




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
第一篇熱點(diǎn)、難點(diǎn)突破篇專題01不等式綜合問題(練)【對點(diǎn)演練】一、單選題1.(2022·遼寧·朝陽市第一高級中學(xué)高三階段練習(xí))已知命題SKIPIF1<0:SKIPIF1<0,SKIPIF1<0是假命題,則實數(shù)SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】根據(jù)一元二次不等式恒成立求解實數(shù)SKIPIF1<0的取值范圍.【詳解】由題意得SKIPIF1<0是真命題,即SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0符合題意;當(dāng)SKIPIF1<0時,有SKIPIF1<0,且SKIPIF1<0,解得SKIPIF1<0.綜上所述,實數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0.故選:D.2.(2022·全國·高三專題練習(xí))不等式SKIPIF1<0的解集為SKIPIF1<0,則函數(shù)SKIPIF1<0的圖像大致為(
)A. B.C. D.【答案】C【分析】根據(jù)題意,可得方程SKIPIF1<0的兩個根為SKIPIF1<0和SKIPIF1<0,且SKIPIF1<0,結(jié)合二次方程根與系數(shù)的關(guān)系得到SKIPIF1<0、SKIPIF1<0、SKIPIF1<0的關(guān)系,再結(jié)合二次函數(shù)的性質(zhì)判斷即可.【詳解】根據(jù)題意,SKIPIF1<0的解集為SKIPIF1<0,則方程SKIPIF1<0的兩個根為SKIPIF1<0和SKIPIF1<0,且SKIPIF1<0.則有SKIPIF1<0,變形可得SKIPIF1<0,故函數(shù)SKIPIF1<0是開口向下的二次函數(shù),且與SKIPIF1<0軸的交點(diǎn)坐標(biāo)為SKIPIF1<0和SKIPIF1<0.對照四個選項,只有C符合.故選:C.3.(2022·重慶市云陽縣高陽中學(xué)高三階段練習(xí)(理))關(guān)于SKIPIF1<0的不等式SKIPIF1<0恒成立的一個充分不必要條件是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】根據(jù)二次不等式恒成立得SKIPIF1<0,再根據(jù)充分不必要條件的概念求解即可.【詳解】解:當(dāng)SKIPIF1<0時,SKIPIF1<0,該不等式成立;當(dāng)SKIPIF1<0,即SKIPIF1<0時,該不等式成立;綜上,得當(dāng)SKIPIF1<0時,關(guān)于SKIPIF1<0的不等式SKIPIF1<0恒成立,所以,關(guān)于SKIPIF1<0的不等式SKIPIF1<0恒成立的一個充分不必要條件是SKIPIF1<0.故選:D.4.(2022·寧夏·銀川一中高三階段練習(xí)(理))《忠經(jīng)·廣至理章第十二》中有言“不私,而天下自公”,在實際生活中,新時代的青年不僅要有自己“不私”的覺悟,也要有識破“詐公”的智慧.某金店用一桿不準(zhǔn)確的天平(兩邊臂不等長)稱黃金,顧客要購買SKIPIF1<0黃金,售貨員先將SKIPIF1<0的砝碼放在左盤,將黃金放于右盤使之平衡后給顧客;然后又將SKIPIF1<0的砝碼放入右盤,將另一黃金放于左盤使之平衡后又給顧客,則顧客實際所得黃金(
)A.大于SKIPIF1<0 B.小于SKIPIF1<0 C.等于SKIPIF1<0 D.以上都有可能【答案】A【分析】根據(jù)已知條件,結(jié)合基本不等式的公式,即可求解.【詳解】由于天平兩臂不相等,故可設(shè)天平左臂長為SKIPIF1<0,右臂長為SKIPIF1<0(不妨設(shè)SKIPIF1<0,第一次稱出的黃金重為SKIPIF1<0,第二次稱出的黃金重為SKIPIF1<0,由杠桿平衡定理可得,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,故顧客實際所得黃金大于SKIPIF1<0.故選:SKIPIF1<0.5.(2022·湖北·高三階段練習(xí))已知隨機(jī)變量SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的最小值為(
