2025屆福建省長汀一中等六校高三第三次測評數(shù)學(xué)試卷含解析_第1頁
2025屆福建省長汀一中等六校高三第三次測評數(shù)學(xué)試卷含解析_第2頁
2025屆福建省長汀一中等六校高三第三次測評數(shù)學(xué)試卷含解析_第3頁
2025屆福建省長汀一中等六校高三第三次測評數(shù)學(xué)試卷含解析_第4頁
2025屆福建省長汀一中等六校高三第三次測評數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2025屆福建省長汀一中等六校高三第三次測評數(shù)學(xué)試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知復(fù)數(shù)滿足,則()A. B. C. D.2.已知拋物線的焦點(diǎn)為,若拋物線上的點(diǎn)關(guān)于直線對稱的點(diǎn)恰好在射線上,則直線被截得的弦長為()A. B. C. D.3.若非零實(shí)數(shù)、滿足,則下列式子一定正確的是()A. B.C. D.4.半徑為2的球內(nèi)有一個內(nèi)接正三棱柱,則正三棱柱的側(cè)面積的最大值為()A. B. C. D.5.在一個數(shù)列中,如果,都有(為常數(shù)),那么這個數(shù)列叫做等積數(shù)列,叫做這個數(shù)列的公積.已知數(shù)列是等積數(shù)列,且,,公積為,則()A. B. C. D.6.下列判斷錯誤的是()A.若隨機(jī)變量服從正態(tài)分布,則B.已知直線平面,直線平面,則“”是“”的充分不必要條件C.若隨機(jī)變量服從二項(xiàng)分布:,則D.是的充分不必要條件7.已知雙曲線與雙曲線有相同的漸近線,則雙曲線的離心率為()A. B. C. D.8.設(shè)等差數(shù)列的前項(xiàng)和為,若,,則()A.21 B.22 C.11 D.129.展開項(xiàng)中的常數(shù)項(xiàng)為A.1 B.11 C.-19 D.5110.在棱長為a的正方體中,E、F、M分別是AB、AD、的中點(diǎn),又P、Q分別在線段、上,且,設(shè)平面平面,則下列結(jié)論中不成立的是()A.平面 B.C.當(dāng)時,平面 D.當(dāng)m變化時,直線l的位置不變11.函數(shù)的大致圖象是()A. B.C. D.12.已知集合,集合,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖是一個算法偽代碼,則輸出的的值為_______________.14.棱長為的正四面體與正三棱錐的底面重合,若由它們構(gòu)成的多面體的頂點(diǎn)均在一球的球面上,則正三棱錐的內(nèi)切球半徑為______.15.已知函數(shù),則曲線在點(diǎn)處的切線方程為___________.16.已知函數(shù),若對于任意正實(shí)數(shù),均存在以為三邊邊長的三角形,則實(shí)數(shù)k的取值范圍是_______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)函數(shù)f(x)=sin(2x-π(I)求f(x)的最小正周期;(II)若α∈(π6,π)且f(18.(12分)已知函數(shù).(1)當(dāng)時,解不等式;(2)當(dāng)時,不等式恒成立,求實(shí)數(shù)的取值范圍.19.(12分)如圖,在直三棱柱中,分別是中點(diǎn),且,.求證:平面;求點(diǎn)到平面的距離.20.(12分)己知點(diǎn),分別是橢圓的上頂點(diǎn)和左焦點(diǎn),若與圓相切于點(diǎn),且點(diǎn)是線段靠近點(diǎn)的三等分點(diǎn).求橢圓的標(biāo)準(zhǔn)方程;直線與橢圓只有一個公共點(diǎn),且點(diǎn)在第二象限,過坐標(biāo)原點(diǎn)且與垂直的直線與圓相交于,兩點(diǎn),求面積的取值范圍.21.(12分)對于給定的正整數(shù)k,若各項(xiàng)均不為0的數(shù)列滿足:對任意正整數(shù)總成立,則稱數(shù)列是“數(shù)列”.(1)證明:等比數(shù)列是“數(shù)列”;(2)若數(shù)列既是“數(shù)列”又是“數(shù)列”,證明:數(shù)列是等比數(shù)列.22.(10分)平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸,取相同的單位長度建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,直線的極坐標(biāo)方程為,點(diǎn).(1)求曲線的極坐標(biāo)方程與直線的直角坐標(biāo)方程;(2)若直線與曲線交于點(diǎn),曲線與曲線交于點(diǎn),求的面積.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】

根據(jù)復(fù)數(shù)的運(yùn)算法則,可得,然后利用復(fù)數(shù)模的概念,可得結(jié)果.【詳解】由題可知:由,所以所以故選:A【點(diǎn)睛】本題主要考查復(fù)數(shù)的運(yùn)算,考驗(yàn)計(jì)算,屬基礎(chǔ)題.2、B【解析】

