2025屆云南省臨滄市高考仿真卷數學試卷含解析_第1頁
2025屆云南省臨滄市高考仿真卷數學試卷含解析_第2頁
2025屆云南省臨滄市高考仿真卷數學試卷含解析_第3頁
2025屆云南省臨滄市高考仿真卷數學試卷含解析_第4頁
2025屆云南省臨滄市高考仿真卷數學試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆云南省臨滄市高考仿真卷數學試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.關于函數在區(qū)間的單調性,下列敘述正確的是()A.單調遞增 B.單調遞減 C.先遞減后遞增 D.先遞增后遞減2.如圖,矩形ABCD中,,,E是AD的中點,將沿BE折起至,記二面角的平面角為,直線與平面BCDE所成的角為,與BC所成的角為,有如下兩個命題:①對滿足題意的任意的的位置,;②對滿足題意的任意的的位置,,則()A.命題①和命題②都成立 B.命題①和命題②都不成立C.命題①成立,命題②不成立 D.命題①不成立,命題②成立3.若為虛數單位,網格紙上小正方形的邊長為1,圖中復平面內點表示復數,則表示復數的點是()A.E B.F C.G D.H4.已知函,,則的最小值為()A. B.1 C.0 D.5.如圖,內接于圓,是圓的直徑,,則三棱錐體積的最大值為()A. B. C. D.6.已知集合A={y|y=|x|﹣1,x∈R},B={x|x≥2},則下列結論正確的是()A.﹣3∈AB.3BC.A∩B=BD.A∪B=B7.計算等于()A. B. C. D.8.過拋物線的焦點且與的對稱軸垂直的直線與交于,兩點,,為的準線上的一點,則的面積為()A.1 B.2 C.4 D.89.在原點附近的部分圖象大概是()A. B.C. D.10.如圖所示,為了測量、兩座島嶼間的距離,小船從初始位置出發(fā),已知在的北偏西的方向上,在的北偏東的方向上,現在船往東開2百海里到達處,此時測得在的北偏西的方向上,再開回處,由向西開百海里到達處,測得在的北偏東的方向上,則、兩座島嶼間的距離為()A.3 B. C.4 D.11.已知是虛數單位,若,則()A. B.2 C. D.1012.已知函數的值域為,函數,則的圖象的對稱中心為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,在△ABC中,AB=4,D是AB的中點,E在邊AC上,AE=2EC,CD與BE交于點O,若OB=OC,則△ABC面積的最大值為_______.14.已知數列的前項和且,設,則的值等于_______________.15.已知橢圓的左焦點為,點在橢圓上且在軸的上方,若線段的中點在以原點為圓心,為半徑的圓上,則直線的斜率是_______.16.已知函數f(x)=若關于x的方程f(x)=kx有兩個不同的實根,則實數k的取值范圍是________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,直角三角形所在的平面與半圓弧所在平面相交于,,,分別為,的中點,是上異于,的點,.(1)證明:平面平面;(2)若點為半圓弧上的一個三等分點(靠近點)求二面角的余弦值.18.(12分)已知數列滿足.(1)求數列的通項公式;(2)設數列的前項和為,證明:.19.(12分)已知函數.(1)若函數不存在單調遞減區(qū)間,求實數的取值范圍;(2)若函數的兩個極值點為,,求的最小值.20.(12分)如圖在棱錐中,為矩形,面,(1)在上是否存在一點,使面,若存在確定點位置,若不存在,請說明理由;(2)當為中點時,求二面角的余弦值.21.(12分)已知函數(其中是自然對數的底數)(1)若在R上單調遞增,求正數a的取值范圍;(2)若f(x)在處導數相等,證明:;(3)當時,證明:對于任意,若,則直線與曲線有唯一公共點(注:當時,直線與曲線的交點在y軸兩側).22.(10分)以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的參數方程是(為參數,常數),曲線的極坐標方程是.(1)寫出的普通方程及的直角坐標方程,并指出是什么曲線;(2)若直線與曲線,均相切且相切于同一點,求直線的極坐標方程.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

先用誘導公式得,再根據函數圖像平移的方法求解即可.【詳解】函數的圖象可由向左平移個單位得到,如圖所示,在上先遞減后遞增.故選:C【點睛】本題考查三角函數的平移與單調性的求解.屬于基礎題.2、A【解析】

作出二面角的補角、線面角、線線角的補角,由此判斷出兩個命題的正確性.【詳解】①如圖所示,過作平面,垂足為,連接,作,連接.由圖可知,,所以,所以①正確.②由于,所以與所成角,所以,所以②正確.綜上所述,①②都正確.故選:A【點睛】本題考查了折疊問題、空間角、數形結合方法,考查了推理能力與計算能力,屬于中檔題.3、C【解析】

