新高考數(shù)學(xué)三輪沖刺天津卷押題練習(xí)第19題(教師版)_第1頁(yè)
新高考數(shù)學(xué)三輪沖刺天津卷押題練習(xí)第19題(教師版)_第2頁(yè)
新高考數(shù)學(xué)三輪沖刺天津卷押題練習(xí)第19題(教師版)_第3頁(yè)
新高考數(shù)學(xué)三輪沖刺天津卷押題練習(xí)第19題(教師版)_第4頁(yè)
新高考數(shù)學(xué)三輪沖刺天津卷押題練習(xí)第19題(教師版)_第5頁(yè)
已閱讀5頁(yè),還剩33頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

數(shù)列綜合考點(diǎn)2年考題考情分析數(shù)列大題2023年天津卷第19題2022年天津卷第18題數(shù)列大題一般而言第一問(wèn)涉及到等比等差的基礎(chǔ)量的運(yùn)算,這部分難度不大,屬于送分題,第二問(wèn)一般以證明題的形式來(lái)考察,難度較大。23年涉及到數(shù)列極限的思想說(shuō)明對(duì)于難題的考察,高考在貼近大學(xué)的知識(shí),這對(duì)考生要求較高。數(shù)列可考察的知識(shí)點(diǎn)較多,可以結(jié)合的知識(shí)也較多,類似數(shù)列與不等式,裂項(xiàng)相消錯(cuò)位相減奇偶并項(xiàng)求和,數(shù)列的放縮等等。預(yù)測(cè)24年高考依舊會(huì)把數(shù)列作為一道壓軸大題來(lái)考察。題型一數(shù)列大題19.(15分)(2023?天津)已知SKIPIF1<0是等差數(shù)列,SKIPIF1<0,SKIPIF1<0.(Ⅰ)求SKIPIF1<0的通項(xiàng)公式和SKIPIF1<0;(Ⅱ)已知SKIPIF1<0為等比數(shù)列,對(duì)于任意SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0.SKIPIF1<0當(dāng)SKIPIF1<0時(shí),求證:SKIPIF1<0;SKIPIF1<0求SKIPIF1<0的通項(xiàng)公式及其前SKIPIF1<0項(xiàng)和.【答案】(Ⅰ)SKIPIF1<0,SKIPIF1<0.(Ⅱ)SKIPIF1<0證明見(jiàn)解析;SKIPIF1<0,SKIPIF1<0.【分析】(Ⅰ)建立方程組求出首項(xiàng)和公差即可求解.(Ⅱ)根據(jù)數(shù)列遞推關(guān)系,利用極限思想分別求出公比和首項(xiàng),即可得到結(jié)論.【解答】解:(Ⅰ)SKIPIF1<0是等差數(shù)列,SKIPIF1<0,SKIPIF1<0.SKIPIF1<0SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的通項(xiàng)公式SKIPIF1<0,SKIPIF1<0中的首項(xiàng)為SKIPIF1<0,項(xiàng)數(shù)為SKIPIF1<0,則SKIPIF1<0.(Ⅱ)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.SKIPIF1<0,且SKIPIF1<0,即SKIPIF1<0,綜上SKIPIF1<0,故成立;SKIPIF1<0成立,SKIPIF1<0為等比數(shù)列,SKIPIF1<0設(shè)公比為SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,當(dāng)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,當(dāng)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0的通項(xiàng)公式為SKIPIF1<0,則SKIPIF1<0的其前SKIPIF1<0項(xiàng)和SKIPIF1<0.18.(15分)(2022?天津)設(shè)SKIPIF1<0是等差數(shù)列,SKIPIF1<0是等比數(shù)列,且SKIPIF1<0.(1)求SKIPIF1<0與SKIPIF1<0的通項(xiàng)公式;(2)設(shè)SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,求證:SKIPIF1<0;(3)求[ak+1﹣(﹣1)kak]bk.【答案】(1)an=2n﹣1,bn=2n﹣1.(2)見(jiàn)證明過(guò)程.(3).【分析】(1)設(shè)等差數(shù)列{an}的公差為d,等比數(shù)列{bn}的公比為q,由a1=b1=a2﹣b2=a3﹣b3=1,可得1+d﹣q=1,1+2d﹣q2=1,解得d,q,即可得出an.(2)由等比數(shù)列的性質(zhì)及通項(xiàng)公式與前n項(xiàng)和的關(guān)系結(jié)合分析法能證明(Sn+1+an+1)bn=Sn+1bn+1﹣Snbn;(3)先求出[]b2k﹣1+[a2k+1﹣(﹣1)2k2k]b2k=2k?4k,利用并項(xiàng)求和,結(jié)合錯(cuò)位相減法能求出結(jié)果.