版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
!2019年高考數(shù)學(xué)(理)高頻考點(diǎn)名師揭秘與仿真測(cè)試92概率與統(tǒng)計(jì)綜合應(yīng)用【考點(diǎn)講解】具本目標(biāo):(1)理解取有限個(gè)值的離散型隨機(jī)變量及其分布列的概念,認(rèn)識(shí)分布列刻畫隨機(jī)現(xiàn)象的重要性,會(huì)求某些取有限個(gè)值的離散型隨機(jī)變量的分布列.(2)了解超幾何分布及其導(dǎo)出過程,并能進(jìn)行簡(jiǎn)單的應(yīng)用.(3)了解條件概率的概念,了解兩個(gè)事件相互獨(dú)立的概念,理解n次獨(dú)立重復(fù)試驗(yàn)的模型及二項(xiàng)分布,并能解決一些簡(jiǎn)單的實(shí)際問題.(4)理解取有限個(gè)值的離散型隨機(jī)變量均值、方差的概念,會(huì)求簡(jiǎn)單離散型隨機(jī)變量的均值、方差,并能利用離散型隨機(jī)變量的均值、方差概念解決一些簡(jiǎn)單問題.(5)借助直觀直方圖認(rèn)識(shí)正態(tài)分布曲線的特點(diǎn)及曲線所表示的意義.(6)了解回歸的基本思想、方法及其簡(jiǎn)單應(yīng)用.(7)了解獨(dú)立性檢驗(yàn)的思想、方法及其初步應(yīng)用.二、知識(shí)概述:1..古典概型:具有以下兩個(gè)特點(diǎn)的概率模型稱為古典概型:(1)試驗(yàn)中所有可能出現(xiàn)的結(jié)果(基本事件)為有限個(gè),且每次試驗(yàn)只能出現(xiàn)其中的一個(gè)結(jié)果(基本事件);(2)每個(gè)試驗(yàn)結(jié)果(基本事件)出現(xiàn)的可能性相等.【溫馨提示】古典概型中基本事件數(shù)的探求方法:(1)列舉法;(2)樹狀圖法:適合于較為復(fù)雜的問題中的基本事件的探求.對(duì)于基本事件有“有序”與“無序”區(qū)別的題目,常采用樹狀圖法;(3)列表法:適用于多元素基本事件的求解問題,通過列表把復(fù)雜的題目簡(jiǎn)單化、抽象的題目具體化;(4)排列組合法:適用于限制條件較多且元素?cái)?shù)目較多的題目.2.幾何概型的基本特性:(1)試驗(yàn)中所有可能出現(xiàn)的結(jié)果有無限個(gè);(2)每個(gè)試驗(yàn)結(jié)果(基本事件)出現(xiàn)的可能性相等.3.離散型隨機(jī)變量的均值和方差的求解,一般分兩步:一是定型,即先判斷隨機(jī)變量的分布是特殊類型,還是一般類型,如兩點(diǎn)分布、二項(xiàng)分布、超幾何分布等屬于特殊類型;二是定性,對(duì)于特殊類型的均值和方差可以直接代入相應(yīng)公式求解,而對(duì)于一般類型的隨機(jī)變量,應(yīng)先求其概率分布然后代入相應(yīng)公式計(jì)算,注意離散型隨機(jī)變量的取值與概率間的對(duì)應(yīng).求離散型隨機(jī)變量的分布列,首先要根據(jù)具體情況確定的取值情況,然后利用排列,組合與概率知識(shí)求出取各個(gè)值時(shí)的概率.對(duì)于服從某些特殊分布的隨機(jī)變量,其分布列可以直接應(yīng)用公式給出,其中超幾何分布描述的是不放回抽樣問題,隨機(jī)變量為抽到的某類個(gè)體的個(gè)數(shù).4.二項(xiàng)分布的判斷與應(yīng)用.二項(xiàng)分布,實(shí)際是對(duì)n次獨(dú)立重復(fù)試驗(yàn).關(guān)鍵是看某一事件是否是進(jìn)行n次獨(dú)立重復(fù),且每次試驗(yàn)只有兩種結(jié)果,如果不滿足此兩條件,隨機(jī)變量就不服從二項(xiàng)分布.當(dāng)隨機(jī)變量的總體很大且抽取的樣本容量相對(duì)于總體來說又比較小,而每次抽取時(shí)又只有兩種試驗(yàn)結(jié)果,此時(shí)可以把它看作獨(dú)立重復(fù)試驗(yàn),利用二項(xiàng)分布求其分布列.5.