由于在復平面內點的坐標為,所以,然后將代入化簡后可找到其對應的點.【詳解】由,所以,對應點.故選:C【點睛】此題考查的是復數與復平面內點的對就關系,復數的運算,屬于基礎題.4、B【解析】

,利用整體換元法求最小值.【詳解】由已知,又,,故當,即時,.故選:B.【點睛】本題考查整體換元法求正弦型函數的最值,涉及到二倍角公式的應用,是一道中檔題.5、B【解析】

根據已知證明平面,只要設,則,從而可得體積,利用基本不等式可得最大值.【詳解】因為,所以四邊形為平行四邊形.又因為平面,平面,所以平面,所以平面.在直角三角形中,,設,則,所以,所以.又因為,當且僅當,即時等號成立,所以.故選:B.【點睛】本題考查求棱錐體積的最大值.解題方法是:首先證明線面垂直同,得棱錐的高,然后設出底面三角形一邊長為,用建立體積與邊長的函數關系,由基本不等式得最值,或由函數的性質得最值.6、C【解析】試題分析:集合考點:集合間的關系7、A【解析】

利用誘導公式、特殊角的三角函數值,結合對數運算,求得所求表達式的值.【詳解】原式.故選:A【點睛】本小題主要考查誘導公式,考查對數運算,屬于基礎題.8、C【解析】

設拋物線的解析式,得焦點為,對稱軸為軸,準線為,這樣可設點坐標為,代入拋物線方程可求得,而到直線的距離為,從而可求得三角形面積.【詳解】設拋物線的解析式,則焦點為,對稱軸為軸,準線為,∵直線經過拋物線的焦點,,是與的交點,又軸,∴可設點坐標為,代入,解得,又∵點在準線上,設過點的的垂線與交于點,,∴.故應選C.【點睛】本題考查拋物線的性質,解題時只要設出拋物線的標準方程,就能得出點坐標,從而求得參數的值.本題難度一般.9、A【解析】

分析函數的奇偶性,以及該函數在區(qū)間上的函數值符號,結合排除法可得出正確選項.【詳解】令,可得,即函數的定義域為,定義域關于原點對稱,,則函數為奇函數,排除C、D選項;當時,,,則,排除B選項.故選:A.【點睛】本題考查利用函數解析式選擇函數圖象,一般要分析函數的定義域、奇偶性、單調性、零點以及函數值符號,考查分析問題和解決問題的能力,屬于中等題.10、B【解析】

先根據角度分析出的大小,然后根據角度關系得到的長度,再根據正弦定理計算出的長度,最后利用余弦定理求解出的長度即可.【詳解】由題意可知:,所以,,所以,所以,又因為,所以,所以.故選:B.【點睛】本題考查解三角形中的角度問題,難度一般.理解方向角的概念以及活用正、余弦定理是解答問題的關鍵.11、C【解析】

根據復數模的性質計算即可.【詳解】因為,所以,,故選:C【點睛】本題主要考查了復數模的定義及復數模的性質,屬于容易題.12、B【解析】

由值域為確定的值,得,利用對稱中心列方程求解即可【詳解】因為,又依題意知的值域為,所以得,,所以,令,得,則的圖象的對稱中心為.故選:B【點睛】本題考查三角函數的圖像及性質,考查函數的對稱中心,重點考查值域的求解,易錯點是對稱中心縱坐標錯寫為0二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

先根據點共線得到,從而得到O的軌跡為阿氏圓,結合三角形和三角形的面積關系可求.【詳解】設B,O,E共線,則,解得,從而O為CD中點,故.在△BOD中,BD=2,,易知O的軌跡為阿氏圓,其半徑,故.故答案為:.【點睛】本題主要考查三角形的面積問題,把所求面積進行轉化是求解的關鍵,側重考查數學運算的核心素養(yǎng).14、7【解析】

根據題意,當時,,可得,進而得數列為等比數列,再計算可得,進而可得結論.【詳解】由題意,當時,,又,解得,當時,由,所以,,即,故數列是以為首項,為公比的等比數列,故,又,,所以,.故答案為:.【點睛】本題考查了數列遞推關系、函數求值,考查了推理能力與計算能力,計算得是解決本題的關鍵,屬于中檔題.15、【解析】

