營口市重點中學(xué)2025屆高考數(shù)學(xué)四模試卷含解析_第1頁
營口市重點中學(xué)2025屆高考數(shù)學(xué)四模試卷含解析_第2頁
營口市重點中學(xué)2025屆高考數(shù)學(xué)四模試卷含解析_第3頁
營口市重點中學(xué)2025屆高考數(shù)學(xué)四模試卷含解析_第4頁
營口市重點中學(xué)2025屆高考數(shù)學(xué)四模試卷含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

營口市重點中學(xué)2025屆高考數(shù)學(xué)四模試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,為兩條不同直線,,,為三個不同平面,下列命題:①若,,則;②若,,則;③若,,則;④若,,則.其中正確命題序號為()A.②③ B.②③④ C.①④ D.①②③2.設(shè)函數(shù),當(dāng)時,,則()A. B. C.1 D.3.已知類產(chǎn)品共兩件,類產(chǎn)品共三件,混放在一起,現(xiàn)需要通過檢測將其區(qū)分開來,每次隨機檢測一件產(chǎn)品,檢測后不放回,直到檢測出2件類產(chǎn)品或者檢測出3件類產(chǎn)品時,檢測結(jié)束,則第一次檢測出類產(chǎn)品,第二次檢測出類產(chǎn)品的概率為()A. B. C. D.4.已知雙曲線的右焦點為F,過右頂點A且與x軸垂直的直線交雙曲線的一條漸近線于M點,MF的中點恰好在雙曲線C上,則C的離心率為()A. B. C. D.5.已知點P在橢圓τ:=1(a>b>0)上,點P在第一象限,點P關(guān)于原點O的對稱點為A,點P關(guān)于x軸的對稱點為Q,設(shè),直線AD與橢圓τ的另一個交點為B,若PA⊥PB,則橢圓τ的離心率e=()A. B. C. D.6.趙爽是我國古代數(shù)學(xué)家、天文學(xué)家,大約公元222年,趙爽為《周髀算經(jīng)》一書作序時,介紹了“勾股圓方圖”,又稱“趙爽弦圖”(以弦為邊長得到的正方形是由個全等的直角三角形再加上中間的一個小正方形組成的,如圖(1)),類比“趙爽弦圖”,可類似地構(gòu)造如圖(2)所示的圖形,它是由個全等的三角形與中間的一個小正六邊形組成的一個大正六邊形,設(shè),若在大正六邊形中隨機取一點,則此點取自小正六邊形的概率為()A. B.C. D.7.已知復(fù)數(shù)滿足,則=()A. B.C. D.8.已知集合,,,則()A. B. C. D.9.設(shè),則,則()A. B. C. D.10.已知,,,若,則()A. B. C. D.11.復(fù)數(shù)().A. B. C. D.12.復(fù)數(shù)的實部與虛部相等,其中為虛部單位,則實數(shù)()A.3 B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)(為自然對數(shù)的底數(shù),),若函數(shù)恰有個零點,則實數(shù)的取值范圍為__________________.14.若關(guān)于的不等式在上恒成立,則的最大值為__________.15.在中,角的對邊分別為,且.若為鈍角,,則的面積為____________.16.設(shè)為偶函數(shù),且當(dāng)時,;當(dāng)時,.關(guān)于函數(shù)的零點,有下列三個命題:①當(dāng)時,存在實數(shù)m,使函數(shù)恰有5個不同的零點;②若,函數(shù)的零點不超過4個,則;③對,,函數(shù)恰有4個不同的零點,且這4個零點可以組成等差數(shù)列.其中,正確命題的序號是_______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列是各項均為正數(shù)的等比數(shù)列,數(shù)列為等差數(shù)列,且,,.(1)求數(shù)列與的通項公式;(2)求數(shù)列的前項和;(3)設(shè)為數(shù)列的前項和,若對于任意,有,求實數(shù)的值.18.(12分)已知橢圓:的離心率為,左、右頂點分別為、,過左焦點的直線交橢圓于、兩點(異于、兩點),當(dāng)直線垂直于軸時,四邊形的面積為1.(1)求橢圓的方程;(2)設(shè)直線、的交點為;試問的橫坐標(biāo)是否為定值?若是,求出定值;若不是,請說明理由.19.(12分)如圖,在四棱錐中,平面,四邊形為正方形,點為線段上的點,過三點的平面與交于點.將①,②,③中的兩個補充到已知條件中,解答下列問題:(1)求平面將四棱錐分成兩部分的體積比;(2)求直線與平面所成角的正弦值.20.(12分)已知在中,角,,的對邊分別為,,,且.(1)求的值;(2)若,求面積的最大值.21.(12分)設(shè),函數(shù).(1)當(dāng)時,求在內(nèi)的極值;(2)設(shè)函數(shù),當(dāng)有兩個極值點時,總有,求實數(shù)的值.22.(10分)新高考,取消文理科,實行“”,成績由語文、數(shù)學(xué)、外語統(tǒng)一高考成績和自主選考的3門普通高中學(xué)業(yè)水平考試等級性考試科目成績構(gòu)成.為了解各年齡層對新高考的了解情況,隨機調(diào)查50人(把年齡在稱為中青年,年齡在稱為中老年),并把調(diào)查結(jié)果制成下表:年齡(歲)頻數(shù)515101055了解4126521(1)分別估計中青年和中老年對新高考了解的概率;(2)請根據(jù)上表完成下面列聯(lián)表,是否有95%的把握判斷對新高考的了解與年齡(中青年、中老年)有關(guān)?了解新高考不了解新高考總計中青年中老年總計附:.0.0500.0100.0013.8416.63510.828(3)若從年齡在的被調(diào)查者中隨機選取3人進(jìn)行調(diào)查,記選中的3人中了解新高考的人數(shù)為,求的分布列以及.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