判斷兩個(gè)變量是否線性相關(guān)及相關(guān)程度通常有兩種方法:(1)利用散點(diǎn)圖直觀判斷;(2)將相關(guān)數(shù)據(jù)代入相關(guān)系數(shù)的公式求出,然后根據(jù)的大小進(jìn)行判斷.求線性回歸方程時(shí),在嚴(yán)格按照公式求解時(shí),一定要注意計(jì)算的準(zhǔn)確性.【真題分析】1.【2018年高考全國(guó)Ⅱ卷理數(shù)】我國(guó)數(shù)學(xué)家陳景潤(rùn)在哥德巴赫猜想的研究中取得了世界領(lǐng)先的成果.哥德巴赫猜想是“每個(gè)大于2的偶數(shù)可以表示為兩個(gè)素?cái)?shù)的和”,如.在不超過30的素?cái)?shù)中,隨機(jī)選取兩個(gè)不同的數(shù),其和等于30的概率是()A. B. C. D.【解析】不超過30的素?cái)?shù)有2,3,5,7,11,13,17,19,23,29,共10個(gè),隨機(jī)選取兩個(gè)不同的數(shù),共有種方法,其和等于30的有3種方法,分別是7和23,11和19,13和17,所以隨機(jī)選取兩個(gè)不同的數(shù),其和等于30的概率為,選C.【答案】C2.【2018年高考全國(guó)Ⅱ卷理數(shù)】我國(guó)數(shù)學(xué)家陳景潤(rùn)在哥德巴赫猜想的研究中取得了世界領(lǐng)先的成果.哥德巴赫猜想是“每個(gè)大于2的偶數(shù)可以表示為兩個(gè)素?cái)?shù)的和”,如.在不超過30的素?cái)?shù)中,隨機(jī)選取兩個(gè)不同的數(shù),其和等于30的概率是()A.B.C.D.【解析】不超過30的素?cái)?shù)有2,3,5,7,11,13,17,19,23,29,共10個(gè),隨機(jī)選取兩個(gè)不同的數(shù),共有種方法,因?yàn)椋噪S機(jī)選取兩個(gè)不同的數(shù),其和等于30的有3種方法,故所求概率為,故選C.【答案】C3.【2018年高考全國(guó)Ⅰ卷理數(shù)】某地區(qū)經(jīng)過一年的新農(nóng)村建設(shè),農(nóng)村的經(jīng)濟(jì)收入增加了一倍,實(shí)現(xiàn)翻番.為更好地了解該地區(qū)農(nóng)村的經(jīng)濟(jì)收入變化情況,統(tǒng)計(jì)了該地區(qū)新農(nóng)村建設(shè)前后農(nóng)村的經(jīng)濟(jì)收入構(gòu)成比例,得到如下餅圖:建設(shè)前經(jīng)濟(jì)收入構(gòu)成比例建設(shè)后經(jīng)濟(jì)收入構(gòu)成比例則下面結(jié)論中不正確的是()A.新農(nóng)村建設(shè)后,種植收入減少B.新農(nóng)村建設(shè)后,其他收入增加了一倍以上C.新農(nóng)村建設(shè)后,養(yǎng)殖收入增加了一倍D.新農(nóng)村建設(shè)后,養(yǎng)殖收入與第三產(chǎn)業(yè)收入的總和超過了經(jīng)濟(jì)收入的一半【解析】設(shè)新農(nóng)村建設(shè)前的收入為M,而新農(nóng)村建設(shè)后的收入為2M,則新農(nóng)村建設(shè)前種植收入為0.6M,而新農(nóng)村建設(shè)后的種植收入為0.74M,所以種植收入增加了,所以A項(xiàng)不正確;新農(nóng)村建設(shè)前其他收入為0.04M,新農(nóng)村建設(shè)后其他收入為0.1M,故增加了一倍以上,所以B項(xiàng)正確;新農(nóng)村建設(shè)前,養(yǎng)殖收入為0.3M,新農(nóng)村建設(shè)后為0.6M,所以增加了一倍,所以C項(xiàng)正確;新農(nóng)村建設(shè)后,養(yǎng)殖收入與第三產(chǎn)業(yè)收入的綜合占經(jīng)濟(jì)收入的,所以超過了經(jīng)濟(jì)收入的一半,所以D正確;故選A.【答案】A4.【2018年高考全國(guó)Ⅲ卷理數(shù)】某群體中的每位成員使用移動(dòng)支付的概率都為,各成員的支付方式相互獨(dú)立,設(shè)為該群體的10位成員中使用移動(dòng)支付的人數(shù),,,則()A.0.7B.0.6C.0.4D.0.3【解析】∵,∴或,,,可知,故.