版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
專題3-1三角函數(shù)圖像與性質(zhì)目錄TOC\o"1-1"\h\u題型01三角函數(shù)單調(diào)性 1題型02求周期 3題型03非同名函數(shù)平移 6題型04對稱軸最值應(yīng)用 8題型05對稱中心最值應(yīng)用 11題型06輔助角最值 14題型07正余弦換元型最值 17題型08一元二次型換元最值 20題型09分式型最值 21題型10最值型綜合 23題型11恒等變形:求角 25題型12恒等變形:拆角求值(分式型) 27題型13恒等變形:拆角求值(復(fù)合型) 29題型14恒等變形:拆角求值(正切型對偶) 31高考練場 33題型01三角函數(shù)單調(diào)性【解題攻略】A,ω,φ對函數(shù)y=Asin(ωx+φ)圖象的影響(1)函數(shù)y=Asin(ωx+φ)(A>0,ω>0)中參數(shù)A.φ、ω的作用參數(shù)作用AA決定了函數(shù)的值域以及函數(shù)的最大值和最小值,通常稱A為振幅.φφ決定了x=0時(shí)的函數(shù)值,通常稱φ為初相,ωx+φ為相位.ωω決定了函數(shù)的周期T=SKIPIF1<0.(2)圖象的變換(1)振幅變換要得到函數(shù)y=Asinx(A>0,A≠1)的圖象,只要將函數(shù)y=sinx的圖象上所有點(diǎn)的縱坐標(biāo)伸長(當(dāng)A>1時(shí))或縮短(當(dāng)0<A<1時(shí))到原來的A倍(橫坐標(biāo)不變)即可得到.(2)平移變換要得到函數(shù)y=sin(x+φ)的圖象,只要將函數(shù)y=sinx的圖象上所有點(diǎn)向左(當(dāng)φ>0時(shí))或向右(當(dāng)φ<0時(shí))平行移動|φ|個(gè)單位長度即可得到.(3)周期變換要得到函數(shù)y=sinωx(x∈R)(其中ω>0且ω≠1)的圖象,可以把函數(shù)y=sinx上所有點(diǎn)的橫坐標(biāo)縮短(當(dāng)ω>1時(shí))或伸長(當(dāng)0<ω<1時(shí))到原來的SKIPIF1<0_倍(縱坐標(biāo)不變)即可得到.【典例1-1】(2023·全國·模擬預(yù)測)已知函數(shù)SKIPIF1<0,則使得SKIPIF1<0和SKIPIF1<0都單調(diào)遞增的一個(gè)區(qū)間是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】利用復(fù)合函數(shù)的單調(diào)性,判斷各選項(xiàng)是否正確.【詳解】當(dāng)SKIPIF1<0從SKIPIF1<0增加到SKIPIF1<0時(shí),SKIPIF1<0從0遞減到SKIPIF1<0,SKIPIF1<0從SKIPIF1<0遞增到1,所以SKIPIF1<0從SKIPIF1<0遞減到SKIPIF1<0,SKIPIF1<0從SKIPIF1<0遞減到SKIPIF1<0,A錯誤;當(dāng)SKIPIF1<0從SKIPIF1<0增加到SKIPIF1<0時(shí),SKIPIF1<0從SKIPIF1<0遞減到SKIPIF1<0,SKIPIF1<0從1遞減到SKIPIF1<0,所以SKIPIF1<0從SKIPIF1<0遞增到SKIPIF1<0,SKIPIF1<0從SKIPIF1<0遞減到SKIPIF1<0,B錯誤;當(dāng)SKIPIF1<0從SKIPIF1<0增加到SKIPIF1<0時(shí),SKIPIF1<0從SKIPIF1<0遞減到SKIPIF1<0,SKIPIF1<0從SKIPIF1<0遞減到SKIPIF1<0,所以SKIPIF1<0從SKIPIF1<0遞增到SKIPIF1<0,SKIPIF1<0從SKIPIF1<0遞減到SKIPIF1<0,C錯誤;當(dāng)SKIPIF1<0從SKIPIF1<0增加到SKIPIF1<0時(shí),SKIPIF1<0從-1遞增到SKIPIF1<0,SKIPIF1<0從SKIPIF1<0遞減到0,所以SKIPIF1<0從SKIPIF1<0遞增到SKIPIF1<0,SKIPIF1<0從SKIPIF1<0遞增到SKIPIF1<0,D正確;故選:D【典例1-2】已知函數(shù)SKIPIF1<0,則f(x)(
)A.在(0,SKIPIF1<0)單調(diào)遞減 B.在(0,π)單調(diào)遞增C.在(—SKIPIF1<0,0)單調(diào)遞減 D.在(—SKIPIF1<0,0)單調(diào)遞增【答案】D【分析】先用誘導(dǎo)公式化簡得到SKIPIF1<0,再將選項(xiàng)代入檢驗(yàn),求出正確答案.【詳解】SKIPIF1<0,故當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0不單調(diào),AB錯誤;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,故D正確故選:D【變式1-1】(2022上·福建莆田·高三??迹┖瘮?shù)SKIPIF1<0的單調(diào)遞增區(qū)間為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】先換元,求定義域再結(jié)合復(fù)合函數(shù)的單調(diào)性,最后根據(jù)正弦函數(shù)的單調(diào)性求解即可.【詳解】設(shè)SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,SKIPIF1<0單調(diào)遞增,取SKIPIF1<0單調(diào)增的部分,所以可得:SKIPIF1<0,即SKIPIF1<0,解得:SKIPIF1<0答案:A.