)A.9 B.8 C.SKIPIF1<0 D.6【答案】B【分析】由正態(tài)曲線的對稱軸得出SKIPIF1<0,再由基本不等式得出最小值.【詳解】由隨機(jī)變量SKIPIF1<0,則正態(tài)分布的曲線的對稱軸為SKIPIF1<0,又因為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時等號成立,故最小值為SKIPIF1<0.故選:B二、多選題6.(2020·山東·青島二中高三期中)設(shè)SKIPIF1<0,SKIPIF1<0,則下列結(jié)論正確的是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】BCD【分析】結(jié)合已知條件,可得到SKIPIF1<0,對于選項A:對SKIPIF1<0兩邊同時平方,并利用不等式性質(zhì)即可判斷;對于B:利用不等式性質(zhì)即可判斷;對于CD:結(jié)合均值不等式即可判斷.【詳解】由SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,對于A:由SKIPIF1<0兩邊平方并整理得,SKIPIF1<0,故A錯誤;對于B:SKIPIF1<0,故B正確;對于C:由選項B知,SKIPIF1<0,又SKIPIF1<0,故C正確;對于D:因為SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,故D正確.故選:BCD.7.(2022·江蘇江蘇·高三階段練習(xí))已知SKIPIF1<0,則(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】ACD【分析】由題可得SKIPIF1<0,進(jìn)而可得SKIPIF1<0可判斷A,根據(jù)特值可判斷B,根據(jù)基本不等式可判斷C,利用二次函數(shù)的性質(zhì)可判斷D.【詳解】由SKIPIF1<0,可得SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,故A正確;取SKIPIF1<0,SKIPIF1<0,而SKIPIF1<0,故B錯誤;因為SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時等號成立,所以SKIPIF1<0,故C正確;由SKIPIF1<0,可得SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時等號成立,故D正確.故選:ACD.8.(2022·河北·開灤第一中學(xué)高三階段練習(xí))若SKIPIF1<0對任意SKIPIF1<0恒成立,其中SKIPIF1<0,SKIPIF1<0是整數(shù),則SKIPIF1<0的可能取值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】BCD【分析】對SKIPIF1<0分類討論,當(dāng)SKIPIF1<0時,由SKIPIF1<0可得SKIPIF1<0,由一次函數(shù)的圖象知不存在;當(dāng)SKIPIF1<0時,由SKIPIF1<0,利用數(shù)形結(jié)合的思想可得出SKIPIF1<0的整數(shù)解.【詳解】當(dāng)SKIPIF1<0時,由SKIPIF1<0可得SKIPIF1<0對任意SKIPIF1<0恒成立,即SKIPIF1<0對任意SKIPIF1<0恒成立,此時SKIPIF1<0不存在;當(dāng)SKIPIF1<0時,由SKIPIF1<0對任意SKIPIF1<0恒成立,可設(shè)SKIPIF1<0,SKIPIF1<0,作出SKIPIF1<0的圖象如下,由題意可知SKIPIF1<0,再由SKIPIF1<0,SKIPIF1<0是整數(shù)可得SKIPIF1<0或SKIPIF1<0或SKIPIF1<0所以SKIPIF1<0的可能取值為SKIPIF1<0或SKIPIF1<0或SKIPIF1<0故選:BCD三、填空題9.(2022·廣西南寧·模擬預(yù)測(文))若直線SKIPIF1<0平分圓SKIPIF1<0的周長,則ab的最大值為________【答案】SKIPIF1<0【分析】因為直線平分圓,則直線過圓心,再利用基本不等式求出ab的最大值.【詳解】由題意得,直線SKIPIF1<0過圓心SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,(當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0,取“=”),又SKIPIF1<0,所以ab的最大值為SKIPIF1<0.故答案為:SKIPIF1<0.10.(2022·河南安陽·高三階段練習(xí)(文))已知點(diǎn)P(m,n)是函數(shù)SKIPIF1<0圖象上的點(diǎn),當(dāng)SKIPIF1<0時,2m+n的最小值為______.【答案】SKIPIF1<0【分析】根據(jù)基本不等式即可求解最小值.【詳解】P(m,n)是函數(shù)SKIPIF1<0圖象上的點(diǎn),所以SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時取等號,故SKIPIF1<0的最小值為SKIPIF1<0.故答案為:SKIPIF1<0【沖刺提升】一、單選題1.(2022·全國·高三專題練習(xí))已知m,n,s,t為正數(shù),SKIPIF1<0,SKIPIF1<0,其中m,n是常數(shù),且SKIPIF1<0的最小值是SKIPIF1<0,點(diǎn)SKIPIF1<0是曲線SKIPIF1<0的一條弦AB的中點(diǎn),則弦AB所在直線方程為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】由已知得SKIPIF1<0,化簡后利用基本不等式可求出其最小值,再結(jié)合其最小值為SKIPIF1<0和SKIPIF1<0可求出SKIPIF1<0,從而可得點(diǎn)SKIPIF1<0的坐標(biāo),再利用點(diǎn)差法可求出直線AB的斜率,從而可求出直線方程.