【解答】解:(1)設(shè)等差數(shù)列{an}的公差為d,等比數(shù)列{bn}的公比為q,∵a1=b1=a2﹣b2=a3﹣b3=1,∴1+d﹣q=1,1+2d﹣q2=1,解得d=q=2,∴an=1+2(n﹣1)=2n﹣1,bn=2n﹣1.(2)證明:∵bn+1=2bn≠0,∴要證明(Sn+1+an+1)bn=Sn+1bn+1﹣Snbn,即證明(Sn+1+an+1)bn=2Sn+1?bn﹣Snbn,即證明Sn+1+an+1=2Sn+1﹣Sn,即證明an+1=Sn+1﹣Sn,由數(shù)列的通項(xiàng)公式和前n項(xiàng)和的關(guān)系得:an+1=Sn+1﹣Sn,∴(Sn+1+an+1)bn=Sn+1bn+1﹣Snbn.(3)∵[]b2k﹣1+[a2k+1﹣(﹣1)2k2k]b2k=(4k﹣1+4k﹣3)×22k﹣2+[4k+1﹣(4k﹣1)]×22k﹣1=2k?4k,∴[ak+1﹣(﹣1)kak]bk={[a2k﹣(﹣1)2k﹣1a2k﹣1]b2k﹣1+[a2k]b2k}=2k?4k,設(shè)Tn=.則+…+2n×4n,①∴4Tn=2×42+4×43+6×44+…+2n×4n+1,②①﹣②,得:﹣3Tn=2(4+42+43+44+…+4n)﹣2n?4n+1==,∴Tn=,∴[ak+1﹣(﹣1)kak]bk=.一、公式法(1)等差數(shù)列SKIPIF1<0的前n項(xiàng)和SKIPIF1<0(2)等比數(shù)列SKIPIF1<0的前n項(xiàng)和SKIPIF1<0(3)一些常見(jiàn)的數(shù)列的前n項(xiàng)和:①SKIPIF1<0;SKIPIF1<0②SKIPIF1<0;③SKIPIF1<0;=4\*GB3④SKIPIF1<0二、幾種數(shù)列求和的常用方法(1)分組求和法:一個(gè)數(shù)列的通項(xiàng)公式是由若干個(gè)等差或等比或可求和的數(shù)列組成的,則求和時(shí)可用分組求和法,分別求和后相加減.(2)并項(xiàng)求和法:一個(gè)數(shù)列的前n項(xiàng)和中,可兩兩結(jié)合求解,則稱之為并項(xiàng)求和.(3)裂項(xiàng)相消法:把數(shù)列的通項(xiàng)拆成兩項(xiàng)之差,在求和時(shí)中間的一些項(xiàng)可以相互抵消,從而求得前n項(xiàng)和.(4)錯(cuò)位相減法:如果一個(gè)數(shù)列的各項(xiàng)是由一個(gè)等差數(shù)列和一個(gè)等比數(shù)列的對(duì)應(yīng)項(xiàng)之積構(gòu)成的,那么求這個(gè)數(shù)列的前SKIPIF1<0項(xiàng)和即可用錯(cuò)位相減法求解.(5)倒序相加法:如果一個(gè)數(shù)列SKIPIF1<0與首末兩端等“距離”的兩項(xiàng)的和相等或等于同一個(gè)常數(shù),那么求這個(gè)數(shù)列的前SKIPIF1<0項(xiàng)和即可用倒序相加法求解.【常用結(jié)論】裂項(xiàng)技巧①等差型(1)SKIPIF1<0(2)SKIPIF1<0(3)SKIPIF1<0(4)SKIPIF1<0(5)SKIPIF1<0(6)SKIPIF1<0②根式型(1)SKIPIF1<0(2)SKIPIF1<0(3)SKIPIF1<0③指數(shù)型(1)SKIPIF1<0(2)SKIPIF1<0(3)SKIPIF1<0④三角型(1)SKIPIF1<0(2)SKIPIF1<0(3)SKIPIF1<0⑤階乘(1)SKIPIF1<0=6\*GB3⑥常見(jiàn)放縮公式:(1)SKIPIF1<0;(2)SKIPIF1<0;(3)SKIPIF1<0;(4)SKIPIF1<0;(5)SKIPIF1<0;(6)SKIPIF1<0;(7)SKIPIF1<0;(8)SKIPIF1<0;(9)SKIPIF1<0SKIPIF1<0;(10)SKIPIF1<0SKIPIF1<0SKIPIF1<0;(11)SKIPIF1<0SKIPIF1<0;(12)SKIPIF1<0;(13)SKIPIF1<0.(14)SKIPIF1<0.1.已知SKIPIF1<0是等差數(shù)列,其公差SKIPIF1<0大于1,其前SKIPIF1<0項(xiàng)和為SKIPIF1<0,SKIPIF1<0是等比數(shù)列,公比為SKIPIF1<0,已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(1)求SKIPIF1<0和SKIPIF1<0的通項(xiàng)公式;(2)若正整數(shù)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0,求證:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0不能成等差數(shù)列;(3)記SKIPIF1<0,求SKIPIF1<0的前SKIPIF1<0項(xiàng)和SKIPIF1<0.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0不能成等差數(shù)列;(3)SKIPIF1<0.