【變式1-2】(2023·全國·模擬預(yù)測)函數(shù)SKIPIF1<0在下列某個(gè)區(qū)間上單調(diào)遞增,這個(gè)區(qū)間是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】由二倍角公式結(jié)合輔助角公式化簡可得SKIPIF1<0的表達(dá)式,求出其單調(diào)增區(qū)間,結(jié)合選項(xiàng),即可判斷出答案.【詳解】∵SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0的單調(diào)遞增區(qū)間為SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,∴函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增.故選:A【變式1-3】(2023·黑龍江齊齊哈爾·統(tǒng)考二模)“SKIPIF1<0”是“函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增”的(
)A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件【答案】A【分析】根據(jù)正弦函數(shù)的單調(diào)性和參數(shù)范圍即可求解.【詳解】若函數(shù)SKIPIF1<0區(qū)間SKIPIF1<0上單調(diào)遞增,則令SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,結(jié)合SKIPIF1<0是區(qū)間,所以SKIPIF1<0,解得SKIPIF1<0.“SKIPIF1<0”是“SKIPIF1<0”的充分不必要條件,故選:A..題型02求周期【解題攻略】求周期方法直接法:形如y=Asin(ωx+φ)或者y=Acos(ωx+φ)函數(shù)的周期T=SKIPIF1<0.y=Atan(ωx+φ)的周期是T=SKIPIF1<0觀察法:形如
SKIPIF1<0
SKIPIF1<0
SKIPIF1<0等等諸如此類的帶絕對值型,可以通過簡圖判定是否有周期,以及最小正周期的值3.恒等變形轉(zhuǎn)化法。4.定義證明法【典例1-1】(2023下·湖南長沙·高三長沙一中??茧A段練習(xí))設(shè)函數(shù)SKIPIF1<0,則SKIPIF1<0的最小正周期(
)A.與SKIPIF1<0有關(guān),且與SKIPIF1<0有關(guān) B.與SKIPIF1<0有關(guān),但與SKIPIF1<0無關(guān)C.與SKIPIF1<0無關(guān),且與SKIPIF1<0無關(guān) D.與SKIPIF1<0無關(guān),但與SKIPIF1<0有關(guān)【答案】D【分析】根據(jù)三角函數(shù)的周期性,結(jié)合周期成倍數(shù)關(guān)系的兩個(gè)函數(shù)之和,其周期為這兩個(gè)函數(shù)的周期的最小公倍數(shù)這一結(jié)論,解答即可.【詳解】SKIPIF1<0,對于SKIPIF1<0,其最小正周期為SKIPIF1<0,對于SKIPIF1<0,其最小正周期為SKIPIF1<0,所以對于任意SKIPIF1<0,SKIPIF1<0的最小正周期都為SKIPIF1<0,對于SKIPIF1<0,其最小正周期為SKIPIF1<0,故當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,其最小正周期為SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,其最小正周期為SKIPIF1<0,所以SKIPIF1<0的最小正周期與SKIPIF1<0無關(guān),但與SKIPIF1<0有關(guān).故選:D.【典例1-2】(2023上·福建廈門·高三福建省廈門第二中學(xué)校考階段練習(xí))以下函數(shù)中最小正周期為SKIPIF1<0的個(gè)數(shù)是(
)SKIPIF1<0
SKIPIF1<0
SKIPIF1<0
SKIPIF1<0A.1 B.2 C.3 D.4【答案】A【分析】對于A,直接畫出函數(shù)圖象驗(yàn)證即可;對于BCD,舉出反例推翻即可.【詳解】畫出函數(shù)SKIPIF1<0的圖象如圖所示:
由圖可知函數(shù)SKIPIF1<0的最小正周期為SKIPIF1<0,滿足題意;對于SKIPIF1<0而言,SKIPIF1<0,即函數(shù)SKIPIF1<0的最小正周期不是SKIPIF1<0,不滿足題意;對于SKIPIF1<0而言,SKIPIF1<0,即函數(shù)SKIPIF1<0的最小正周期不是SKIPIF1<0,不滿足題意;對于SKIPIF1<0而言,SKIPIF1<0,即函數(shù)SKIPIF1<0的最小正周期不是SKIPIF1<0,不滿足題意;綜上所述,滿足題意的函數(shù)的個(gè)數(shù)有1個(gè).故選:A.【變式1-1】(2023·全國·高三專題練習(xí))下列函數(shù)中是奇函數(shù),且最小正周期是SKIPIF1<0的函數(shù)是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】確定SKIPIF1<0和SKIPIF1<0,SKIPIF1<0為偶函數(shù),排除,驗(yàn)證D選項(xiàng)滿足條件,得到答案.