由焦點(diǎn)得拋物線方程,設(shè)點(diǎn)的坐標(biāo)為,根據(jù)對稱可求出點(diǎn)的坐標(biāo),寫出直線方程,聯(lián)立拋物線求交點(diǎn),計(jì)算弦長即可.【詳解】拋物線的焦點(diǎn)為,則,即,設(shè)點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,如圖:∴,解得,或(舍去),∴∴直線的方程為,設(shè)直線與拋物線的另一個交點(diǎn)為,由,解得或,∴,∴,故直線被截得的弦長為.故選:B.【點(diǎn)睛】本題主要考查了拋物線的標(biāo)準(zhǔn)方程,簡單幾何性質(zhì),點(diǎn)關(guān)于直線對稱,屬于中檔題.3、C【解析】

令,則,,將指數(shù)式化成對數(shù)式得、后,然后取絕對值作差比較可得.【詳解】令,則,,,,,因此,.故選:C.【點(diǎn)睛】本題考查了利用作差法比較大小,同時也考查了指數(shù)式與對數(shù)式的轉(zhuǎn)化,考查推理能力,屬于中等題.4、B【解析】

設(shè)正三棱柱上下底面的中心分別為,底面邊長與高分別為,利用,可得,進(jìn)一步得到側(cè)面積,再利用基本不等式求最值即可.【詳解】如圖所示.設(shè)正三棱柱上下底面的中心分別為,底面邊長與高分別為,則,在中,,化為,,,當(dāng)且僅當(dāng)時取等號,此時.故選:B.【點(diǎn)睛】本題考查正三棱柱與球的切接問題,涉及到基本不等式求最值,考查學(xué)生的計(jì)算能力,是一道中檔題.5、B【解析】

計(jì)算出的值,推導(dǎo)出,再由,結(jié)合數(shù)列的周期性可求得數(shù)列的前項(xiàng)和.【詳解】由題意可知,則對任意的,,則,,由,得,,,,因此,.故選:B.【點(diǎn)睛】本題考查數(shù)列求和,考查了數(shù)列的新定義,推導(dǎo)出數(shù)列的周期性是解答的關(guān)鍵,考查推理能力與計(jì)算能力,屬于中等題.6、D【解析】

根據(jù)正態(tài)分布、空間中點(diǎn)線面的位置關(guān)系、充分條件與必要條件的判斷、二項(xiàng)分布及不等式的性質(zhì)等知識,依次對四個選項(xiàng)加以分析判斷,進(jìn)而可求解.【詳解】對于選項(xiàng),若隨機(jī)變量服從正態(tài)分布,根據(jù)正態(tài)分布曲線的對稱性,有,故選項(xiàng)正確,不符合題意;對于選項(xiàng),已知直線平面,直線平面,則當(dāng)時一定有,充分性成立,而當(dāng)時,不一定有,故必要性不成立,所以“”是“”的充分不必要條件,故選項(xiàng)正確,不符合題意;對于選項(xiàng),若隨機(jī)變量服從二項(xiàng)分布:,則,故選項(xiàng)正確,不符合題意;對于選項(xiàng),,僅當(dāng)時有,當(dāng)時,不成立,故充分性不成立;若,僅當(dāng)時有,當(dāng)時,不成立,故必要性不成立.因而是的既不充分也不必要條件,故選項(xiàng)不正確,符合題意.故選:D【點(diǎn)睛】本題考查正態(tài)分布、空間中點(diǎn)線面的位置關(guān)系、充分條件與必要條件的判斷、二項(xiàng)分布及不等式的性質(zhì)等知識,考查理解辨析能力與運(yùn)算求解能力,屬于基礎(chǔ)題.7、C【解析】

由雙曲線與雙曲線有相同的漸近線,列出方程求出的值,即可求解雙曲線的離心率,得到答案.【詳解】由雙曲線與雙曲線有相同的漸近線,可得,解得,此時雙曲線,則曲線的離心率為,故選C.【點(diǎn)睛】本題主要考查了雙曲線的標(biāo)準(zhǔn)方程及其簡單的幾何性質(zhì)的應(yīng)用,其中解答中熟記雙曲線的幾何性質(zhì),準(zhǔn)確運(yùn)算是解答的關(guān)鍵,著重考查了運(yùn)算與求解能力,屬于基礎(chǔ)題.8、A【解析】