根據(jù)直線與平面,平面與平面的位置關(guān)系進(jìn)行判斷即可.【詳解】根據(jù)面面平行的性質(zhì)以及判定定理可得,若,,則,故①正確;若,,平面可能相交,故②錯誤;若,,則可能平行,故③錯誤;由線面垂直的性質(zhì)可得,④正確;故選:C【點睛】本題主要考查了判斷直線與平面,平面與平面的位置關(guān)系,屬于中檔題.2、A【解析】

由降冪公式,兩角和的正弦公式化函數(shù)為一個角的一個三角函數(shù)形式,然后由正弦函數(shù)性質(zhì)求得參數(shù)值.【詳解】,時,,,∴,由題意,∴.故選:A.【點睛】本題考查二倍角公式,考查兩角和的正弦公式,考查正弦函數(shù)性質(zhì),掌握正弦函數(shù)性質(zhì)是解題關(guān)鍵.3、D【解析】

根據(jù)分步計數(shù)原理,由古典概型概率公式可得第一次檢測出類產(chǎn)品的概率,不放回情況下第二次檢測出類產(chǎn)品的概率,即可得解.【詳解】類產(chǎn)品共兩件,類產(chǎn)品共三件,則第一次檢測出類產(chǎn)品的概率為;不放回情況下,剩余4件產(chǎn)品,則第二次檢測出類產(chǎn)品的概率為;故第一次檢測出類產(chǎn)品,第二次檢測出類產(chǎn)品的概率為;故選:D.【點睛】本題考查了分步乘法計數(shù)原理的應(yīng)用,古典概型概率計算公式的應(yīng)用,屬于基礎(chǔ)題.4、A【解析】

設(shè),則MF的中點坐標(biāo)為,代入雙曲線的方程可得的關(guān)系,再轉(zhuǎn)化成關(guān)于的齊次方程,求出的值,即可得答案.【詳解】雙曲線的右頂點為,右焦點為,M所在直線為,不妨設(shè),∴MF的中點坐標(biāo)為.代入方程可得,∴,∴,∴(負(fù)值舍去).故選:A.【點睛】本題考查雙曲線的離心率,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意構(gòu)造的齊次方程.5、C【解析】

設(shè),則,,,設(shè),根據(jù)化簡得到,得到答案.【詳解】設(shè),則,,,則,設(shè),則,兩式相減得到:,,,即,,,故,即,故,故.故選:.【點睛】本題考查了橢圓的離心率,意在考查學(xué)生的計算能力和轉(zhuǎn)化能力.6、D【解析】

設(shè),則,小正六邊形的邊長為,利用余弦定理可得大正六邊形的邊長為,再利用面積之比可得結(jié)論.【詳解】由題意,設(shè),則,即小正六邊形的邊長為,所以,,,在中,由余弦定理得,即,解得,所以,大正六邊形的邊長為,所以,小正六邊形的面積為,大正六邊形的面積為,所以,此點取自小正六邊形的概率.故選:D.【點睛】本題考查概率的求法,考查余弦定理、幾何概型等基礎(chǔ)知識,考查運算求解能力,屬于基礎(chǔ)題.7、B【解析】

利用復(fù)數(shù)的代數(shù)運算法則化簡即可得到結(jié)論.【詳解】由,得,所以,.故選:B.【點睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運算,考查復(fù)數(shù)的基本概念,屬于基礎(chǔ)題.8、D【解析】

根據(jù)集合的基本運算即可求解.【詳解】解:,,,則故選:D.【點睛】本題主要考查集合的基本運算,屬于基礎(chǔ)題.9、A【解析】

根據(jù)換底公式可得,再化簡,比較的大小,即得答案.【詳解】,,.,顯然.,即,,即.綜上,.故選:.【點睛】本題考查換底公式和對數(shù)的運算,屬于中檔題.10、B【解析】