【詳解】對選項(xiàng)A:SKIPIF1<0,函數(shù)定義域?yàn)镾KIPIF1<0,SKIPIF1<0,函數(shù)為偶函數(shù),排除;對選項(xiàng)B:SKIPIF1<0,函數(shù)定義域?yàn)镾KIPIF1<0,SKIPIF1<0,函數(shù)為偶函數(shù),排除;對選項(xiàng)C:SKIPIF1<0,函數(shù)定義域?yàn)镾KIPIF1<0,SKIPIF1<0,函數(shù)為偶函數(shù),排除;對選項(xiàng)D:SKIPIF1<0,函數(shù)定義域?yàn)镾KIPIF1<0,SKIPIF1<0,函數(shù)為奇函數(shù),SKIPIF1<0,滿足條件;故選:D.【變式1-2】(2023·廣東·統(tǒng)考二模)已知函數(shù)SKIPIF1<0,SKIPIF1<0的定義域?yàn)镽,則“SKIPIF1<0,SKIPIF1<0為周期函數(shù)”是“SKIPIF1<0為周期函數(shù)”的(
)A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件【答案】D【分析】根據(jù)通過反例和周期的性質(zhì)判斷即可.【詳解】兩個(gè)周期函數(shù)之和是否為周期函數(shù),取決于兩個(gè)函數(shù)的周期的比是否為有理數(shù),若為有理數(shù),則有周期,若不為有理數(shù),則無周期.SKIPIF1<0的周期為SKIPIF1<0,SKIPIF1<0的周期為SKIPIF1<0,則當(dāng)SKIPIF1<0時(shí),只有周期的整數(shù)倍才是函數(shù)的周期,則不是充分條件;若SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0為周期函數(shù),但SKIPIF1<0,SKIPIF1<0為周期函數(shù)不正確,故不是必要條件;因此為不充分不必要條件.故選:D【變式1-3】(2023上·江蘇·高三專題練習(xí))在函數(shù)①SKIPIF1<0,②SKIPIF1<0,③SKIPIF1<0,④SKIPIF1<0中,最小正周期為π的函數(shù)有()A.①③ B.①④C.③④ D.②③【答案】D【分析】根據(jù)函數(shù)圖象的翻折變換和周期公式可得.【詳解】①由余弦函數(shù)的奇偶性可知,SKIPIF1<0,最小值周期為SKIPIF1<0;②由翻折變換可知,函數(shù)SKIPIF1<0的圖象如圖:由圖知SKIPIF1<0的最小值周期為SKIPIF1<0;③由周期公式得SKIPIF1<0,所以SKIPIF1<0的最小值周期為SKIPIF1<0;④SKIPIF1<0的最小值周期為SKIPIF1<0.故選:D題型03非同名函數(shù)平移【解題攻略】平移變換:1.基本法:提系數(shù)(就是直接換x,其余的都不動);2.正到余,余到正:方法一:誘導(dǎo)公式化為同名(盡量化正為余,因?yàn)橛嘞沂桥己瘮?shù),可以解決系數(shù)是負(fù)的);方法二:直接第極大值法(通過快速畫圖,正弦對應(yīng)第一極大值軸處。余弦即五點(diǎn)第一點(diǎn)處,本方法是重點(diǎn))【典例1-1】(2023秋·山東·高三山東省實(shí)驗(yàn)中學(xué)??计谀┮玫胶瘮?shù)SKIPIF1<0的圖象,只需將函數(shù)SKIPIF1<0的圖象(
)A.先向右平移SKIPIF1<0個(gè)單位長度,再向下平移1個(gè)單位長度B.先向左平移SKIPIF1<0個(gè)單位長度,再向上平移1個(gè)單位長度C.先向右平移SKIPIF1<0個(gè)單位長度,再向下平移1個(gè)單位長度D.先向左平移SKIPIF1<0個(gè)單位長度,再向上平移1個(gè)單位長度【答案】B【解析】根據(jù)SKIPIF1<0,SKIPIF1<0可判斷.【詳解】SKIPIF1<0,所以SKIPIF1<0先向左平移SKIPIF1<0個(gè)單位長度,再向上平移1個(gè)單位長度可得到SKIPIF1<0的圖象.故選:B.【典例1-2】(2021春·河南許昌·高三許昌實(shí)驗(yàn)中學(xué)??迹┮玫胶瘮?shù)SKIPIF1<0的圖象,只需將函數(shù)SKIPIF1<0的圖象(
)A.向左平移SKIPIF1<0個(gè)單位長度 B.向右平移SKIPIF1<0個(gè)單位長度C.向左平移1個(gè)單位長度 D.向右平移1個(gè)單位長度【答案】C【分析】把SKIPIF1<0化成SKIPIF1<0可得平移的發(fā)現(xiàn)及其長度.【詳解】因?yàn)镾KIPIF1<0,所以要得到函數(shù)SKIPIF1<0的圖象,只需把函數(shù)SKIPIF1<0的圖象上所有的點(diǎn)向左平移1個(gè)單位長度.故選:C.【變式1-1】(2020春·全國·高三校聯(lián)考階段練習(xí))要得到函數(shù)SKIPIF1<0的圖象,只需將函數(shù)SKIPIF1<0的圖象(
)A.向左平移SKIPIF1<0個(gè)單位 B.向右平移SKIPIF1<0個(gè)單位C.向左平移SKIPIF1<0個(gè)單位 D.向右平栘SKIPIF1<0個(gè)單位【答案】C【解析】由題意利用函數(shù)SKIPIF1<0的圖象變換規(guī)律,得出結(jié)論.【詳解】解:要得到函數(shù)SKIPIF1<0的圖象,只需將函數(shù)SKIPIF1<0的圖象向左平移SKIPIF1<0個(gè)單位即可,故選:C.【變式1-2】(2022·全國·高三專題練習(xí))為得到函數(shù)SKIPIF1<0的圖象,只需將函數(shù)SKIPIF1<0圖象上所有的點(diǎn)(
