廣東省湛江一中等“四校”重點(diǎn)中學(xué)2025屆高三第四次模擬考試數(shù)學(xué)試卷含解析_第1頁(yè)
廣東省湛江一中等“四校”重點(diǎn)中學(xué)2025屆高三第四次模擬考試數(shù)學(xué)試卷含解析_第2頁(yè)
廣東省湛江一中等“四校”重點(diǎn)中學(xué)2025屆高三第四次模擬考試數(shù)學(xué)試卷含解析_第3頁(yè)
廣東省湛江一中等“四校”重點(diǎn)中學(xué)2025屆高三第四次模擬考試數(shù)學(xué)試卷含解析_第4頁(yè)
廣東省湛江一中等“四校”重點(diǎn)中學(xué)2025屆高三第四次模擬考試數(shù)學(xué)試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩16頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

廣東省湛江一中等“四?!敝攸c(diǎn)中學(xué)2025屆高三第四次模擬考試數(shù)學(xué)試卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫(xiě)在試卷密封線(xiàn)內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫(xiě)在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫(xiě)在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.某裝飾公司制作一種扇形板狀裝飾品,其圓心角為120°,并在扇形弧上正面等距安裝7個(gè)發(fā)彩色光的小燈泡且在背面用導(dǎo)線(xiàn)相連(弧的兩端各一個(gè),導(dǎo)線(xiàn)接頭忽略不計(jì)),已知扇形的半徑為30厘米,則連接導(dǎo)線(xiàn)最小大致需要的長(zhǎng)度為()A.58厘米 B.63厘米 C.69厘米 D.76厘米2.某幾何體的三視圖如圖所示,則該幾何體的體積為()A. B. C. D.3.已知雙曲線(xiàn)的焦距是虛軸長(zhǎng)的2倍,則雙曲線(xiàn)的漸近線(xiàn)方程為()A. B. C. D.4.函數(shù)的定義域?yàn)椋ǎ〢. B. C. D.5.已知復(fù)數(shù)z滿(mǎn)足(i為虛數(shù)單位),則在復(fù)平面內(nèi)復(fù)數(shù)z對(duì)應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.中國(guó)古代數(shù)學(xué)名著《九章算術(shù)》中記載了公元前344年商鞅督造的一種標(biāo)準(zhǔn)量器——商鞅銅方升,其三視圖如圖所示(單位:寸),若取3,當(dāng)該量器口密閉時(shí)其表面積為42.2(平方寸),則圖中x的值為()A.3 B.3.4 C.3.8 D.47.在平行四邊形中,若則()A. B. C. D.8.已知函數(shù),要得到函數(shù)的圖象,只需將的圖象()A.向左平移個(gè)單位長(zhǎng)度 B.向右平移個(gè)單位長(zhǎng)度C.向左平移個(gè)單位長(zhǎng)度 D.向右平移個(gè)單位長(zhǎng)度9.已知數(shù)列是公比為的正項(xiàng)等比數(shù)列,若、滿(mǎn)足,則的最小值為()A. B. C. D.10.在中,角所對(duì)的邊分別為,已知,.當(dāng)變化時(shí),若存在最大值,則正數(shù)的取值范圍為A. B. C. D.11.已知定義在上的奇函數(shù)滿(mǎn)足:(其中),且在區(qū)間上是減函數(shù),令,,,則,,的大小關(guān)系(用不等號(hào)連接)為()A. B.C. D.12.函數(shù)在區(qū)間上的大致圖象如圖所示,則可能是()A.B.C.D.二、填空題:本題共4小題,每小題5分,共20分。13.請(qǐng)列舉用0,1,2,3這4個(gè)數(shù)字所組成的無(wú)重復(fù)數(shù)字且比210大的所有三位奇數(shù):___________.14.下圖是一個(gè)算法流程圖,則輸出的的值為_(kāi)_________.15.曲線(xiàn)在處的切線(xiàn)的斜率為_(kāi)_______.16.已知正四棱柱的底面邊長(zhǎng)為,側(cè)面的對(duì)角線(xiàn)長(zhǎng)是,則這個(gè)正四棱柱的體積是____.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù),(1)求函數(shù)的單調(diào)區(qū)間;(2)當(dāng)時(shí),判斷函數(shù),()有幾個(gè)零點(diǎn),并證明你的結(jié)論;(3)設(shè)函數(shù),若函數(shù)在為增函數(shù),求實(shí)數(shù)的取值范圍.18.(12分)已知函數(shù)(),是的導(dǎo)數(shù).(1)當(dāng)時(shí),令,為的導(dǎo)數(shù).證明:在區(qū)間存在唯一的極小值點(diǎn);(2)已知函數(shù)在上單調(diào)遞減,求的取值范圍.19.(12分)如圖,已知平面與直線(xiàn)均垂直于所在平面,且.(1)求證:平面;(2)若,求與平面所成角的正弦值.20.(12分)以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程是,直線(xiàn)和直線(xiàn)的極坐標(biāo)方程分別是()和(),其中().(1)寫(xiě)出曲線(xiàn)的直角坐標(biāo)方程;(2)設(shè)直線(xiàn)和直線(xiàn)分別與曲線(xiàn)交于除極點(diǎn)的另外點(diǎn),,求的面積最小值.21.(12分)如圖,在直角中,,通過(guò)以直線(xiàn)為軸順時(shí)針旋轉(zhuǎn)得到().點(diǎn)為斜邊上一點(diǎn).點(diǎn)為線(xiàn)段上一點(diǎn),且.(1)證明:平面;(2)當(dāng)直線(xiàn)與平面所成的角取最大值時(shí),求二面角的正弦值.22.(10分)已知?jiǎng)狱c(diǎn)到定點(diǎn)的距離比到軸的距離多.(1)求動(dòng)點(diǎn)的軌跡的方程;(2)設(shè),是軌跡在上異于原點(diǎn)的兩個(gè)不同點(diǎn),直線(xiàn)和的傾斜角分別為和,當(dāng),變化且時(shí),證明:直線(xiàn)恒過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】