結合圖形可以發(fā)現,利用三角形中位線定理,將線段長度用坐標表示成圓的方程,與橢圓方程聯立可進一步求解.利用焦半徑及三角形中位線定理,則更為簡潔.【詳解】方法1:由題意可知,由中位線定理可得,設可得,聯立方程可解得(舍),點在橢圓上且在軸的上方,求得,所以方法2:焦半徑公式應用解析1:由題意可知,由中位線定理可得,即求得,所以.【點睛】本題主要考查橢圓的標準方程、橢圓的幾何性質、直線與圓的位置關系,利用數形結合思想,是解答解析幾何問題的重要途徑.16、【解析】由圖可知,當直線y=kx在直線OA與x軸(不含它們)之間時,y=kx與y=f(x)的圖像有兩個不同交點,即方程有兩個不相同的實根.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)詳見解析;(2).【解析】

(1)由直徑所對的圓周角為,可知,通過計算,利用勾股定理的逆定理可以判斷出為直角三角形,所以有.由已知可以證明出,這樣利用線面垂直的判定定理可以證明平面,利用面面垂直的判定定理可以證明出平面平面;(2)以為坐標原點,分別以垂直于平面向上的方向、向量所在方向作為軸、軸、軸的正方向,建立如圖所示的空間直角坐標系,求出相應點的坐標,求出平面的一個法向量和平面的法向量,利用空間向量數量積運算公式,可以求出二面角的余弦值.【詳解】解:(1)證明:因為半圓弧上的一點,所以.在中,分別為的中點,所以,且.于是在中,,所以為直角三角形,且.因為,,所以.因為,,,所以平面.又平面,所以平面平面.(2)由已知,以為坐標原點,分別以垂直于、向量所在方向作為軸、軸、軸的正方向,建立如圖所示的空間直角坐標系,則,,,,,,.設平面的一個法向量為,則即,取,得.設平面的法向量,則即,取,得.所以,又二面角為銳角,所以二面角的余弦值為.【點睛】本題考查了利用線面垂直判定面面垂直、利用空間向量數量積求二面角的余弦值問題.18、(1)(2)證明見解析【解析】

(1),①當時,,②兩式相減即得數列的通項公式;(2)先求出,再利用裂項相消法求和證明.【詳解】(1)解:,①當時,.當時,,②由①-②,得,因為符合上式,所以.(2)證明:因為,所以.【點睛】本題主要考查數列通項的求法,考查數列求和,意在考查學生對這些知識的理解掌握水平.19、(1)(2)【解析】分析:(1)先求導,再令在上恒成立,得到上恒成立,利用基本不等式得到m的取值范圍.(2)先由得到,再求得,再構造函數再利用導數求其最小值.詳解:(1)由函數有意義,則由且不存在單調遞減區(qū)間,則在上恒成立,上恒成立(2)由知,令,即由有兩個極值點故為方程的兩根,,,則由由,則上單調遞減,即由知綜上所述,的最小值為.點睛:(1)本題主要考查利用導數求函數的單調區(qū)間和極值,考查利用導數求函數的最值,意在考查學生對這些知識的掌握水平和分析推理能力.(2)本題的難點有兩個,其一是求出,其二是構造函數再利用導數求其最小值.20、(1)見解析;(2)【解析】

(1)要證明PC⊥面ADE,由已知可得AD⊥PC,只需滿足即可,從而得到點E為中點;(2)求出面ADE的法向量,面PAE的法向量,利用空間向量的數量積,求解二面角P﹣AE﹣D的余弦值.【詳解】(1)法一:要證明PC⊥面ADE,易知AD⊥面PDC,即得AD⊥PC,故只需即可,所以由,即存在點E為PC中點.法二:建立如圖所示的空間直角坐標系D-XYZ,由題意知PD=CD=1,,設,,,由,得,即存在點E為PC中點.(2)由(1)知,,,,,,設面ADE的法向量為,面PAE的法向量為由的法向量為得,得,同理求得所以,故所求二面角P-AE-D的余弦值為.【點睛】本題考查二面角的平面角的求法,考查直線與平面垂直的判定定理的應用,考查空間想象能力以及計算能力.21、(1);(2)見解析;(3)見解析【解析】

(1)需滿足恒成立,只需即可;(2)根據的單調性,構造新函數,并令,根據的單調性即可得證;(3)將問題轉化為證明有唯一實數解,對求導,判斷其單調性,結合題目條件與不等式的放縮,即可得證.【詳解】;令,則恒成立;,;的取值范圍是;(2)證明:由(1)知,在上單調遞減,在上單調遞增;;令,;則;令,則;;;(3)證明:,,要證明有唯一實數解;當時,;當時,;即對于任意實數,一定有解;;當時,有兩個極值點;函數在,,上單調遞增,在上單調遞減;又;只需,在時恒成立;只需;令,其中一個正解是;,;單調遞增,,(1);;;綜上得證.【點睛】本題考查了利用導數研究函數的單調性,考查了利用導數證明不等式,考查了轉化

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論