)A.向左平移SKIPIF1<0個(gè)單位長度 B.向右平移SKIPIF1<0個(gè)單位長度C.向左平移SKIPIF1<0個(gè)單位長度 D.向右平移SKIPIF1<0個(gè)單位長度【答案】D【分析】先得到SKIPIF1<0,再利用平移變換求解.【詳解】解:因?yàn)镾KIPIF1<0,將其圖象上所有的點(diǎn)向右平移SKIPIF1<0個(gè)單位長度,得到函數(shù)SKIPIF1<0的圖象.A,B,C都不滿足.故選:D【變式1-3】(2022·河南鶴壁·鶴壁高中??寄M預(yù)測)已知函數(shù)SKIPIF1<0,為了得到函數(shù)SKIPIF1<0的圖象只需將y=f(x)的圖象(
)A.向右平移SKIPIF1<0個(gè)單位 B.向右平移SKIPIF1<0個(gè)單位C.向左平移SKIPIF1<0個(gè)單位 D.向左平移SKIPIF1<0個(gè)單位【答案】C【分析】根據(jù)誘導(dǎo)公式SKIPIF1<0,SKIPIF1<0即可得到平移方法.【詳解】函數(shù)SKIPIF1<0,SKIPIF1<0,所以為了得到函數(shù)SKIPIF1<0的圖象只需將y=f(x)的圖象向左平移SKIPIF1<0個(gè)單位.故選:C題型04對稱軸最值應(yīng)用【解題攻略】正余弦對稱軸:最值處,令sin(ωx+φ)=1,則ωx+φ=kπ+eq\f(π,2)(k∈Z),可求得對稱軸方程;對稱軸代入,三角函數(shù)部分必為正負(fù)1,還可以理解為輔助角那個(gè)整體取得最大值或者最小值SKIPIF1<0【典例1-1】已知函數(shù)SKIPIF1<0的最大值為SKIPIF1<0,若存在實(shí)數(shù)SKIPIF1<0,使得對任意實(shí)數(shù)SKIPIF1<0,總有SKIPIF1<0成立,則SKIPIF1<0的最小值為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0湖北省荊州市沙市中學(xué)2021-2022學(xué)年高三上學(xué)期數(shù)學(xué)試題【答案】B【分析】結(jié)合三角恒等變換求得SKIPIF1<0的最大值和最小值,并求得SKIPIF1<0的最小值.【詳解】SKIPIF1<0SKIPIF1<0,當(dāng)SKIPIF1<0時(shí)SKIPIF1<0取得最大值為SKIPIF1<0.當(dāng)SKIPIF1<0時(shí)SKIPIF1<0取得最小值為SKIPIF1<0.依題意,存在實(shí)數(shù)SKIPIF1<0,使得對任意實(shí)數(shù)SKIPIF1<0,總有SKIPIF1<0成立,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0是整數(shù),SKIPIF1<0為奇數(shù),所以SKIPIF1<0的最小值為SKIPIF1<0.故選:B【典例1-2】(2022屆湘贛十四校高三聯(lián)考第二次考試?yán)頂?shù)試題=)已知函數(shù)SKIPIF1<0的圖象向右平移SKIPIF1<0個(gè)單位長度得到SKIPIF1<0的圖象,若SKIPIF1<0為SKIPIF1<0的一條對稱軸,則SKIPIF1<0__________.【答案】SKIPIF1<0【分析】直接利用三角函數(shù)關(guān)系式的恒等變換和平移變換得SKIPIF1<0,SKIPIF1<0,再利用三角函數(shù)對稱性列方程求解即可.【詳解】設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0是SKIPIF1<0的一條對稱軸,∴SKIPIF1<0SKIPIF1<0,即SKIPIF1<0.故答案為SKIPIF1<0【變式1-1】已知把函數(shù)SKIPIF1<0的圖象向右平移SKIPIF1<0個(gè)單位長度,再把橫坐標(biāo)縮小到原來一半,縱坐標(biāo)不變,得到函數(shù)SKIPIF1<0的圖象,若SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的最大值為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】先化簡函數(shù)SKIPIF1<0,然后根據(jù)圖像的變換得函數(shù)SKIPIF1<0的解析式,通過判斷得SKIPIF1<0,SKIPIF1<0同時(shí)令SKIPIF1<0取得最大值或最小值時(shí),SKIPIF1<0,再結(jié)合函數(shù)SKIPIF1<0的圖像,即可求得SKIPIF1<0的最大值.【詳解】SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0.將圖象向右平移至SKIPIF1<0個(gè)單位長度,再把橫坐標(biāo)縮小到原來一半,縱坐標(biāo)不變,得到函數(shù)SKIPIF1<0,可得SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0同時(shí)令SKIPIF1<0取得最大值或最小值時(shí),SKIPIF1<0.當(dāng)SKIPIF1<0,SKIPIF1<0時(shí),SKIPIF1<0SKIPIF1<0,根據(jù)函數(shù)的圖象可知SKIPIF1<0的最大值為SKIPIF1<0個(gè)周期的長度,即SKIPIF1<0故選:C.【變式1-2】(河南省三門峽市2021-2022學(xué)年高三上學(xué)期階段性檢測理科數(shù)學(xué)試題).