由題意知成等差數(shù)列,結(jié)合等差中項(xiàng),列出方程,即可求出的值.【詳解】解:由為等差數(shù)列,可知也成等差數(shù)列,所以,即,解得.故選:A.【點(diǎn)睛】本題考查了等差數(shù)列的性質(zhì),考查了等差中項(xiàng).對于等差數(shù)列,一般用首項(xiàng)和公差將已知量表示出來,繼而求出首項(xiàng)和公差.但是這種基本量法計(jì)算量相對比較大,如果能結(jié)合等差數(shù)列性質(zhì),可使得計(jì)算量大大減少.9、B【解析】

展開式中的每一項(xiàng)是由每個括號中各出一項(xiàng)組成的,所以可分成三種情況.【詳解】展開式中的項(xiàng)為常數(shù)項(xiàng),有3種情況:(1)5個括號都出1,即;(2)兩個括號出,兩個括號出,一個括號出1,即;(3)一個括號出,一個括號出,三個括號出1,即;所以展開項(xiàng)中的常數(shù)項(xiàng)為,故選B.【點(diǎn)睛】本題考查二項(xiàng)式定理知識的生成過程,考查定理的本質(zhì),即展開式中每一項(xiàng)是由每個括號各出一項(xiàng)相乘組合而成的.10、C【解析】

根據(jù)線面平行與垂直的判定與性質(zhì)逐個分析即可.【詳解】因?yàn)?所以,因?yàn)镋、F分別是AB、AD的中點(diǎn),所以,所以,因?yàn)槊婷?所以.選項(xiàng)A、D顯然成立;因?yàn)?平面,所以平面,因?yàn)槠矫?所以,所以B項(xiàng)成立;易知平面MEF,平面MPQ,而直線與不垂直,所以C項(xiàng)不成立.故選:C【點(diǎn)睛】本題考查直線與平面的位置關(guān)系.屬于中檔題.11、A【解析】

用排除B,C;用排除;可得正確答案.【詳解】解:當(dāng)時,,,所以,故可排除B,C;當(dāng)時,,故可排除D.故選:A.【點(diǎn)睛】本題考查了函數(shù)圖象,屬基礎(chǔ)題.12、D【解析】

可求出集合,,然后進(jìn)行并集的運(yùn)算即可.【詳解】解:,;.故選.【點(diǎn)睛】考查描述法、區(qū)間的定義,對數(shù)函數(shù)的單調(diào)性,以及并集的運(yùn)算.二、填空題:本題共4小題,每小題5分,共20分。13、5【解析】

執(zhí)行循環(huán)結(jié)構(gòu)流程圖,即得結(jié)果.【詳解】執(zhí)行循環(huán)結(jié)構(gòu)流程圖得,結(jié)束循環(huán),輸出.【點(diǎn)睛】本題考查循環(huán)結(jié)構(gòu)流程圖,考查基本分析與運(yùn)算能力,屬基礎(chǔ)題.14、【解析】

由棱長為的正四面體求出外接球的半徑,進(jìn)而求出正三棱錐的高及側(cè)棱長,可得正三棱錐的三條側(cè)棱兩兩相互垂直,進(jìn)而求出體積與表面積,設(shè)內(nèi)切圓的半徑,由等體積,求出內(nèi)切圓的半徑.【詳解】由題意可知:多面體的外接球即正四面體的外接球作面交于,連接,如圖則,且為外接球的直徑,可得,設(shè)三角形的外接圓的半徑為,則,解得,設(shè)外接球的半徑為,則可得,即,解得,設(shè)正三棱錐的高為,因?yàn)椋?,所以,而,所以正三棱錐的三條側(cè)棱兩兩相互垂直,所以,設(shè)內(nèi)切球的半徑為,,即解得:.故答案為:.【點(diǎn)睛】本題考查多面體與球的內(nèi)切和外接問題,考查轉(zhuǎn)化與化歸思想,考查空間想象能力、運(yùn)算求解能力,求解時注意借助幾何體的直觀圖進(jìn)行分析.15、【解析】

根據(jù)導(dǎo)數(shù)的幾何意義求出切線的斜率,利用點(diǎn)斜式求切線方程.【詳解】因?yàn)?,所以,又故切線方程為,整理為,故答案為:【點(diǎn)睛】本題主要考查了導(dǎo)數(shù)的幾何意義,切線方程,屬于容易題.16、【解析】