【分析】(1)利用等比數(shù)列的通項(xiàng)公式,等差數(shù)列的通項(xiàng)公式與求和公式,即可求解;(2)利用等差數(shù)列的定義即可;(3)利用并項(xiàng)法求和即可.【解答】解:(1)SKIPIF1<0是等差數(shù)列,其公差SKIPIF1<0大于1,其前SKIPIF1<0項(xiàng)和為SKIPIF1<0,SKIPIF1<0是等比數(shù)列,公比為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,由SKIPIF1<0得,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0.(2)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0成等差數(shù)列SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為偶數(shù),SKIPIF1<0為偶數(shù),而1是奇數(shù),SKIPIF1<0等式不成立,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0不能成等差數(shù)列.(3)SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0的前SKIPIF1<0項(xiàng)和SKIPIF1<0,SKIPIF1<0.2.在正項(xiàng)等比數(shù)列SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0.(Ⅰ)求SKIPIF1<0的通項(xiàng)公式:(Ⅱ)已知函數(shù)SKIPIF1<0,數(shù)列SKIPIF1<0滿足:SKIPIF1<0.SKIPIF1<0求證:數(shù)列SKIPIF1<0為等差數(shù)列,并求SKIPIF1<0的通項(xiàng)公式SKIPIF1<0設(shè)SKIPIF1<0,證明:SKIPIF1<0【答案】(Ⅰ)SKIPIF1<0;(Ⅱ)SKIPIF1<0證明見(jiàn)解析,SKIPIF1<0;SKIPIF1<0證明見(jiàn)解析.【分析】(Ⅰ)根據(jù)等比數(shù)列的性質(zhì)列方程即可求解;(Ⅱ)SKIPIF1<0由題SKIPIF1<0,即SKIPIF1<0即可證明和求解通項(xiàng);SKIPIF1<0由題可得SKIPIF1<0,然后通過(guò)通項(xiàng)放縮結(jié)合裂項(xiàng)相消即可得證.【解答】(Ⅰ)解:因?yàn)檎?xiàng)等比數(shù)列SKIPIF1<0中,由題有SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0;(Ⅱ)證明:SKIPIF1<0因?yàn)镾KIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以數(shù)列SKIPIF1<0是以SKIPIF1<0為首項(xiàng),公差為1的等差數(shù)列.所以SKIPIF1<0,即SKIPIF1<0;SKIPIF1<0由題SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),左式SKIPIF1<0,右式SKIPIF1<0,左式SKIPIF1<0右式,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0SKIPIF1<0,即SKIPIF1<0,綜上:當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.3.已知各項(xiàng)均為正數(shù)的數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,且滿足SKIPIF1<0,數(shù)列SKIPIF1<0為等比數(shù)列,且滿足SKIPIF1<0,SKIPIF1<0.(Ⅰ)求數(shù)列SKIPIF1<0和SKIPIF1<0的通項(xiàng)公式;(Ⅱ)求證:SKIPIF1<0;(Ⅲ)求SKIPIF1<0的值.【答案】SKIPIF1<0,SKIPIF1<0;SKIPIF1<0證明見(jiàn)解析;SKIPIF1<0.【分析】SKIPIF1<0由SKIPIF1<0,得SKIPIF1<0,進(jìn)一步可得數(shù)列SKIPIF1<0為等差數(shù)列,公差SKIPIF1<0即可求得SKIPIF1<0;再由SKIPIF1<0為等比數(shù)列結(jié)合已知列方程即可求解;SKIPIF1<0由SKIPIF1<0得SKIPIF1<0,代入不等式兩邊即可得證;SKIPIF1<0利用裂項(xiàng)相消求SKIPIF1<0的前SKIPIF1<0項(xiàng)和,利用錯(cuò)位相減法求SKIPIF1<0的前SKIPIF1<0項(xiàng)和即可.