由于實(shí)際問(wèn)題中扇形弧長(zhǎng)較小,可將導(dǎo)線(xiàn)的長(zhǎng)視為扇形弧長(zhǎng),利用弧長(zhǎng)公式計(jì)算即可.【詳解】因?yàn)榛¢L(zhǎng)比較短的情況下分成6等分,所以每部分的弦長(zhǎng)和弧長(zhǎng)相差很小,可以用弧長(zhǎng)近似代替弦長(zhǎng),故導(dǎo)線(xiàn)長(zhǎng)度約為63(厘米).故選:B.【點(diǎn)睛】本題主要考查了扇形弧長(zhǎng)的計(jì)算,屬于容易題.2、A【解析】

利用已知條件畫(huà)出幾何體的直觀(guān)圖,然后求解幾何體的體積.【詳解】幾何體的三視圖的直觀(guān)圖如圖所示,則該幾何體的體積為:.故選:.【點(diǎn)睛】本題考查三視圖求解幾何體的體積,判斷幾何體的形狀是解題的關(guān)鍵.3、A【解析】

根據(jù)雙曲線(xiàn)的焦距是虛軸長(zhǎng)的2倍,可得出,結(jié)合,得出,即可求出雙曲線(xiàn)的漸近線(xiàn)方程.【詳解】解:由雙曲線(xiàn)可知,焦點(diǎn)在軸上,則雙曲線(xiàn)的漸近線(xiàn)方程為:,由于焦距是虛軸長(zhǎng)的2倍,可得:,∴,即:,,所以雙曲線(xiàn)的漸近線(xiàn)方程為:.故選:A.【點(diǎn)睛】本題考查雙曲線(xiàn)的簡(jiǎn)單幾何性質(zhì),以及雙曲線(xiàn)的漸近線(xiàn)方程.4、C【解析】

函數(shù)的定義域應(yīng)滿(mǎn)足故選C.5、D【解析】

根據(jù)復(fù)數(shù)運(yùn)算,求得,再求其對(duì)應(yīng)點(diǎn)即可判斷.【詳解】,故其對(duì)應(yīng)點(diǎn)的坐標(biāo)為.其位于第四象限.故選:D.【點(diǎn)睛】本題考查復(fù)數(shù)的運(yùn)算,以及復(fù)數(shù)對(duì)應(yīng)點(diǎn)的坐標(biāo),屬綜合基礎(chǔ)題.6、D【解析】