故選B.【答案】B5.【2018年高考浙江卷】設(shè),隨機(jī)變量ξ的分布列是ξ012P則當(dāng)p在(0,1)內(nèi)增大時(shí),A.D(ξ)減小 B.D(ξ)增大C.D(ξ)先減小后增大 D.D(ξ)先增大后減小【解析】,∴先增大后減小,故選D.【答案】D6.【2018年高考全國(guó)Ⅰ卷理數(shù)】下圖來自古希臘數(shù)學(xué)家希波克拉底所研究的幾何圖形.此圖由三個(gè)半圓構(gòu)成,三個(gè)半圓的直徑分別為直角三角形ABC的斜邊BC,直角邊AB,AC.的三邊所圍成的區(qū)域記為Ⅰ,黑色部分記為Ⅱ,其余部分記為Ⅲ.在整個(gè)圖形中隨機(jī)取一點(diǎn),此點(diǎn)取自Ⅰ,Ⅱ,Ⅲ的概率分別記為p1,p2,p3,則()A.p1=p2 B.p1=p3C.p2=p3 D.p1=p2+p3【解析】設(shè),則有,從而可以求得的面積為,黑色部分的面積為,其余部分的面積為,所以有,根據(jù)面積型幾何概型的概率公式,可以得到,故選A.【答案】A7.【2017年高考浙江卷】已知隨機(jī)變量滿足P(=1)=pi,P(=0)=1–pi,i=1,2.若0<p1<p2<,則A.<,< B.<,>C.>,< D.>,>【解析】∵,∴,∵,∴,故選A.【答案】A8.【2017年高考山東卷理數(shù)】為了研究某班學(xué)生的腳長(zhǎng)(單位:厘米)和身高(單位:厘米)的關(guān)系,從該班隨機(jī)抽取10名學(xué)生,根據(jù)測(cè)量數(shù)據(jù)的散點(diǎn)圖可以看出與之間有線性相關(guān)關(guān)系,設(shè)其回歸直線方程為.已知,,.該班某學(xué)生的腳長(zhǎng)為24,據(jù)此估計(jì)其身高為()A.B.C.D.【解析】由已知得則當(dāng)時(shí),,故選C.【答案】C9.【2018年高考江蘇卷)某興趣小組有2名男生和3名女生,現(xiàn)從中任選2名學(xué)生去參加活動(dòng),則恰好選中2名女生的概率為__________.【解析】從5名學(xué)生中抽取2名學(xué)生,共有種方法,其中恰好選中2名女生的方法有種,因此所求概率為.故答案為:.【答案】10.【2016高考新課標(biāo)2理數(shù)】某險(xiǎn)種的基本保費(fèi)為(單位:元),繼續(xù)購(gòu)買該險(xiǎn)種的投保人稱為續(xù)保人,續(xù)保人的本年度的保費(fèi)與其上年度的出險(xiǎn)次數(shù)的關(guān)聯(lián)如下:上年度出險(xiǎn)次數(shù)012345保費(fèi)0.851.251.51.752設(shè)該險(xiǎn)種一續(xù)保人一年內(nèi)出險(xiǎn)次數(shù)與相應(yīng)概率如下:一年內(nèi)出險(xiǎn)次數(shù)012345概率0.300.150.200.200.100.05(Ⅰ)求一續(xù)保人本年度的保費(fèi)高于基本保費(fèi)的概率;(Ⅱ)若一續(xù)保人本年度的保費(fèi)高于基本保費(fèi),求其保費(fèi)比基本保費(fèi)高出60%的概率;(Ⅲ)求續(xù)保人本年度的平均保費(fèi)與基本保費(fèi)的比值.【分析】(Ⅰ)根據(jù)互斥事件的概率公式求一續(xù)保人本年度的保費(fèi)高于基本保費(fèi)的概率;(Ⅱ)一續(xù)保人本年度的保費(fèi)高于基本保費(fèi),當(dāng)且僅當(dāng)一年內(nèi)出險(xiǎn)次數(shù)大于3,由條件概率公式求解;(Ⅲ)記續(xù)保人本年度的保費(fèi)為,求的分布列,再根據(jù)期望公式求解.【解析】(Ⅰ)設(shè)表示事件:“一續(xù)保人本年度的保費(fèi)高于基本保費(fèi)”,則事件發(fā)生當(dāng)且僅當(dāng)一年內(nèi)出險(xiǎn)次數(shù)大于1,故(Ⅱ)設(shè)表示事件:“一續(xù)保人本年度的保費(fèi)比基本保費(fèi)高出”,則事件發(fā)生當(dāng)且僅當(dāng)一年內(nèi)出險(xiǎn)次數(shù)大于3,故又,故因此所求概率為(Ⅲ)記續(xù)保人本年度的保費(fèi)為,則的分布列為因此續(xù)保人本年度的平均保費(fèi)與基本保費(fèi)的比值為11.