【詳解】因為m,n,s,t為正數(shù),SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時取等號,所以SKIPIF1<0,又SKIPIF1<0,又SKIPIF1<0為正數(shù),所以解得SKIPIF1<0,即SKIPIF1<0,設(shè)弦兩端點(diǎn)分別為SKIPIF1<0,則SKIPIF1<0,兩式相減得SKIPIF1<0,因為SKIPIF1<0,所以直線的斜率為SKIPIF1<0,所以直線方程為SKIPIF1<0,即SKIPIF1<0.經(jīng)檢驗直線SKIPIF1<0與橢圓SKIPIF1<0有兩個交點(diǎn),所以直線方程為SKIPIF1<0,故選:D2.(2022·全國·高考真題)已知正四棱錐的側(cè)棱長為l,其各頂點(diǎn)都在同一球面上.若該球的體積為SKIPIF1<0,且SKIPIF1<0,則該正四棱錐體積的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】設(shè)正四棱錐的高為SKIPIF1<0,由球的截面性質(zhì)列方程求出正四棱錐的底面邊長與高的關(guān)系,由此確定正四棱錐體積的取值范圍.【詳解】∵球的體積為SKIPIF1<0,所以球的半徑SKIPIF1<0,[方法一]:導(dǎo)數(shù)法設(shè)正四棱錐的底面邊長為SKIPIF1<0,高為SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0所以正四棱錐的體積SKIPIF1<0,所以SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,所以當(dāng)SKIPIF1<0時,正四棱錐的體積SKIPIF1<0取最大值,最大值為SKIPIF1<0,又SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0時,SKIPIF1<0,所以正四棱錐的體積SKIPIF1<0的最小值為SKIPIF1<0,所以該正四棱錐體積的取值范圍是SKIPIF1<0.故選:C.[方法二]:基本不等式法由方法一故所以SKIPIF1<0當(dāng)且僅當(dāng)SKIPIF1<0取到SKIPIF1<0,當(dāng)SKIPIF1<0時,得SKIPIF1<0,則SKIPIF1<0當(dāng)SKIPIF1<0時,球心在正四棱錐高線上,此時SKIPIF1<0,SKIPIF1<0,正四棱錐體積SKIPIF1<0,故該正四棱錐體積的取值范圍是SKIPIF1<0二、多選題17.(2020·海南·高考真題)已知a>0,b>0,且a+b=1,則(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】ABD【分析】根據(jù)SKIPIF1<0,結(jié)合基本不等式及二次函數(shù)知識進(jìn)行求解.【詳解】對于A,SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時,等號成立,故A正確;對于B,SKIPIF1<0,所以SKIPIF1<0,故B正確;對于C,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時,等號成立,故C不正確;對于D,因為SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時,等號成立,故D正確;故選:ABD【點(diǎn)睛】本題主要考查不等式的性質(zhì),綜合了基本不等式,指數(shù)函數(shù)及對數(shù)函數(shù)的單調(diào)性,側(cè)重考查數(shù)學(xué)運(yùn)算的核心素養(yǎng).3.(2022·黑龍江·哈爾濱市第六中學(xué)校高三階段練習(xí))已知等差數(shù)列SKIPIF1<0的前SKIPIF1<0項和為SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0,則(