根據(jù)三視圖即可求得幾何體表面積,即可解得未知數(shù).【詳解】由圖可知,該幾何體是由一個(gè)長(zhǎng)寬高分別為和一個(gè)底面半徑為,高為的圓柱組合而成.該幾何體的表面積為,解得,故選:D.【點(diǎn)睛】本題考查由三視圖還原幾何體,以及圓柱和長(zhǎng)方體表面積的求解,屬綜合基礎(chǔ)題.7、C【解析】

由,,利用平面向量的數(shù)量積運(yùn)算,先求得利用平行四邊形的性質(zhì)可得結(jié)果.【詳解】如圖所示,

平行四邊形中,,

,,,

因?yàn)?

所以

,

,所以,故選C.【點(diǎn)睛】本題主要考查向量的幾何運(yùn)算以及平面向量數(shù)量積的運(yùn)算法則,屬于中檔題.向量的運(yùn)算有兩種方法:(1)平行四邊形法則(平行四邊形的對(duì)角線(xiàn)分別是兩向量的和與差);(2)三角形法則(兩箭頭間向量是差,箭頭與箭尾間向量是和).8、A【解析】

根據(jù)函數(shù)圖像平移原則,即可容易求得結(jié)果.【詳解】因?yàn)椋室玫?,只需將向左平移個(gè)單位長(zhǎng)度.故選:A.【點(diǎn)睛】本題考查函數(shù)圖像平移前后解析式的變化,屬基礎(chǔ)題.9、B【解析】

利用等比數(shù)列的通項(xiàng)公式和指數(shù)冪的運(yùn)算法則、指數(shù)函數(shù)的單調(diào)性求得再根據(jù)此范圍求的最小值.【詳解】數(shù)列是公比為的正項(xiàng)等比數(shù)列,、滿(mǎn)足,由等比數(shù)列的通項(xiàng)公式得,即,,可得,且、都是正整數(shù),求的最小值即求在,且、都是正整數(shù)范圍下求最小值和的最小值,討論、取值.當(dāng)且時(shí),的最小值為.故選:B.【點(diǎn)睛】本題考查等比數(shù)列的通項(xiàng)公式和指數(shù)冪的運(yùn)算法則、指數(shù)函數(shù)性質(zhì)等基礎(chǔ)知識(shí),考查數(shù)學(xué)運(yùn)算求解能力和分類(lèi)討論思想,是中等題.10、C【解析】

因?yàn)椋?,所以根?jù)正弦定理可得,所以,,所以,其中,,因?yàn)榇嬖谧畲笾?,所以由,可得,所以,所以,解得,所以正?shù)的取值范圍為,故選C.11、A【解析】因?yàn)?,所以,即周期為4,因?yàn)闉槠婧瘮?shù),所以可作一個(gè)周期[-2e,2e]示意圖,如圖在(0,1)單調(diào)遞增,因?yàn)?,因此,選A.點(diǎn)睛:函數(shù)對(duì)稱(chēng)性代數(shù)表示(1)函數(shù)為奇函數(shù),函數(shù)為偶函數(shù)(定義域關(guān)于原點(diǎn)對(duì)稱(chēng));(2)函數(shù)關(guān)于點(diǎn)對(duì)稱(chēng),函數(shù)關(guān)于直線(xiàn)對(duì)稱(chēng),(3)函數(shù)周期為T(mén),則12、B【解析】

根據(jù)特殊值及函數(shù)的單調(diào)性判斷即可;【詳解】解:當(dāng)時(shí),,無(wú)意義,故排除A;又,則,故排除D;對(duì)于C,當(dāng)時(shí),,所以不單調(diào),故排除C;故選:B【點(diǎn)睛】本題考查根據(jù)函數(shù)圖象選擇函數(shù)解析式,這類(lèi)問(wèn)題利用特殊值與排除法是最佳選擇,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、231,321,301,1【解析】