根據(jù)三角形三邊關(guān)系可知對任意的恒成立,將的解析式用分離常數(shù)法變形,由均值不等式可得分母的取值范圍,則整個式子的取值范圍由的符號決定,故分為三類討論,根據(jù)函數(shù)的單調(diào)性求出函數(shù)值域,再討論,轉(zhuǎn)化為的最小值與的最大值的不等式,進(jìn)而求出的取值范圍.【詳解】因?yàn)閷θ我庹龑?shí)數(shù),都存在以為三邊長的三角形,故對任意的恒成立,,令,則,當(dāng),即時,該函數(shù)在上單調(diào)遞減,則;當(dāng),即時,,當(dāng),即時,該函數(shù)在上單調(diào)遞增,則,所以,當(dāng)時,因?yàn)?,所以,解得;當(dāng)時,,滿足條件;當(dāng)時,,且,所以,解得,綜上,,故答案為:【點(diǎn)睛】本題考查參數(shù)范圍,考查三角形的構(gòu)成條件,考查利用函數(shù)單調(diào)性求函數(shù)值域,考查分類討論思想與轉(zhuǎn)化思想.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(I)π;(II)-【解析】

(I)化簡得到fx(II)f(α2)=2sin【詳解】(I)f(x)==2sin2x+(II)f(α2)=2sinα∈(π6,π),故α+故α+π12∈sin(2α+【點(diǎn)睛】本題考查了三角函數(shù)的周期,三角恒等變換,意在考查學(xué)生的計(jì)算能力和綜合應(yīng)用能力.18、(1);(2).【解析】

(1)分類討論去絕對值,得到每段的解集,然后取并集得到答案.(2)先得到的取值范圍,判斷,為正,去掉絕對值,轉(zhuǎn)化為在時恒成立,得到,,在恒成立,從而得到的取值范圍.【詳解】(1)當(dāng)時,,由,得,即,或,即,或,即,綜上:或,所以不等式的解集為.(2),,因?yàn)?,,所以,又,,,?不等式恒成立,即在時恒成立,不等式恒成立必須,,解得.所以,解得,結(jié)合,所以,即的取值范圍為.【點(diǎn)睛】本題考查分類討論解絕對值不等式,含有絕對值的不等式的恒成立問題.屬于中檔題.19、(1)詳見解析;(2).【解析】

(1)利用線面垂直的判定定理和性質(zhì)定理即可證明;(2)取中點(diǎn)為,則,證得平面,利用等體積法求解即可.【詳解】(1)因?yàn)?,,,是的中點(diǎn),,為直三棱柱,所以平面,因?yàn)闉橹悬c(diǎn),所以平面,,又,平面(2),又分別是中點(diǎn),.由(1)知,,又平面,取中點(diǎn)為,連接如圖,則,平面,設(shè)點(diǎn)到平面的距離為,由,得,即,解得,點(diǎn)到平面的距離為.【點(diǎn)睛】本題考查線面垂直的判定定理和性質(zhì)定理、等體積法求點(diǎn)到面的距離;考查邏輯推理能力和運(yùn)算求解能力;熟練掌握線面垂直的判定定理和性質(zhì)定理是求解本題的關(guān)鍵;屬于中檔題.20、;.【解析】

連接,由三角形相似得,,進(jìn)而得出,,寫出橢圓的標(biāo)準(zhǔn)方程;由得,,因?yàn)橹本€與橢圓相切于點(diǎn),,解得,,因?yàn)辄c(diǎn)在第二象限,所以,,所以,設(shè)直線與垂直交于點(diǎn),則是點(diǎn)到直線的距離,設(shè)直線的方程為,則,求出面積的取值范圍.【詳解】解:連接,由可得,,,橢圓的標(biāo)準(zhǔn)方程;由得,,因?yàn)橹本€與橢圓相切于點(diǎn),所以,即,解得,,即點(diǎn)的坐標(biāo)為,因?yàn)辄c(diǎn)在第二象限,所以,,所以,所以點(diǎn)的坐標(biāo)為,設(shè)直線與垂直交于點(diǎn),則是點(diǎn)到直線的距離,設(shè)直線的方程為,則,當(dāng)且僅當(dāng),即時,有最大值,所以,即面積的取值范圍為.【點(diǎn)睛】本題考查直線和橢圓位置關(guān)系的應(yīng)用,利用基本不等式,屬于難題.21、(1)證明見詳解;(2)證明見詳解【解析】

(1)由是等比數(shù)列,由等比數(shù)列的性質(zhì)可得:即可證明.(2)既是“數(shù)列”又是“數(shù)列”,可得,,則對于任意都成立,則成等比數(shù)列,設(shè)公比為,驗(yàn)證得答案.【詳解】(1)證明:由是等比數(shù)列,由等比數(shù)列的性質(zhì)可得:等比數(shù)列是“數(shù)列”.(2)證明:既是“數(shù)列”又是“數(shù)列”,可得,()(),()可得:對于任意都成立,即成等比數(shù)列,即成等比數(shù)列,成等比數(shù)列,成等比數(shù)列,設(shè),()數(shù)列是“數(shù)列”時,由()可得:時,由()可得:,可得,同理可證成等比數(shù)列,數(shù)列是等比數(shù)列【點(diǎn)睛

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論