將函數(shù)SKIPIF1<0的圖象上的所有點(diǎn)的橫坐標(biāo)縮短為原來的SKIPIF1<0,縱坐標(biāo)不變,再把所得的圖象向左平移SKIPIF1<0個(gè)單位長度,然后再把所得的圖象向下平移1個(gè)單位長度,得到函數(shù)SKIPIF1<0的圖象,若SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的最大值為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】根據(jù)三角函數(shù)平移變換,先求得SKIPIF1<0的解析式.根據(jù)SKIPIF1<0,可知SKIPIF1<0,即SKIPIF1<0.根據(jù)SKIPIF1<0可分別求得SKIPIF1<0的最大值和SKIPIF1<0的最小值,即可求得SKIPIF1<0的最大值.【詳解】根據(jù)平移變換將函數(shù)SKIPIF1<0的圖象上的所有點(diǎn)的橫坐標(biāo)縮短為原來的SKIPIF1<0,縱坐標(biāo)不變,再把所得的圖象向左平移SKIPIF1<0個(gè)單位長度,然后再把所得的圖象向下平移1個(gè)單位長度,可得SKIPIF1<0由SKIPIF1<0,可知SKIPIF1<0即SKIPIF1<0SKIPIF1<0所以SKIPIF1<0SKIPIF1<0的最大值為SKIPIF1<0,SKIPIF1<0的最小值為SKIPIF1<0則SKIPIF1<0的最大值為SKIPIF1<0,SKIPIF1<0的最小值為SKIPIF1<0所以SKIPIF1<0的最大值為SKIPIF1<0故選:A【變式1-3】(2021屆安徽省馬鞍山二中高三下學(xué)期4月高考模擬數(shù)學(xué)試題)將函數(shù)SKIPIF1<0的圖象向左平移SKIPIF1<0(SKIPIF1<0)個(gè)單位長度后得到函數(shù)SKIPIF1<0的圖象,若使SKIPIF1<0成立的a、b有SKIPIF1<0,則下列直線中可以是函數(shù)SKIPIF1<0圖象的對稱軸的是A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】根據(jù)三角函數(shù)平移關(guān)系求出SKIPIF1<0的解析式,結(jié)合SKIPIF1<0成立的SKIPIF1<0有SKIPIF1<0,求出SKIPIF1<0的關(guān)系,結(jié)合最小值建立方程求出SKIPIF1<0的值即可.解:將函數(shù)SKIPIF1<0的圖象向左平移SKIPIF1<0(SKIPIF1<0)個(gè)單位長度后得到函數(shù)SKIPIF1<0的圖象,
即SKIPIF1<0,若SKIPIF1<0成立,即SKIPIF1<0,即SKIPIF1<0,
則SKIPIF1<0與SKIPIF1<0一個(gè)取最大值1,一個(gè)取最小值?1,不妨設(shè)SKIPIF1<0,
則SKIPIF1<0,得SKIPIF1<0,則SKIPIF1<0,
∵SKIPIF1<0,∴當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,
SKIPIF1<0,則SKIPIF1<0或SKIPIF1<0,即SKIPIF1<0或SKIPIF1<0(舍),
即SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,
當(dāng)SKIPIF1<0時(shí),對稱軸方程為SKIPIF1<0.故選:D.題型05對稱中心最值應(yīng)用【解題攻略】正余弦對稱中心:零點(diǎn)處,令sin(ωx+φ)=0,ωx+φ=kπ(k∈Z),可求得對稱中心的橫坐標(biāo)對稱中心橫坐標(biāo)代入,三角函數(shù)那部分必為0【典例1-1】(2022·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0的兩條相鄰對稱軸之間的距離為SKIPIF1<0,則下列點(diǎn)的坐標(biāo)為SKIPIF1<0的對稱中心的是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】根據(jù)相鄰對稱軸之間距離可得最小正周期為SKIPIF1<0,由此可求得SKIPIF1<0,得到SKIPIF1<0解析式;利用正弦型函數(shù)對稱中心的求法可求得對稱中心,對比選項(xiàng)可得結(jié)果.【詳解】SKIPIF1<0兩條相鄰對稱軸之間的距離為SKIPIF1<0,SKIPIF1<0最小正周期SKIPIF1<0,解得:SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,解得:SKIPIF1<0,此時(shí)SKIPIF1<0,SKIPIF1<0的對稱中心為SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的一個(gè)對稱中心為SKIPIF1<0.故選:C.【典例1-2】(2022·天津南開·二模)函數(shù)SKIPIF1<0SKIPIF1<0,其圖象的一個(gè)最低點(diǎn)是SKIPIF1<0,距離SKIPIF1<0點(diǎn)最近的對稱中心為SKIPIF1<0,則(