【2016山東理19】甲、乙兩人組成“星隊(duì)”參加猜成語(yǔ)活動(dòng),每輪活動(dòng)由甲、乙各猜一個(gè)成語(yǔ),在一輪活動(dòng)中,如果兩人都猜對(duì),則“星隊(duì)”得分;如果只有一個(gè)人猜對(duì),則“星隊(duì)”得分;如果兩人都沒猜對(duì),則“星隊(duì)”得分.已知甲每輪猜對(duì)的概率是,乙每輪猜對(duì)的概率是;每輪活動(dòng)中甲、乙猜對(duì)與否互不影響.各輪結(jié)果亦互不影響.假設(shè)“星隊(duì)”參加兩輪活動(dòng),求:(1)“星隊(duì)”至少猜對(duì)個(gè)成語(yǔ)的概率;(2)“星隊(duì)”兩輪得分之和為的分布列和數(shù)學(xué)期望.【解析】(1)記事件:“甲第一輪猜對(duì)”,記事件:“乙第一輪猜對(duì)”,記事件:“甲第二輪猜對(duì)”,記事件:“乙第二輪猜對(duì)”,記事件:“星隊(duì)”至少猜對(duì)3個(gè)成語(yǔ)”.由題意,由事件的獨(dú)立性與互斥性,,所以“星隊(duì)”至少猜對(duì)3個(gè)成語(yǔ)的概率為.(2)由題意,隨機(jī)變量的可能取值為.由事件的獨(dú)立性與互斥性,得,,,,,.可得隨機(jī)變量X的分布列為012346所以數(shù)學(xué)期望.12.【2016全國(guó)乙理19】某公司計(jì)劃購(gòu)買臺(tái)機(jī)器,該種機(jī)器使用三年后即被淘汰.機(jī)器有一易損零件,在購(gòu)進(jìn)機(jī)器時(shí),可以額外購(gòu)買這種零件作為備件,每個(gè)元.在機(jī)器使用期間,如果備件不足再購(gòu)買,則每個(gè)元.現(xiàn)需決策在購(gòu)買機(jī)器時(shí)應(yīng)同時(shí)購(gòu)買幾個(gè)易損零件,為此搜集并整理了臺(tái)這種機(jī)器在三年使用期內(nèi)更換的易損零件數(shù),得下面柱狀圖:以這臺(tái)機(jī)器更換的易損零件數(shù)的頻率代替臺(tái)機(jī)器更換的易損零件數(shù)發(fā)生的概率,記表示臺(tái)機(jī)器三年內(nèi)共需更換的易損零件數(shù),表示購(gòu)買臺(tái)機(jī)器的同時(shí)購(gòu)買的易損零件數(shù).(1)求的分布列;(2)若要求,確定的最小值;(3)以購(gòu)買易損零件所需費(fèi)用的期望值為決策依據(jù),在與之中選其一,應(yīng)選用哪個(gè)?【解析】(1)由柱狀圖并以頻率代替概率可得,一臺(tái)機(jī)器在三年內(nèi)需更換的易損零件數(shù)為,,,的概率分別為,,,.從而:;;;;;;.所以的分布列為:(2)由(1)知,,,故的最小值為.(3)記表示臺(tái)機(jī)器在購(gòu)買易損零件上所需的費(fèi)用(單位:元).當(dāng)時(shí),得.當(dāng)時(shí),.可知當(dāng)時(shí)所需費(fèi)用的期望值小于時(shí)所需費(fèi)用的期望值,故應(yīng)選.13.【2018年高考北京卷理數(shù)】電影公司隨機(jī)收集了電影的有關(guān)數(shù)據(jù),經(jīng)分類整理得到下表:電影類型第一類第二類第三類第四類第五類第六類電影部數(shù)14050300200800510好評(píng)率0.40.20.150.250.20.1好評(píng)率是指:一類電影中獲得好評(píng)的部數(shù)與該類電影的部數(shù)的比值.假設(shè)所有電影是否獲得好評(píng)相互獨(dú)立.(1)從電影公司收集的電影中隨機(jī)選取1部,求這部電影是獲得好評(píng)的第四類電影的概率;(2)從第四類電影和第五類電影中各隨機(jī)選取1部,估計(jì)恰有1部獲得好評(píng)的概率;(3)假設(shè)每類電影得到人們喜歡的概率與表格中該類電影的好評(píng)率相等,用“”表示第k類電影得到人們喜歡,“”表示第k類電影沒有得到人們喜歡(k=1,2,3,4,5,6).