【解答】SKIPIF1<0解:由SKIPIF1<0,故SKIPIF1<0①,則SKIPIF1<0②,②SKIPIF1<0①得SKIPIF1<0,整理得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0數(shù)列SKIPIF1<0為等差數(shù)列,公差SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0的通項(xiàng)公式SKIPIF1<0;設(shè)等比數(shù)列SKIPIF1<0的公比為SKIPIF1<0,由題意,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,由SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0的通項(xiàng)公式SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0;SKIPIF1<0證明:由SKIPIF1<0得SKIPIF1<0,SKIPIF1<0SKIPIF1<0,不等式得證;SKIPIF1<0解:設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,兩式相減,得SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0.4.已知數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,數(shù)列SKIPIF1<0為正項(xiàng)等比數(shù)列,SKIPIF1<0,SKIPIF1<0是SKIPIF1<0與SKIPIF1<0的等差中項(xiàng).(Ⅰ)求SKIPIF1<0和SKIPIF1<0的通項(xiàng)公式;(Ⅱ)若SKIPIF1<0,求數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和SKIPIF1<0;(Ⅲ)設(shè)SKIPIF1<0,求數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和SKIPIF1<0.【答案】SKIPIF1<0,SKIPIF1<0.SKIPIF1<0.(Ⅲ)SKIPIF1<0.【分析】SKIPIF1<0,化為SKIPIF1<0,利用等差數(shù)列的通項(xiàng)公式即可得出SKIPIF1<0;設(shè)正項(xiàng)等比數(shù)列SKIPIF1<0的公比為SKIPIF1<0,根據(jù)SKIPIF1<0是SKIPIF1<0與SKIPIF1<0的等差中項(xiàng),可得SKIPIF1<0,結(jié)合SKIPIF1<0,利用等比數(shù)列的通項(xiàng)公式即可得出SKIPIF1<0與SKIPIF1<0,即可得出SKIPIF1<0.(Ⅱ)SKIPIF1<0,利用錯(cuò)位相減法即可得出數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和SKIPIF1<0.(Ⅲ)結(jié)合SKIPIF1<0可得SKIPIF1<0,通過(guò)對(duì)SKIPIF1<0分類討論,利用裂項(xiàng)求和方法即可得出結(jié)論.【解答】解:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0數(shù)列SKIPIF1<0是等差數(shù)列,首項(xiàng)為1,公差為1,SKIPIF1<0.設(shè)正項(xiàng)等比數(shù)列SKIPIF1<0的公比為SKIPIF1<0,SKIPIF1<0是SKIPIF1<0與SKIPIF1<0的等差中項(xiàng),SKIPIF1<0,SKIPIF1<0,化為SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0SKIPIF1<0,解得SKIPIF1<0.SKIPIF1<0.(Ⅱ)SKIPIF1<0,SKIPIF1<0數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和SKIPIF1<0,SKIPIF1<0SKIPIF1<0,相減可得SKIPIF1<0,化為SKIPIF1<0.(Ⅲ)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為偶數(shù)時(shí),數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和SKIPIF1<0;同理可得:SKIPIF1<0為奇數(shù)時(shí),數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和SKIPIF1<0.SKIPIF1<0.5.設(shè)SKIPIF1<0是等差數(shù)列,SKIPIF1<0是各項(xiàng)均為正數(shù)的等比數(shù)列,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(1)求數(shù)列SKIPIF1<0與SKIPIF1<0的通項(xiàng)公式;(2)數(shù)列SKIPIF1<0,SKIPIF1<0的前SKIPIF1<0項(xiàng)和分別為SKIPIF1<0,SKIPIF1<0;(?。