)A.SKIPIF1<0B.SKIPIF1<0是函數(shù)SKIPIF1<0圖象的一條對稱軸C.SKIPIF1<0時(shí),函數(shù)SKIPIF1<0單調(diào)遞增D.SKIPIF1<0的圖象向右平移SKIPIF1<0個(gè)單位后得到SKIPIF1<0的圖象,若SKIPIF1<0是奇函數(shù),則SKIPIF1<0的最小值是SKIPIF1<0【答案】C【分析】由函數(shù)的圖像的頂點(diǎn)坐標(biāo)求出SKIPIF1<0,由周期求出SKIPIF1<0,由最低點(diǎn)求出SKIPIF1<0的值,可得函數(shù)的解析式,再利用三角函數(shù)的圖像和性質(zhì),得出結(jié)論.【詳解】解:SKIPIF1<0函數(shù)SKIPIF1<0,SKIPIF1<0的圖象的一個(gè)最低點(diǎn)是SKIPIF1<0,距離SKIPIF1<0點(diǎn)最近的對稱中心為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,因?yàn)镾KIPIF1<0,令SKIPIF1<0,可得SKIPIF1<0,所以函數(shù)SKIPIF1<0,故A錯誤;SKIPIF1<0,故函數(shù)關(guān)于SKIPIF1<0對稱,故B錯誤;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,函數(shù)SKIPIF1<0單調(diào)遞增,故C正確;把SKIPIF1<0的圖象向右平移SKIPIF1<0個(gè)單位后得到SKIPIF1<0的圖象,若SKIPIF1<0是奇函數(shù),則SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,可得SKIPIF1<0的最小值是SKIPIF1<0,故D錯誤,故選:C【變式1-1】.(2022·四川涼山·三模(理))將函數(shù)SKIPIF1<0的圖象向左平移SKIPIF1<0個(gè)單位,再將縱坐標(biāo)伸長為原來的4倍(橫坐標(biāo)不變)得到函數(shù)SKIPIF1<0的圖象,且SKIPIF1<0的圖象上一條對稱軸與一個(gè)對稱中心的最小距離為SKIPIF1<0,對于函數(shù)SKIPIF1<0有以下幾個(gè)結(jié)論:(1)SKIPIF1<0;(2)它的圖象關(guān)于直線SKIPIF1<0對稱;(3)它的圖象關(guān)于點(diǎn)SKIPIF1<0對稱;(4)若SKIPIF1<0,則SKIPIF1<0;則上述結(jié)論正確的個(gè)數(shù)為(
)A.1 B.2 C.3 D.4【答案】C【分析】先根據(jù)圖像平移的性質(zhì)求出SKIPIF1<0的函數(shù)解析式,逐項(xiàng)代入分析即可.【詳解】解:由題意得:SKIPIF1<0,向左平移SKIPIF1<0個(gè)單位,再將縱坐標(biāo)伸長為原來的4倍(橫坐標(biāo)不變)得到函數(shù)SKIPIF1<0.對于選項(xiàng)A:由SKIPIF1<0的圖象上一條對稱軸與一個(gè)對稱中心的最小距離為SKIPIF1<0,最小正周期SKIPIF1<0,即SKIPIF1<0SKIPIF1<0,解得SKIPIF1<0,故SKIPIF1<0,所以(1)錯誤;當(dāng)SKIPIF1<0時(shí),代入SKIPIF1<0可知SKIPIF1<0,故圖像的一條對稱軸是SKIPIF1<0,故(2)正確;當(dāng)SKIPIF1<0時(shí),代入SKIPIF1<0可知SKIPIF1<0,故圖像的一個(gè)對稱點(diǎn)是SKIPIF1<0,故(3)正確;若SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0因此SKIPIF1<0在SKIPIF1<0上的取值范圍是SKIPIF1<0,故(4)正確;由上可知(2)(3)(4)正確,正確的個(gè)數(shù)為SKIPIF1<0個(gè).故選:C【變式1-2】(2023·全國·高三專題練習(xí))將函數(shù)SKIPIF1<0的圖象分別向左、向右各平移SKIPIF1<0個(gè)單位長度后,所得的兩個(gè)圖象對稱中心重合,則SKIPIF1<0的最小值為(
)A.SKIPIF1<0 B.2 C.3 D.6【答案】A【分析】根據(jù)三角函數(shù)的圖象變換求得SKIPIF1<0和SKIPIF1<0,根據(jù)函數(shù)SKIPIF1<0與SKIPIF1<0的對稱中心重合,得到SKIPIF1<0,即可求解.【詳解】解:將函數(shù)SKIPIF1<0的圖象分別向左平移SKIPIF1<0個(gè)單位長度后,可得SKIPIF1<0將函數(shù)SKIPIF1<0的圖象分別向右各平移SKIPIF1<0個(gè)單位長度后,可得SKIPIF1<0,因?yàn)楹瘮?shù)SKIPIF1<0與SKIPIF1<0的對稱中心重合,所以SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0的最小值為SKIPIF1<0.故選:A.【變式1-3】(2021·安徽·六安一中高三階段練習(xí)(理))已知SKIPIF1<0的一個(gè)對稱中心為SKIPIF1<0,把SKIPIF1<0的圖像向右平移SKIPIF1<0個(gè)單位后,可以得到偶函數(shù)SKIPIF1<0的圖象,則SKIPIF1<0的最小值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】利用輔助角公式將函數(shù)化簡,即可求出函數(shù)的對稱中心坐標(biāo),再根據(jù)三角函數(shù)的平移變換規(guī)則得到SKIPIF1<0的解析式,結(jié)合函數(shù)的奇偶性,求出SKIPIF1<0的取值,從而計(jì)算可得;【詳解】解:因?yàn)镾KIPIF1<0,令SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,即函數(shù)的對稱中心坐標(biāo)為SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,把SKIPIF1<0的圖像向右平移SKIPIF1<0個(gè)單位得到SKIPIF1<0,因?yàn)镾KIPIF1<0為偶函數(shù),所以SKIPIF1<0,解得SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0且SKIPIF1<0,所以當(dāng)SKIPIF1<0時(shí)SKIPIF1<0;故選:D題型06輔助角最值【解題攻略】SKIPIF1<0輔助角范圍滿足:SKIPIF1<0【典例1-1】(江西省上饒市(天佑中學(xué)、余干中學(xué)等)六校2021屆高三下學(xué)期第一次聯(lián)考數(shù)學(xué)試題已知函數(shù)SKIPIF1<0,SKIPIF1<0的最小值為SKIPIF1<0,則實(shí)數(shù)SKIPIF1<0的取值范圍是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】由SKIPIF1<0可得出不等式SKIPIF1<0對任意的SKIPIF1<0恒成立,化簡得出SKIPIF1<0,分SKIPIF1<0、SKIPIF1<0兩種情況討論,結(jié)合SKIPIF1<0可求得實(shí)數(shù)SKIPIF1<0的取值范圍.【詳解】SKIPIF1<0且SKIPIF1<0,由題意可知,對任意的SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,可得SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0成立;當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增,則SKIPIF1<0,此時(shí)SKIPIF1<0.綜上所述,實(shí)數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0.故選:C.【典例1-2】已知函數(shù)SKIPIF1<0在SKIPIF1<0上的值域?yàn)镾KIPIF1<0,則SKIPIF1<0的取值范圍為______.【答案】SKIPIF1<0【分析】化簡得SKIPIF1<0,其中SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,再結(jié)合三角函數(shù)的性質(zhì)可求解.【詳解】由題意得SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,其中SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0.因?yàn)镾KIPIF1<0,SKIPIF1<0,故SKIPIF1<0,因?yàn)镾KIPIF1<0,且SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0,則SKIPIF1<0.又當(dāng)SKIPIF1<0時(shí),SKIPIF1<0單調(diào)遞減,且SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0.【變式1-1】.已知函數(shù)SKIPIF1<0,周期SKIPIF1<0,SKIPIF1<0,且在SKIPIF1<0處取得最大值,則使得不等式SKIPIF1<0恒成立的實(shí)數(shù)SKIPIF1<0的最小值為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】先根據(jù)三角恒等變換和三角形函數(shù)的性質(zhì),以及同角的三角函數(shù)的關(guān)系可得SKIPIF1<0,①,再根據(jù)SKIPIF1<0,可得SKIPIF1<0,②,通過①②求出SKIPIF1<0的值,再根據(jù)三角函數(shù)的性質(zhì)可得SKIPIF1<0,SKIPIF1<0,求出SKIPIF1<0,根據(jù)不等式SKIPIF1<0恒成立,則SKIPIF1<0,即可求出答案.【詳解】SKIPIF1<0,其中SKIPIF1<0,SKIPIF1<0SKIPIF1<0處取得最大值,SKIPIF1<0SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,①,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,②,①SKIPIF1<0②得SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0(舍去),由①得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0在第一象限,SKIPIF1<0取SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,使SKIPIF1<0最小,則SKIPIF1<0,即SKIPIF1<0,若不等式SKIPIF1<0恒成立,則SKIPIF1<0,故選:B【變式1-2】(浙江省紹興市諸暨市海亮高級中學(xué)2021-2022學(xué)年高三上學(xué)期12月選考數(shù)學(xué)試題)已知當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0取到最大值,則SKIPIF1<0是()A.奇函數(shù),在SKIPIF1<0時(shí)取到最小值; B.偶函數(shù),在SKIPIF1<0時(shí)取到最小值;C.奇函數(shù),在SKIPIF1<0時(shí)取到最小值; D.偶函數(shù),在SKIPIF1<0時(shí)取到最小值;【答案】B【分析】由輔助角公式可得SKIPIF1<0,根據(jù)SKIPIF1<0時(shí)SKIPIF1<0有最大值可得SKIPIF1<0,求出SKIPIF1<0,再根據(jù)奇偶性并計(jì)算SKIPIF1<0、SKIPIF1<0可得答案.