寫出方差,,,,,的大小關(guān)系.【解析】(1)由題意知,樣本中電影的總部數(shù)是140+50+300+200+800+510=2000,第四類電影中獲得好評(píng)的電影部數(shù)是200×0.25=50.故所求概率為.(2)設(shè)事件A為“從第四類電影中隨機(jī)選出的電影獲得好評(píng)”,事件B為“從第五類電影中隨機(jī)選出的電影獲得好評(píng)”.故所求概率為P()=P()+P()=P(A)(1–P(B))+(1–P(A))P(B).由題意知:P(A)估計(jì)為0.25,P(B)估計(jì)為0.2.故所求概率估計(jì)為0.25×0.8+0.75×0.2=0.35.(3)>>=>>.14.【2018年高考天津卷理數(shù)】已知某單位甲、乙、丙三個(gè)部門的員工人數(shù)分別為24,16,16.現(xiàn)采用分層抽樣的方法從中抽取7人,進(jìn)行睡眠時(shí)間的調(diào)查.(1)應(yīng)從甲、乙、丙三個(gè)部門的員工中分別抽取多少人?(2)若抽出的7人中有4人睡眠不足,3人睡眠充足,現(xiàn)從這7人中隨機(jī)抽取3人做進(jìn)一步的身體檢查.(i)用X表示抽取的3人中睡眠不足的員工人數(shù),求隨機(jī)變量X的分布列與數(shù)學(xué)期望;(ii)設(shè)A為事件“抽取的3人中,既有睡眠充足的員工,也有睡眠不足的員工”,求事件A發(fā)生的概率.【解析】(1)由已知,甲、乙、丙三個(gè)部門的員工人數(shù)之比為3∶2∶2,由于采用分層抽樣的方法從中抽取7人,因此應(yīng)從甲、乙、丙三個(gè)部門的員工中分別抽取3人,2人,2人.(2)(i)隨機(jī)變量X的所有可能取值為0,1,2,3.P(X=k)=(k=0,1,2,3).所以,隨機(jī)變量X的分布列為X0123P隨機(jī)變量X的數(shù)學(xué)期望.(ii)設(shè)事件B為“抽取的3人中,睡眠充足的員工有1人,睡眠不足的員工有2人”;事件C為“抽取的3人中,睡眠充足的員工有2人,睡眠不足的員工有1人”,則A=B∪C,且B與C互斥,由(i)知,P(B)=P(X=2),P(C)=P(X=1),故P(A)=P(B∪C)=P(X=2)+P(X=1)=.所以,事件A發(fā)生的概率為.15.【2017年高考全國(guó)Ⅰ卷理數(shù)】為了監(jiān)控某種零件的一條生產(chǎn)線的生產(chǎn)過程,檢驗(yàn)員每天從該生產(chǎn)線上隨機(jī)抽取16個(gè)零件,并測(cè)量其尺寸(單位:cm).根據(jù)長(zhǎng)期生產(chǎn)經(jīng)驗(yàn),可以認(rèn)為這條生產(chǎn)線正常狀態(tài)下生產(chǎn)的零件的尺寸服從正態(tài)分布.(1)假設(shè)生產(chǎn)狀態(tài)正常,記X表示一天內(nèi)抽取的16個(gè)零件中其尺寸在之外的零件數(shù),求及的數(shù)學(xué)期望;(2)一天內(nèi)抽檢零件中,如果出現(xiàn)了尺寸在之外的零件,就認(rèn)為這條生產(chǎn)線在這一天的生產(chǎn)過程可能出現(xiàn)了異常情況,需對(duì)當(dāng)天的生產(chǎn)過程進(jìn)行檢查.(?。┰囌f明上述監(jiān)控生產(chǎn)過程方法的合理性;(ⅱ)下面是檢驗(yàn)員在一天內(nèi)抽取的16個(gè)零件的尺寸:9.95 10.12 9.96 9.96 10.01 9.92 9.98 10.0410.26 9.91 10.13 10.02 9.22 10.04 10.05 9.95經(jīng)計(jì)算得,,其中為抽取的第個(gè)零件的尺寸,.用樣本平均數(shù)作為的估計(jì)值,用樣本標(biāo)準(zhǔn)差作為的估計(jì)值,利用估計(jì)值判斷是否需對(duì)當(dāng)天的生產(chǎn)過程進(jìn)行檢查?剔除之外的數(shù)據(jù),用剩下的數(shù)據(jù)估計(jì)和(精確到0.01).附:若隨機(jī)變量服從正態(tài)分布,則,,.