┳C明SKIPIF1<0;(ⅱ)求SKIPIF1<0.【答案】(1)SKIPIF1<0;(2)(?。┳C明見(jiàn)解析;(ⅱ)SKIPIF1<0.【分析】(1)根據(jù)等比數(shù)列,等差數(shù)列的性質(zhì)列方程即可求解;(2)(?。┯梢阎猄KIPIF1<0,利用裂項(xiàng)相消即可求和得證;(ⅱ)由題SKIPIF1<0,所以SKIPIF1<0,再利用錯(cuò)位相減法即可求解.【解答】解:(1)設(shè)公差為SKIPIF1<0,公比為SKIPIF1<0,SKIPIF1<0,由已知SKIPIF1<0,解得SKIPIF1<0,由題有SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,解為SKIPIF1<0,所以SKIPIF1<0;(2)(?。┯梢阎猄KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0;(ⅱ)由題SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0,令SKIPIF1<0①,則SKIPIF1<0②,所以①SKIPIF1<0②得SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0.6.已知數(shù)列SKIPIF1<0是等比數(shù)列,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0成等差數(shù)列.(1)求SKIPIF1<0的通項(xiàng)公式和SKIPIF1<0;(2)數(shù)列SKIPIF1<0滿足SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.記數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0.①若SKIPIF1<0,求SKIPIF1<0的值;②若SKIPIF1<0,求證:SKIPIF1<0.【答案】(1)SKIPIF1<0(2)①SKIPIF1<0;②證明見(jiàn)解析【分析】(1)代入等比數(shù)列的基本量,即可求解;(2)①由(1)可知,SKIPIF1<0,SKIPIF1<0,再根據(jù)SKIPIF1<0,確定SKIPIF1<0的值;②由SKIPIF1<0得SKIPIF1<0,進(jìn)一步得到SKIPIF1<0,以及SKIPIF1<0,并代入求和.【解答】解:(1)設(shè)等比數(shù)列的公比為SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,則SKIPIF1<0為求數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,兩式相減得SKIPIF1<0,解得:SKIPIF1<0SKIPIF1<0SKIPIF1<0;(2)①SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0當(dāng)SKIPIF1<0,SKIPIF1<0時(shí),SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0或SKIPIF1<0,SKIPIF1<0,2,3,SKIPIF1<0,SKIPIF1<0記SKIPIF1<0,則SKIPIF1<0SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,滿足題意,SKIPIF1<0.②SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0即SKIPIF1<0SKIPIF1<0SKIPIF1<0,SKIPIF1<0對(duì)SKIPIF1<0,都有SKIPIF1<0.另一方面,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0對(duì)SKIPIF1<0,都有SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0.7.已知SKIPIF1<0是等差數(shù)列,SKIPIF1<0是公比不為1的等比數(shù)列,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0是SKIPIF1<0與SKIPIF1<0的等差中項(xiàng).(1)求:數(shù)列SKIPIF1<0和SKIPIF1<0的通項(xiàng)公式.(2)設(shè)SKIPIF1<0,求SKIPIF1<0.(3)若對(duì)于數(shù)列SKIPIF1<0、SKIPIF1<0,在SKIPIF1<0和SKIPIF1<0之間插入SKIPIF1<0個(gè)SKIPIF1<0,組成一個(gè)新的數(shù)列SKIPIF1<0,記數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,求SKIPIF1<0.【答案】(1)SKIPIF1<0,SKIPIF1<0;(2)SKIPIF1<0;(3)4104.