論和兩種情況,計(jì)算函數(shù)的單調(diào)性,得到,再討論,,三種情況,計(jì)算得到答案.(2)計(jì)算得到,討論,兩種情況,分別計(jì)算單調(diào)性得到函數(shù)最值,得到答案.【詳解】(1),①當(dāng)時(shí)恒成立,所以單調(diào)遞增,因?yàn)?,所以有唯一零點(diǎn),即符合題意;②當(dāng)時(shí),令,函數(shù)在上單調(diào)遞減,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論