【分析】(1)根據(jù)題設(shè)條件知一個(gè)零件的尺寸在之內(nèi)的概率為0.9974,則零件的尺寸在之外的概率為0.0026,而,進(jìn)而可以求出的數(shù)學(xué)期望.(2)(i)判斷監(jiān)控生產(chǎn)過程的方法的合理性,重點(diǎn)是考慮一天內(nèi)抽取的16個(gè)零件中,出現(xiàn)尺寸在之外的零件的概率是大還是小,若小即合理;(ii)根據(jù)題設(shè)條件算出的估計(jì)值和的估計(jì)值,剔除之外的數(shù)據(jù)9.22,算出剩下數(shù)據(jù)的平均數(shù),即為的估計(jì)值,剔除之外的數(shù)據(jù)9.22,剩下數(shù)據(jù)的樣本方差,即為的估計(jì)值.【解析】(1)抽取的一個(gè)零件的尺寸在之內(nèi)的概率為0.9974,從而零件的尺寸在之外的概率為0.0026,故.因此.的數(shù)學(xué)期望為.(2)(i)如果生產(chǎn)狀態(tài)正常,一個(gè)零件尺寸在之外的概率只有0.0026,一天內(nèi)抽取的16個(gè)零件中,出現(xiàn)尺寸在之外的零件的概率只有0.0408,發(fā)生的概率很?。虼艘坏┌l(fā)生這種情況,就有理由認(rèn)為這條生產(chǎn)線在這一天的生產(chǎn)過程可能出現(xiàn)了異常情況,需對(duì)當(dāng)天的生產(chǎn)過程進(jìn)行檢查,可見上述監(jiān)控生產(chǎn)過程的方法是合理的.(ii)由,得的估計(jì)值為,的估計(jì)值為,由樣本數(shù)據(jù)可以看出有一個(gè)零件的尺寸在之外,因此需對(duì)當(dāng)天的生產(chǎn)過程進(jìn)行檢查.剔除之外的數(shù)據(jù)9.22,剩下數(shù)據(jù)的平均數(shù)為,因此的估計(jì)值為10.02.,剔除之外的數(shù)據(jù)9.22,剩下數(shù)據(jù)的樣本方差為,因此的估計(jì)值為.【模擬考場(chǎng)】1.【2018年高考江蘇卷】已知5位裁判給某運(yùn)動(dòng)員打出的分?jǐn)?shù)的莖葉圖如圖所示,那么這5位裁判打出的分?jǐn)?shù)的平均數(shù)為______________.【解析】由莖葉圖可知,5位裁判打出的分?jǐn)?shù)分別為,故平均數(shù)為.【答案】902.【2018年高考江蘇卷】某興趣小組有2名男生和3名女生,現(xiàn)從中任選2名學(xué)生去參加活動(dòng),則恰好選中2名女生的概率為______________.【解析】從5名學(xué)生中抽取2名學(xué)生,共有10種方法,其中恰好選中2名女生的方法有3種,因此所求概率為.【答案】4.【2017年高考江蘇卷】記函數(shù)的定義域?yàn)椋趨^(qū)間上隨機(jī)取一個(gè)數(shù),則的概率是______________.【解析】由,即,得,根據(jù)幾何概型的概率計(jì)算公式得的概率是.【答案】5.【2017年高考江蘇卷】______________【解析】應(yīng)從丙種型號(hào)的產(chǎn)品中抽取件,故答案為18.【答案】186.【2017年高考全國(guó)Ⅱ卷理數(shù)】一批產(chǎn)品的二等品率為,從這批產(chǎn)品中每次隨機(jī)取一件,有放回地抽取次,表示抽到的二等品件數(shù),則______________.【解析】由題意可得,抽到二等品的件數(shù)符合二項(xiàng)分布,即,由二項(xiàng)分布的期望公式可得.【答案】7.某廠有4臺(tái)大型機(jī)器,在一個(gè)月中,一臺(tái)機(jī)器至多出現(xiàn)1次故障,且每臺(tái)機(jī)器是否出現(xiàn)故障是相互獨(dú)立的,出現(xiàn)故障時(shí)需1名工人進(jìn)行維修.每臺(tái)機(jī)器出現(xiàn)故障需要維修的概率為.(1)問該廠至少有多少名工人才能保證每臺(tái)機(jī)器在任何時(shí)刻同時(shí)出現(xiàn)故障時(shí)能及時(shí)進(jìn)行維修的概率不少于90%?(2)已知一名工人每月只有維修1臺(tái)機(jī)器的能力,每月需支付給每位工人1萬元的工資.