分個(gè)位數(shù)字是1、3兩種情況討論,即得解【詳解】0,1,2,3這4個(gè)數(shù)字所組成的無(wú)重復(fù)數(shù)字比210大的所有三位奇數(shù)有:(1)當(dāng)個(gè)位數(shù)字是1時(shí),數(shù)字可以是231,321,301;(2)當(dāng)個(gè)位數(shù)字是3時(shí)數(shù)字可以是1.故答案為:231,321,301,1【點(diǎn)睛】本題考查了分類(lèi)計(jì)數(shù)法的應(yīng)用,考查了學(xué)生分類(lèi)討論,數(shù)學(xué)運(yùn)算的能力,屬于基礎(chǔ)題.14、3【解析】

分析程序中各變量、各語(yǔ)句的作用,根據(jù)流程圖所示的順序,即可得出結(jié)論.【詳解】解:初始,第一次循環(huán):;第二次循環(huán):;第三次循環(huán):;經(jīng)判斷,此時(shí)跳出循環(huán),輸出.故答案為:【點(diǎn)睛】本題考查了程序框圖的應(yīng)用問(wèn)題,解題的關(guān)鍵是對(duì)算法語(yǔ)句的理解,屬基礎(chǔ)題.15、【解析】

求出函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)的幾何意義令,即可求出切線(xiàn)斜率.【詳解】,,,即曲線(xiàn)在處的切線(xiàn)的斜率.故答案為:【點(diǎn)睛】本題考查了導(dǎo)數(shù)的幾何意義、導(dǎo)數(shù)的運(yùn)算法則以及基本初等函數(shù)的導(dǎo)數(shù),屬于基礎(chǔ)題.16、【解析】Aa設(shè)正四棱柱的高為h得到故得到正四棱柱的體積為故答案為54.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)單調(diào)增區(qū)間,單調(diào)減區(qū)間為,;(2)有2個(gè)零點(diǎn),證明見(jiàn)解析;(3)【解析】

對(duì)函數(shù)求導(dǎo),利用導(dǎo)數(shù)的正負(fù)判斷函數(shù)的單調(diào)區(qū)間即可;函數(shù)有2個(gè)零點(diǎn).根據(jù)函數(shù)的零點(diǎn)存在性定理即可證明;記函數(shù),求導(dǎo)后利用單調(diào)性求得,由零點(diǎn)存在性定理及單調(diào)性知存在唯一的,使,求得為分段函數(shù),求導(dǎo)后分情況討論:①當(dāng)時(shí),利用函數(shù)的單調(diào)性將問(wèn)題轉(zhuǎn)化為的問(wèn)題;②當(dāng)時(shí),當(dāng)時(shí),在上恒成立,從而求得的取值范圍.【詳解】(1)由題意知,,列表如下:020極小值極大值所以函數(shù)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為,.(2)函數(shù)有2個(gè)零點(diǎn).證明如下:因?yàn)闀r(shí),所以,因?yàn)?所以在恒成立,在上單調(diào)遞增,由,,且在上單調(diào)遞增且連續(xù)知,函數(shù)在上僅有一個(gè)零點(diǎn),由(1)可得時(shí),,即,故時(shí),,所以,由得,平方得,所以,因?yàn)椋栽谏虾愠闪?所以函數(shù)在上單調(diào)遞減,因?yàn)?所以,由,,且在上單調(diào)遞減且連續(xù)得在上僅有一個(gè)零點(diǎn),綜上可知:函數(shù)有2個(gè)零點(diǎn).(3)記函數(shù),下面考察的符號(hào).求導(dǎo)得.當(dāng)時(shí)恒成立.當(dāng)時(shí),因?yàn)?,所以.∴在上恒成立,故在上單調(diào)遞減.∵,∴,又因?yàn)樵谏线B續(xù),所以由函數(shù)的零點(diǎn)存在性定理得存在唯一的,使,∴,因?yàn)?所以∴因?yàn)楹瘮?shù)在上單調(diào)遞增,,所以在,上恒成立.①當(dāng)時(shí),在上恒成立,即在上恒成立.記,則,當(dāng)變化時(shí),,變化情況如下表:極小值∴,故,即.②當(dāng)時(shí),,當(dāng)時(shí),在上恒成立.綜合(1)(2)知,實(shí)數(shù)的取值范圍是.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間、極值、最值和利用零點(diǎn)存在性定理判斷函數(shù)零點(diǎn)個(gè)數(shù)、利用分離參數(shù)法求參數(shù)的取值范圍;考查轉(zhuǎn)化與化歸能力、邏輯推理能力、運(yùn)算求解能力;通過(guò)構(gòu)造函數(shù),利用零點(diǎn)存在性定理判斷其零點(diǎn),從而求出函數(shù)的表達(dá)式是求解本題的關(guān)鍵;屬于綜合型強(qiáng)、難度大型試題.18、(1)見(jiàn)解析;(2)【解析】