【詳解】SKIPIF1<0SKIPIF1<0,取SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0有最大值SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,可得SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,SKIPIF1<0為偶函數(shù),SKIPIF1<0,SKIPIF1<0,故B正確,故選:B.【變式1-3】(江蘇省淮安市淮陰中學(xué)2020屆高三下學(xué)期5月高考模擬數(shù)學(xué)試題)若存在正整數(shù)m使得關(guān)于x的方程SKIPIF1<0在SKIPIF1<0上有兩個(gè)不等實(shí)根,則正整數(shù)n的最小值是______.【答案】4【分析】化簡SKIPIF1<0,因?yàn)镾KIPIF1<0,則SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上有兩個(gè)不等實(shí)根,轉(zhuǎn)化為SKIPIF1<0在SKIPIF1<0上有兩個(gè)不等實(shí)根,故SKIPIF1<0,即可得出答案.【詳解】SKIPIF1<0,其中SKIPIF1<0,SKIPIF1<0,因?yàn)镾KIPIF1<0,則SKIPIF1<0,+SKIPIF1<0在SKIPIF1<0上有兩個(gè)不等實(shí)根,SKIPIF1<0在SKIPIF1<0上有兩個(gè)不等實(shí)根,則SKIPIF1<0,所以SKIPIF1<0①對任意SKIPIF1<0,SKIPIF1<0,恒成立.由②得SKIPIF1<0,存在SKIPIF1<0,成立,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0.故答案為:4題型07正余弦換元型最值【解題攻略】SKIPIF1<0與SKIPIF1<0在同一函數(shù)中一般可設(shè)SKIPIF1<0進(jìn)行換元.換元時(shí)注意新元的取值范圍.SKIPIF1<0之間的互化關(guān)系1.SKIPIF1<02.SKIPIF1<0【典例1-1】(2021下·上海徐匯·高三南洋中學(xué)??茧A段練習(xí))已知函數(shù)SKIPIF1<0,則SKIPIF1<0的值域?yàn)椋敬鸢浮縎KIPIF1<0【分析】利用換元法,令SKIPIF1<0,進(jìn)而可得SKIPIF1<0,再利用函數(shù)的單調(diào)性即可求解.【詳解】由SKIPIF1<0令SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,又對勾函數(shù)SKIPIF1<0的單調(diào)遞減區(qū)間為SKIPIF1<0,SKIPIF1<0;單調(diào)遞增區(qū)間為SKIPIF1<0,SKIPIF1<0,結(jié)合對勾函數(shù)的圖象,如下:所以SKIPIF1<0,所以SKIPIF1<0,所以函數(shù)的值域?yàn)镾KIPIF1<0.故答案為:SKIPIF1<0.【典例1-2】(2022·高三單元測試)函數(shù)SKIPIF1<0的值域?yàn)椋敬鸢浮縎KIPIF1<0【分析】利用SKIPIF1<0通過換元將原函數(shù)轉(zhuǎn)化為含未知量SKIPIF1<0的函數(shù)SKIPIF1<0,再解出函數(shù)SKIPIF1<0的值域即為函數(shù)SKIPIF1<0的值域.【詳解】令SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,又因?yàn)镾KIPIF1<0,所以SKIPIF1<0,即函數(shù)SKIPIF1<0的值域?yàn)镾KIPIF1<0.故答案為:SKIPIF1<0.【變式1-1】已知函數(shù)SKIPIF1<0,則SKIPIF1<0的最大值為___________.【答案】SKIPIF1<
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 市區(qū)兩層樓房出租合同范例
- 紙箱出售訂單合同范例
- 海運(yùn)委托合同范例
- 美分銷合同范例
- 紙盒合同范例范例制作
- 工程門購買合同范例
- 印刷鋁板銷售合同范例
- 蘭州山區(qū)路燈合同范例
- 銅陵職業(yè)技術(shù)學(xué)院《傳統(tǒng)中國畫研習(xí)》2023-2024學(xué)年第一學(xué)期期末試卷
- 完整版100以內(nèi)加減法混合運(yùn)算4000道136
- 2024年世界職業(yè)院校技能大賽中職組“水利工程制圖與應(yīng)用組”賽項(xiàng)考試題庫(含答案)
- 常見的氨基酸的分類特點(diǎn)及理化性質(zhì)
- 【碳足跡報(bào)告】新鄉(xiāng)市錦源化工對位脂產(chǎn)品碳足跡報(bào)告
- 《工業(yè)機(jī)器人系統(tǒng)集成》課標(biāo)
- 2024年高爾夫球車項(xiàng)目可行性研究報(bào)告
- 過敏反應(yīng)的分類和護(hù)理
- 民事陪審員培訓(xùn)課件
- 湖南財(cái)政經(jīng)濟(jì)學(xué)院《世界市場行情》2023-2024學(xué)年第一學(xué)期期末試卷
- 【課件】講文明懂禮儀守規(guī)矩 課件-2024-2025學(xué)年文明禮儀教育主題班會
- 計(jì)算流體力學(xué)CFD
- 汽車保險(xiǎn)與理賠課件 7.4新能源汽車保險(xiǎn)理賠典型事故案例
評論
0/150
提交評論