每臺(tái)機(jī)器不出現(xiàn)故障或出現(xiàn)故障能及時(shí)維修,就使該廠產(chǎn)生5萬元的利潤(rùn),否則將不產(chǎn)生利潤(rùn).若該廠現(xiàn)有2名工人.求該廠每月獲利的均值.【解析】(1)一臺(tái)機(jī)器運(yùn)行是否出現(xiàn)故障可看作一次實(shí)驗(yàn),在一次試驗(yàn)中,機(jī)器出現(xiàn)故障設(shè)為事件A,則事件A的概率為;該廠有4臺(tái)機(jī)器就相當(dāng)于4次獨(dú)立重復(fù)試驗(yàn),可設(shè)出現(xiàn)故障的機(jī)器臺(tái)數(shù)為X,則,,,,,則X的分布列為:X01234P設(shè)該廠有n名工人,則“每臺(tái)機(jī)器在任何時(shí)刻同時(shí)出現(xiàn)故障時(shí)能及時(shí)進(jìn)行維修”為X≤n,則X=0,X=1,X=2,…,X=n,這n+1個(gè)互斥事件的和事件,則n01234P(X≤n)1∵,∴至少要3名工人,才能保證每臺(tái)機(jī)器在任何時(shí)刻同時(shí)出現(xiàn)故障時(shí)能及時(shí)進(jìn)行維修的概率不少于90%;(2)設(shè)該廠獲利為Y萬元,則Y的所有可能取值為:18,13,8,P(Y=18)=P(X=0),,;則Y的分布列為:Y18138P則;故該廠獲利的均值為.8.有7位歌手(1至7號(hào))參加一場(chǎng)歌唱比賽,由500名大眾評(píng)委現(xiàn)場(chǎng)投票決定歌手名次.根據(jù)年齡將大眾評(píng)委分為5組,各組的人數(shù)如下:組別ABCDE人數(shù)5010015015050(1)為了調(diào)查評(píng)委對(duì)7位歌手的支持情況,現(xiàn)用分層抽樣方法從各組中抽取若干評(píng)委,其中從B組抽取了6人,請(qǐng)將其余各組抽取的人數(shù)填入下表.組別ABCDE人數(shù)5010015015050抽取人數(shù)6(2)在(1)中,若A,B兩組被抽到的評(píng)委中各有2人支持1號(hào)歌手,現(xiàn)從這兩組被抽到的評(píng)委中分別任選1人,求這2人都支持1號(hào)歌手的概率.【分析】已知總?cè)藬?shù)和各組人數(shù)在第一問中是分層抽樣,抽樣比為eq\f(6,100),第二問針對(duì)A,B組各選1人.解題目標(biāo):(1)求各組分層抽樣的人數(shù).(2)求A,B組中支持1號(hào)的概率.關(guān)系探究:第一問中由B組得出抽樣比,其它各組按這個(gè)抽樣比抽取人數(shù).第二問把A,B兩組被抽到的人員用字母表示,把事件用符號(hào)表示,由古典概型計(jì)算概率.【解析】(1)由題設(shè)知,分層抽樣的抽取比例為6%,所以各組抽取的人數(shù)如下表:組別ABCDE人數(shù)5010015015050抽取人數(shù)36993(2)記從A組抽到的3位評(píng)委分別為a1,a2,a3,其中a1,a2支持1號(hào)歌手;從B組抽到的6位評(píng)委分別為b1,b2,b3,b4,b5,b6,其中b1,b2支持1號(hào)歌手,從{a1,a2,a3}和{b1,b2,b3,b4,b5,b6}中各抽取1人的所有結(jié)果如圖:由樹狀圖知所有結(jié)果共18種,其中2人都支持1號(hào)歌手的有a1b1,a1b2,a2b1,a2b2,共4種,故所求概率P=eq\f(4,18)=eq\f(2,9).9.在某大學(xué)自主招生考試中,所有選報(bào)Ⅱ類志向的考生全部參加了“數(shù)學(xué)與邏輯”和“閱讀與表達(dá)”兩個(gè)科目的考試,成績(jī)分為A,B,C,D,E五個(gè)等級(jí).某考場(chǎng)考生的兩科考試成績(jī)的數(shù)據(jù)統(tǒng)計(jì)如下圖所示,其中“數(shù)學(xué)與邏輯”科目的成績(jī)等級(jí)為B的考生有10人.