)A.SKIPIF1<0 B.若SKIPIF1<0,則SKIPIF1<0的最小值為SKIPIF1<0C.SKIPIF1<0取到最大值時,SKIPIF1<0 D.設(shè)SKIPIF1<0,則數(shù)列SKIPIF1<0的最小項為SKIPIF1<0【答案】AD【分析】求得等差數(shù)列SKIPIF1<0的通項公式判斷選項A;求得SKIPIF1<0的最小值判斷選項B;求得SKIPIF1<0取到最大值時n的值判斷選項C;求得數(shù)列SKIPIF1<0的最小項判斷選項D.【詳解】由SKIPIF1<0,可得SKIPIF1<0,則等差數(shù)列SKIPIF1<0的通項公式為SKIPIF1<0,則選項A判斷正確;若SKIPIF1<0,則SKIPIF1<0則SKIPIF1<0(當(dāng)且僅當(dāng)SKIPIF1<0時等號成立)又SKIPIF1<0,則SKIPIF1<0的最小值為不為SKIPIF1<0.則選項B判斷錯誤;等差數(shù)列SKIPIF1<0中,SKIPIF1<0則等差數(shù)列SKIPIF1<0的前SKIPIF1<0項和SKIPIF1<0取到最大值時,SKIPIF1<0或SKIPIF1<0.則選項C判斷錯誤;設(shè)SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0則SKIPIF1<0則數(shù)列SKIPIF1<0的最小項為SKIPIF1<0.則選項D判斷正確故選:AD4.(2022·廣東·廣州大學(xué)附屬中學(xué)高三階段練習(xí))已知SKIPIF1<0的左,右焦點(diǎn)分別為SKIPIF1<0,SKIPIF1<0,長軸長為4,點(diǎn)SKIPIF1<0在橢圓C外,點(diǎn)Q在橢圓C上,則下列說法中正確的有(
)A.橢圓C的離心率的取值范圍是SKIPIF1<0B.已知SKIPIF1<0,當(dāng)橢圓C的離心率為SKIPIF1<0時,SKIPIF1<0的最大值為3C.存在點(diǎn)Q使得SKIPIF1<0D.SKIPIF1<0的最小值為1【答案】ACD【分析】易得SKIPIF1<0,再根據(jù)點(diǎn)SKIPIF1<0在橢圓C外,可得SKIPIF1<0,從而可求得SKIPIF1<0的范圍,再根據(jù)離心率公式即可判斷A;根據(jù)離心率求出橢圓方程,設(shè)點(diǎn)SKIPIF1<0,根據(jù)兩點(diǎn)的距離公式結(jié)合橢圓的有界性即可判斷B;當(dāng)點(diǎn)Q位于橢圓的上下頂點(diǎn)時SKIPIF1<0取得最大值,結(jié)合余弦定理判斷SKIPIF1<0是否大于等于SKIPIF1<0即可判斷C;根據(jù)SKIPIF1<0結(jié)合基本不等式即可判斷D.【詳解】解:根據(jù)題意可知SKIPIF1<0,則橢圓方程為SKIPIF1<0,因為點(diǎn)SKIPIF1<0在橢圓C外,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,則離心率SKIPIF1<0,故A正確;對于B,當(dāng)橢圓C的離心率為SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0,所以橢圓方程為SKIPIF1<0,設(shè)點(diǎn)SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,故B錯誤;對于C,當(dāng)點(diǎn)Q位于橢圓的上下頂點(diǎn)時SKIPIF1<0取得最大值,此時SKIPIF1<0,SKIPIF1<0,即當(dāng)點(diǎn)Q位于橢圓的上下頂點(diǎn)時SKIPIF1<0為鈍角,所以存在點(diǎn)Q使得SKIPIF1<0為直角,所以存在點(diǎn)Q使得SKIPIF1<0,故C正確;對于D,SKIPIF1<0,則SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時,取等號,所以SKIPIF1<0的最小值為1,故D正確.故選:ACD.三、填空題5.(2022·重慶市云陽縣高陽中學(xué)高三階段練習(xí)(理))已知SKIPIF1<0且SKIPIF1<0,則SKIPIF1<0的最小值為___________【答案】SKIPIF1<0【分析】由題知SKIPIF1<0,進(jìn)而令SKIPIF1<0,將SKIPIF1<0的最小值轉(zhuǎn)化為SKIPIF1<0的最小值,再根據(jù)基本不等式求解即可.【詳解】解:由SKIPIF1<0得SKIPIF1<0,所以,整理得SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時取等號,此時SKIPIF1<0.故答案為:SKIPIF1<06.(2022·黑龍江·鐵人中學(xué)高三階段練習(xí))已知SKIPIF1<0,SKIPIF1<0,不等式SKIPIF1<0對于SKIPIF1<0恒成立,且方程SKIPIF1<0有實根,則SKIPIF1<0的最小值為______.【答案】SKIPIF1<0【分析】根據(jù)題意結(jié)合一元二次不等式在R上恒成立可得SKIPIF1<0,消b整理得SKIPIF1<0,注意到SKIPIF1<0,結(jié)合基本不等式求最值.【詳解】由題意可得:不等式SKIPIF1<0對于SKIPIF1<0恒成立,則SKIPIF1<0方程SKIPIF1<0有實根,則SKIPIF1<0∴SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0∵SKIPIF1<0,則SKIPIF1<0當(dāng)且僅當(dāng)SKIPIF1<0時等號成立∴SKIPIF1<0,則SKIPIF1<0故答案為:SKIPIF1<0.7.(2021·天津·高考真題)若SKIPIF1<0,則SKIPIF1<0的最小值為____________.