(1)設(shè),,注意到在上單增,再利用零點(diǎn)存在性定理即可解決;(2)函數(shù)在上單調(diào)遞減,則在恒成立,即在上恒成立,構(gòu)造函數(shù),求導(dǎo)討論的最值即可.【詳解】(1)由已知,,所以,設(shè),,當(dāng)時(shí),單調(diào)遞增,而,,且在上圖象連續(xù)不斷.所以在上有唯一零點(diǎn),當(dāng)時(shí),;當(dāng)時(shí),;∴在單調(diào)遞減,在單調(diào)遞增,故在區(qū)間上存在唯一的極小值點(diǎn),即在區(qū)間上存在唯一的極小值點(diǎn);(2)設(shè),,,∴在單調(diào)遞增,,即,從而,因?yàn)楹瘮?shù)在上單調(diào)遞減,∴在上恒成立,令,∵,∴,在上單調(diào)遞減,,當(dāng)時(shí),,則在上單調(diào)遞減,,符合題意.當(dāng)時(shí),在上單調(diào)遞減,所以一定存在,當(dāng)時(shí),,在上單調(diào)遞增,與題意不符,舍去.綜上,的取值范圍是【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的極值點(diǎn)、不等式恒成立問(wèn)題,在處理恒成立問(wèn)題時(shí),通常是構(gòu)造函數(shù),轉(zhuǎn)化成函數(shù)的最值來(lái)處理,本題是一道較難的題.19、(1)見(jiàn)解析;(2)【解析】

(Ⅰ)證明:過(guò)點(diǎn)作于點(diǎn),∵平面⊥平面,∴平面又∵⊥平面∴∥,又∵平面∴∥平面(Ⅱ)∵平面∴,又∵∴∴∴點(diǎn)是的中點(diǎn),連結(jié),則∴平面∴∥,∴四邊形是矩形設(shè),得:,又∵,∴,從而,過(guò)作于點(diǎn),則∴是與平面所成角∴,∴與平面所成角的正弦值為考點(diǎn):面面垂直的性質(zhì)定理;線(xiàn)面平行的判定定理;線(xiàn)面垂直的性質(zhì)定理;直線(xiàn)與平面所成的角.點(diǎn)評(píng):本題主要考查了線(xiàn)面平行的證明和直線(xiàn)與平面所成的角,屬立體幾何中的??碱}型,較難.本題也可以用向量法來(lái)做:用向量法解題的關(guān)鍵是;首先正確的建立空間直角坐標(biāo)系,正確求解平面的一個(gè)法向量.注意計(jì)算要仔細(xì)、認(rèn)真.≌20、(1);(2)16.【解析】

(1)將極坐標(biāo)方程化為直角坐標(biāo)方程即可;(2)利用極徑的幾何意義,聯(lián)立曲線(xiàn),直線(xiàn),直線(xiàn)的極坐標(biāo)方程,得出,利用三角形面積公式,結(jié)合正弦函數(shù)的性質(zhì),得出的面積最小值.【詳解】(1)曲線(xiàn):,即化為直角坐標(biāo)方程為:;(2),即同理∴當(dāng)且僅當(dāng),即()時(shí)取等號(hào)即的面積最小值為16【點(diǎn)睛】本題主要考查了極坐標(biāo)方程化直角坐標(biāo)方程以及極坐標(biāo)的應(yīng)用,屬于中檔題.21、(1)見(jiàn)解析;(2)【解析】

(1)先算出的長(zhǎng)度,利用勾股定理證明,再由已知可得,利用線(xiàn)面垂直的判定定理即可證明;(2)由(1)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論