【分析】(1)根據(jù)等差等比數(shù)列的通項(xiàng)公式,計(jì)算可得;(2)結(jié)合兩個(gè)數(shù)列的通項(xiàng)公式,可判斷SKIPIF1<0的前SKIPIF1<0項(xiàng)中兩個(gè)數(shù)列的項(xiàng)數(shù),然后分組和錯(cuò)位相減求和可得;(3)求出SKIPIF1<0的前2024項(xiàng)中總共有多少個(gè)2,利用分組求和可得.【解答】解:(1)設(shè)等差數(shù)列SKIPIF1<0的公差為SKIPIF1<0,等比數(shù)列SKIPIF1<0的公比為SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,由SKIPIF1<0,則SKIPIF1<0,又由SKIPIF1<0是SKIPIF1<0與SKIPIF1<0的等差中項(xiàng),所以SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0(舍去),故SKIPIF1<0;(2)由SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,兩式相減得,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0SKIPIF1<0其中SKIPIF1<0①,SKIPIF1<0,SKIPIF1<0②①SKIPIF1<0②相減可得,SKIPIF1<0則SKIPIF1<0所以SKIPIF1<0,則SKIPIF1<0;(3)SKIPIF1<0時(shí),SKIPIF1<0與SKIPIF1<0之間插入SKIPIF1<0即3個(gè)2,SKIPIF1<0時(shí),SKIPIF1<0與SKIPIF1<0之間插入SKIPIF1<0即9個(gè)2,SKIPIF1<0,SKIPIF1<0時(shí),在SKIPIF1<0與SKIPIF1<0之間插入SKIPIF1<0個(gè)2,此時(shí)共有SKIPIF1<0項(xiàng),在SKIPIF1<0的后面再插入SKIPIF1<0個(gè)2即可.則數(shù)列SKIPIF1<0的前2024項(xiàng)的和SKIPIF1<0SKIPIF1<0.8.已知數(shù)列SKIPIF1<0是正項(xiàng)等比數(shù)列,SKIPIF1<0是等差數(shù)列,且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,(1)求數(shù)列SKIPIF1<0和SKIPIF1<0的通項(xiàng)公式;(2)SKIPIF1<0表示不超過(guò)SKIPIF1<0的最大整數(shù),SKIPIF1<0表示數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和,集合SKIPIF1<0共有4個(gè)元素,求SKIPIF1<0范圍;(3)SKIPIF1<0,數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,求證:SKIPIF1<0SKIPIF1<0.【答案】(1)SKIPIF1<0,SKIPIF1<0;(2)SKIPIF1<0;(3)證明過(guò)程見(jiàn)解析.【分析】(1)直接利用已知條件建立方程組,進(jìn)一步求出數(shù)列的通項(xiàng)公式;(2)利用分組的應(yīng)用求出數(shù)列的和,進(jìn)一步利用關(guān)系式的單調(diào)性求出SKIPIF1<0的范圍;(3)利用分類討論思想和乘公比錯(cuò)位相減法,裂項(xiàng)相消法,放縮法求出結(jié)果.【解答】解:(1)數(shù)列SKIPIF1<0是正項(xiàng)等比數(shù)列,SKIPIF1<0是等差數(shù)列,且SKIPIF1<0,故SKIPIF1<0,SKIPIF1<0,由于SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0(負(fù)值舍去),SKIPIF1<0;所以SKIPIF1<0,SKIPIF1<0;(2)由于SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,故集合SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0,故SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,又由于集合含有4個(gè)元素,所以SKIPIF1<0.證明:(3)由于SKIPIF1<0,所以SKIPIF1<0,設(shè)當(dāng)SKIPIF1<0為偶數(shù)時(shí),SKIPIF1<0,①,所以SKIPIF1<0,②,①SKIPIF1<0②得:SKIPIF1<0,解得SKIPIF1<0,當(dāng)SKIPIF1<0為奇數(shù)時(shí),SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0.9.