(1)求該考場(chǎng)考生中“閱讀與表達(dá)”科目中成績(jī)等級(jí)為A的人數(shù);(2)若等級(jí)A,B,C,D,E分別對(duì)應(yīng)5分,4分,3分,2分,1分,求該考場(chǎng)考生“數(shù)學(xué)與邏輯”科目的平均分;(3)已知參加本考場(chǎng)測(cè)試的考生中,恰有2人的兩科成績(jī)等級(jí)均為A.在至少一科成績(jī)等級(jí)為A的考生中,隨機(jī)抽取2人進(jìn)行訪談,求這2人的兩科成績(jī)等級(jí)均為A的概率.設(shè)“隨機(jī)抽取2人進(jìn)行訪談,這2人的兩科成績(jī)等級(jí)均為A”為事件M,所以事件M中包含的基本事件有1個(gè),為(甲,乙),則P(M)=eq\f(1,6).10.經(jīng)銷商經(jīng)銷某種農(nóng)產(chǎn)品,在一個(gè)銷售季度內(nèi),每售出1t該產(chǎn)品獲利潤(rùn)500元,未售出的產(chǎn)品,每1t虧損300元.根據(jù)歷史資料,得到銷售季度內(nèi)市場(chǎng)需求量的頻率分布直方圖,如圖所示.經(jīng)銷商為下一個(gè)銷售季度購(gòu)進(jìn)了130t該農(nóng)產(chǎn)品.以X(單位:t,100≤X≤150)表示下一個(gè)銷售季度內(nèi)的市場(chǎng)需求量,T(單位:元)表示下一個(gè)銷售季度內(nèi)經(jīng)銷該農(nóng)產(chǎn)品的利潤(rùn).(1)將T表示為X的函數(shù);(2)根據(jù)直方圖估計(jì)利潤(rùn)T不少于57000元的概率;(3)在直方圖的需求量分組中,以各組的區(qū)間中點(diǎn)值代表該組的各個(gè)值,需求量落入該區(qū)間的頻率作為需求量取該區(qū)間中點(diǎn)值的概率(例如:若需求量X∈[100,110),則取X=105,且X=105的概率等于需求量落入[100,110)的頻率),求T的均值.【解析】(1)當(dāng)X∈[100,130)時(shí),T=500X-300(130-X)=800X-39000.當(dāng)X∈[130,150]時(shí),T=500×130=65000.所以T=eq\b\lc\{\rc\(\a\vs4\al\co1(800X-39000,100≤X<130,,65000,130≤X≤150.))(2)由(1)知利潤(rùn)T不少于57000元當(dāng)且僅
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025武漢市微型計(jì)算機(jī)的買賣合同
- 農(nóng)村土地流轉(zhuǎn)合同標(biāo)準(zhǔn)(2025年度):土地規(guī)模經(jīng)營(yíng)與效益提升
- 2025年度農(nóng)產(chǎn)品電商平臺(tái)入駐合作合同2篇
- 2025北京市室內(nèi)裝修合同
- 二零二五年度風(fēng)力發(fā)電工程款結(jié)算與環(huán)境保護(hù)合同3篇
- 二零二五年度旅游公司整體轉(zhuǎn)讓合同3篇
- 2025年度年度公司終止職工勞動(dòng)合同補(bǔ)償方案合同3篇
- 2025年度工業(yè)用地租賃合同書(含環(huán)保標(biāo)準(zhǔn))3篇
- 2025年度農(nóng)村房屋土地租賃與農(nóng)村環(huán)境治理合作協(xié)議
- 二零二五年度智能停車場(chǎng)租賃管理服務(wù)合同3篇
- 2024版房屋市政工程生產(chǎn)安全重大事故隱患判定標(biāo)準(zhǔn)內(nèi)容解讀
- 幼兒園大班數(shù)學(xué):《長(zhǎng)頸鹿的水果店》 課件
- 獨(dú)生子女證明(模板)
- 侵入性器械、操作相關(guān)感染防控制度
- 更換電表申請(qǐng)書3篇
- 2019年北京外國(guó)語(yǔ)大學(xué)博士生英語(yǔ)入學(xué)考試試題
- 肝膽外科出科考試試卷
- 塔吊運(yùn)行作業(yè)方案
- 重慶中考數(shù)學(xué)最新26題練習(xí)及答案
- 江蘇衛(wèi)視跨年演唱會(huì)電視轉(zhuǎn)播技術(shù)方案-209年精選文檔
- 水電工程施工機(jī)械臺(tái)時(shí)費(fèi)定額(2004年版)
評(píng)論
0/150
提交評(píng)論