【答案】SKIPIF1<0【分析】兩次利用基本不等式即可求出.【詳解】SKIPIF1<0SKIPIF1<0,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0且SKIPIF1<0,即SKIPIF1<0時等號成立,所以SKIPIF1<0的最小值為SKIPIF1<0.故答案為:SKIPIF1<0.8.(2019·天津·高考真題(理))設(shè)SKIPIF1<0,則SKIPIF1<0的最小值為______.【答案】SKIPIF1<0【分析】把分子展開化為SKIPIF1<0,再利用基本不等式求最值.【詳解】SKIPIF1<0SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時成立,故所求的最小值為SKIPIF1<0.9.(2022·河北·唐山市第十一中學(xué)高三階段練習(xí))已知函數(shù)SKIPIF1<0,若對任意SKIPIF1<0恒有SKIPIF1<0,則SKIPIF1<0的最大值為___________.【答案】SKIPIF1<0【分析】根據(jù)分段函數(shù)的性質(zhì),結(jié)合對任意SKIPIF1<0恒有SKIPIF1<0,求得實數(shù)SKIPIF1<0的取值范圍,在根據(jù)對數(shù)函數(shù)與指數(shù)函數(shù)的單調(diào)性得函數(shù)SKIPIF1<0的單調(diào)性,從而可求解SKIPIF1<0的最大值.【詳解】解:由已知函數(shù)SKIPIF1<0,則SKIPIF1<0時,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時,取到最小值SKIPIF1<0;SKIPIF1<0時,若對任意SKIPIF1<0恒有SKIPIF1<0,則此時SKIPIF1<0單調(diào)遞減,則對稱軸SKIPIF1<0即SKIPIF1<0,所以SKIPIF1<0;結(jié)合可知對任意SKIPIF1<0恒有SKIPIF1<0,則有SKIPIF1<0,所以SKIPIF1<0.又SKIPIF1<0,其中SKIPIF1<0在SKIPIF1<0時是增函數(shù),SKIPIF1<0在SKIPIF1<0時是減函數(shù),故SKIPIF1<0在SKIPIF1<0時是增函數(shù),故SKIPIF1<0.故答案為:SKIPIF1<0.10.(2023·全國·高三專題練習(xí))已知P是曲線SKIPIF1<0上的一動點(diǎn),曲線C在P點(diǎn)處的切線的傾斜角為SKIPIF1<0,若SKIPIF1<0,則實數(shù)a的取值范圍是___________【答案】SKIPIF1<0【分析】根據(jù)導(dǎo)數(shù)的幾何意義,求導(dǎo)表示出切線斜率,根據(jù)傾斜角與斜率的變化關(guān)系,將問題等價轉(zhuǎn)化為含參不等式恒成立,利用參變分離以及基本不等式,可得答案.【詳解】因為SKIPIF1<0,所以SKIPIF1<0,因為曲線在M處的切線的傾斜角SKIPIF1<0,所以SKIPIF1<0對于任意的SKIPIF1<0恒成立,即SKIPIF1<0對任意SKIPIF1<0恒成立,即SKIPIF1<0,又SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時,等號成立,故SKIPIF1<0,所以a的取值范圍是SKIPIF1<
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 礦山資源勘查與評價方法考核試卷
- 硅冶煉與深海資源開發(fā)考核試卷
- 絕緣制品在海洋工程設(shè)備中的應(yīng)用考核試卷
- 電氣設(shè)備在智能電網(wǎng)實時監(jiān)控系統(tǒng)中的應(yīng)用考核試卷
- 水產(chǎn)品冷凍加工中的食品安全監(jiān)管考核試卷
- 社會看護(hù)服務(wù)中的非言語溝通技巧考核試卷
- 有線電視傳輸網(wǎng)絡(luò)文化產(chǎn)品與內(nèi)容創(chuàng)新考核試卷
- 稅務(wù)合規(guī)與風(fēng)險防范培訓(xùn)考核試卷
- 禮儀情境模擬對話課件
- 租賃設(shè)備的快速迭代與市場適應(yīng)性調(diào)整策略考核試卷
- 糖尿病臨床診療指南:基層實踐
- 抖音房產(chǎn)直播敏感詞匯表
- (高清版)JTGT 3383-01-2020 公路通信及電力管道設(shè)計規(guī)范
- 國際公法學(xué)馬工程全套教學(xué)課件
- 微專題地質(zhì)地貌的形成過程(解析)
- YY/T 0655-2024干式化學(xué)分析儀
- 中華民族共同體概論課件專家版2第二講 樹立正確的中華民族歷史觀
- 四年級四年級下冊閱讀理解100篇及答案經(jīng)典
- 中職對口升學(xué)復(fù)習(xí)資料:《汽車機(jī)械基礎(chǔ)》試題庫+答案
- 部編版語文五年級下冊第六單元整體教學(xué)設(shè)計教案
- 平面變壓器設(shè)計與仿真
評論
0/150
提交評論