已知數(shù)列SKIPIF1<0滿足:SKIPIF1<0,正項(xiàng)數(shù)列SKIPIF1<0滿足:SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(1)求SKIPIF1<0,SKIPIF1<0的通項(xiàng)公式;(2)已知SKIPIF1<0,求:SKIPIF1<0;(3)求證:SKIPIF1<0.【答案】(1)SKIPIF1<0,SKIPIF1<0;(2)SKIPIF1<0.(3)證明見(jiàn)解析.【分析】(1)由題意可得SKIPIF1<0為等差數(shù)列,SKIPIF1<0為等比數(shù)列,再分別求解公差與公比即可;(2)代入化簡(jiǎn)可求SKIPIF1<0,再分組根據(jù)等差數(shù)列與裂項(xiàng)相消求和即可;(3)放縮可得SKIPIF1<0,再裂項(xiàng)相消求和即可.【解答】解:(1)由題意知,SKIPIF1<0為等差數(shù)列,設(shè)公差為SKIPIF1<0,SKIPIF1<0為等比數(shù)列,設(shè)公比為SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.SKIPIF1<0,SKIPIF1<0,SKIPIF1<0;(2)由題意得SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0;(3)SKIPIF1<0,SKIPIF1<0SKIPIF1<0.SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0成立,SKIPIF1<0時(shí),SKIPIF1<0也成立,SKIPIF1<0SKIPIF1<0.10.已知數(shù)列SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和,已知對(duì)于任意SKIPIF1<0,都有SKIPIF1<0,數(shù)列SKIPIF1<0是等差數(shù)列,SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0成等比數(shù)列.(1)求數(shù)列SKIPIF1<0和SKIPIF1<0的通項(xiàng)公式;(2)記SKIPIF1<0,求數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和SKIPIF1<0;(3)記SKIPIF1<0,求SKIPIF1<0.【答案】(1)SKIPIF1<0,SKIPIF1<0;(2)SKIPIF1<0.(3)證明見(jiàn)解析.【分析】(1)由題意可得SKIPIF1<0為等差數(shù)列,SKIPIF1<0為等比數(shù)列,再分別求解公差與公比即可;(2)代入化簡(jiǎn)可求SKIPIF1<0,再分組根據(jù)等差數(shù)列與裂項(xiàng)相消求和即可;(3)放縮可得SKIPIF1<0,再裂項(xiàng)相消求和即可.【解答】解:(1)由題意知,SKIPIF1<0為等差數(shù)列,設(shè)公差為SKIPIF1<0,SKIPIF1<0為等比數(shù)列,設(shè)公比為SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.SKIPIF1<0,SKIPIF1<0,SKIPIF1<0;(2)由題意得SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0;(3)SKIPIF1<0,SKIPIF1<0SKIPIF1<0.SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0成立,SKIPIF1<0時(shí),SKIPIF1<0也成立,SKIPIF1<0SKIPIF1<0.11.已知等差數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,數(shù)列SKIPIF1<0滿足:SKIPIF1<0,SKIPIF1<0.(1)證明:SKIPIF1<0是等比數(shù)列;(2)證明:SKIPIF1<0;(3)設(shè)數(shù)列SKIPIF1<0滿足:SKIPIF1<0.證明:SKIPIF1<0.【分析】(1)根據(jù)等比數(shù)列的定義,結(jié)合遞推公式,即可證明;(2)根據(jù)條件求SKIPIF1<0和SKIPIF1<0,再代入不等式,利用作差法,即可化簡(jiǎn)證明;(3)根據(jù)數(shù)列SKIPIF1<0的通項(xiàng)公式,分別求奇數(shù)項(xiàng)和偶數(shù)項(xiàng)的和,再分別利用裂項(xiàng)相消法和錯(cuò)位相減法求和,即可證明.【解答】證明:(1)由SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0是以2為首項(xiàng),2為公比的等比數(shù)列,故SKIPIF1<0;(2)設(shè)等差數(shù)列的公差為SKIPIF1<0,則SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,得證.(3)當(dāng)SKIPIF1<0為奇數(shù)時(shí),SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0為偶數(shù)時(shí),SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,兩式相減得SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.12.設(shè)SKIPIF1<0為等比數(shù)列,SKIPIF1<0為公差不為零的等差數(shù)列,且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(1)求SKIPIF1<0和SKIPIF1<0的通項(xiàng)公式;(2)記SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,證明:SKIPIF1<0;(3)記SKIPIF1<0,求SKIPIF1<0.【答案】(1)SKIPIF1<0,SKIPIF1<0;(2)證明見(jiàn)解析,(3)SKIPIF1<0.【分析】(1)由等差數(shù)列、等比數(shù)列的基本量法求得通項(xiàng)公式;(2)由等差數(shù)列、等比數(shù)列的前SKIPIF1<0項(xiàng)和公式求得SKIPIF1<0,SKIPIF1<0后,用作差法證明;(3)并項(xiàng)SKIPIF1<0然后裂項(xiàng)求和.【解答】解:(1)設(shè)等比數(shù)列SKIPIF1<0的公比為SKIPIF1<0,等差數(shù)列SKIPIF1<0的公差為SKIPIF1<0,依題意,SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0.所以SKIPIF1<0.因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,從而SKIPIF1<0.(2)由(1)知SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0.因?yàn)镾KIPIF1<0,所以SKIPIF1<0.(3)SKIPIF1<0因?yàn)镾KIPIF1<0,所以SKIPIF1<0SKIPIF1<0SKIPIF1<0.13.已知數(shù)列SKIPIF1<0是等比數(shù)列,其前SKIPIF1<0項(xiàng)和為SKIPIF1<0,數(shù)列SKIPIF1<0是等差數(shù)列,滿足SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(Ⅰ)求數(shù)列SKIPIF1<0和SKIPIF1<0的通項(xiàng)公式;(Ⅱ)記SKIPIF1<0,求SKIPIF1<0;(Ⅲ)證明:SKIPIF1<0.【答案】(Ⅰ)SKIPIF1<0,SKIPIF1<0;(Ⅱ)SKIPIF1<0.【分析】(Ⅰ)通過(guò)題目中給出條件先求出數(shù)列SKIPIF1<0的通項(xiàng)公式,再求出SKIPIF1<0的通項(xiàng)公式;(Ⅱ)寫(xiě)出SKIPIF1<0的前幾項(xiàng),尋找規(guī)律再進(jìn)行求和;(Ⅲ)驗(yàn)證SKIPIF1<0時(shí)不等式成立,然后利用數(shù)學(xué)歸納法進(jìn)行證明.【解答】解:(Ⅰ)由SKIPIF1<0,得SKIPIF1<0,即SKIPIF1<0,所以等比數(shù)列SKIPIF1<0的公比為3,SKIPIF1<0,所以SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,所以等差數(shù)列SKIPIF1<0的公差為2,SKIPIF1<0;(Ⅱ)由題意,得SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0,化簡(jiǎn)得,SKIPIF1<0,令SKIPIF1<0,同理得,SKIPIF1<0,所以有,SKIPIF1<0;(Ⅲ)證明:當(dāng)SKIPIF1<0,不等式左側(cè)SKIPIF1<0,右側(cè)SKIPIF1<0,左側(cè)SKIPIF1<0右側(cè),假設(shè)當(dāng)SKIPIF1<0時(shí),不等式成立,要證SKIPIF1<0時(shí),不等式依然成立,只需證,SKIPIF1<0,只需證,SKIPIF1<0,顯然該式成立,所以原不等式得證.14.已知數(shù)列SKIPIF1<0是正項(xiàng)等比數(shù)列,SKIPIF1<0是等差數(shù)列,且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(1)求數(shù)列SKIPIF1<0和SKIPIF1<0的通項(xiàng)公式;(2)設(shè)SKIPIF1<0,數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,求證:SKIPIF1<0;(3)SKIPIF1<0表示不超過(guò)SKIPI

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論