由平行求出參數(shù),再由數(shù)量積的坐標(biāo)運算計算.【詳解】由,得,則,,,所以.故選:B.【點睛】本題考查向量平行的坐標(biāo)表示,考查數(shù)量積的坐標(biāo)運算,掌握向量數(shù)量積的坐標(biāo)運算是解題關(guān)鍵.11、A【解析】試題分析:,故選A.【考點】復(fù)數(shù)運算【名師點睛】復(fù)數(shù)代數(shù)形式的四則運算的法則是進(jìn)行復(fù)數(shù)運算的理論依據(jù),加減運算類似于多項式的合并同類項,乘法法則類似于多項式的乘法法則,除法運算則先將除式寫成分式的形式,再將分母實數(shù)化.12、B【解析】

利用乘法運算化簡復(fù)數(shù)即可得到答案.【詳解】由已知,,所以,解得.故選:B【點睛】本題考查復(fù)數(shù)的概念及復(fù)數(shù)的乘法運算,考查學(xué)生的基本計算能力,是一道容易題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

令,則,恰有四個解.由判斷函數(shù)增減性,求出最小值,列出相應(yīng)不等式求解得出的取值范圍.【詳解】解:令,則,恰有四個解.有兩個解,由,可得在上單調(diào)遞減,在上單調(diào)遞增,則,可得.設(shè)的負(fù)根為,由題意知,,,,則,.故答案為:.【點睛】本題考查導(dǎo)數(shù)在函數(shù)當(dāng)中的應(yīng)用,屬于難題.14、【解析】

分類討論,時不合題意;時求導(dǎo),求出函數(shù)的單調(diào)區(qū)間,得到在上的最小值,利用不等式恒成立轉(zhuǎn)化為函數(shù)最小值,化簡得,構(gòu)造放縮函數(shù)對自變量再研究,可解,【詳解】令;當(dāng)時,,不合題意;當(dāng)時,,令,得或,所以在區(qū)間和上單調(diào)遞減.因為,且在區(qū)間上單調(diào)遞增,所以在處取極小值,即最小值為.若,,則,即.當(dāng)時,,當(dāng)時,則.設(shè),則.當(dāng)時,;當(dāng)時,,所以在上單調(diào)遞增;在上單調(diào)遞減,所以,即,所以的最大值為.故答案為:【點睛】本題考查不等式恒成立問題.不等式恒成立問題的求解思路:已知不等式(為實參數(shù))對任意的恒成立,求參數(shù)的取值范圍.利用導(dǎo)數(shù)解決此類問題可以運用分離參數(shù)法;如果無法分離參數(shù),可以考慮對參數(shù)或自變量進(jìn)行分類討論求解,如果是二次不等式恒成立的問題,可以考慮二次項系數(shù)與判別式的方法(,或,)求解.15、【解析】

轉(zhuǎn)化為,利用二倍角公式可求解得,結(jié)合余弦定理可得b,再利用面積公式可得解.【詳解】因為,所以.又因為,且為銳角,所以.由余弦定理得,即,解得,所以故答案為:【點睛】本題考查了正弦定理和余弦定理的綜合應(yīng)用,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運算的能力,屬于中檔題.16、①②③【解析】

根據(jù)偶函數(shù)的圖象關(guān)于軸對稱,利用已知中的條件作出偶函數(shù)的圖象,利用圖象對各個選項進(jìn)行判斷即可.【詳解】解:當(dāng)時又因為為偶函數(shù)可畫出的圖象,如下所示:可知當(dāng)時有5個不同的零點;故①正確;若,函數(shù)的零點不超過4個,即,與的交點不超過4個,時恒成立又當(dāng)時,在上恒成立在上恒成立由于偶函數(shù)的圖象,如下所示:直線與圖象的公共點不超過個,則,故②正確;對,偶函數(shù)的圖象,如下所示:,使得直線與恰有4個不同的交點點,且相鄰點之間的距離相等,故③正確.故答案為:①②③【點睛】本題考查函數(shù)方程思想,數(shù)形結(jié)合思想,屬于難題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),(2)(3)【解析】

(1)假設(shè)公差,公比,根據(jù)等差數(shù)列和等比數(shù)列的通項公式,化簡式子,可得,,然后利用公式法,可得結(jié)果.(2)根據(jù)(1)的結(jié)論,利用錯位相減法求和,可得結(jié)果.(3)計算出,代值計算并化簡,可得結(jié)果.【詳解】解:(1)依題意:,即,解得:所以,(2),,,上面兩式相減,得:則即所以,(3),所以由得,,即【點睛】本題主要考查等差數(shù)列和等比數(shù)列的綜合應(yīng)用,以及利用錯位相減法求和,屬基礎(chǔ)題.18、(1)(2)是為定值,的橫坐標(biāo)為定值【解析】

(1)根據(jù)“直線垂直于軸時,四邊形的面積為1”列方程,由此求得,結(jié)合橢圓離心率以及,求得,由此求得橢圓方程.(2)設(shè)出直線的方程,聯(lián)立直線的方程和橢圓方程,化簡后寫出根與系數(shù)關(guān)系.求得直線的方程,并求得兩直線交點的橫坐標(biāo),結(jié)合根與系數(shù)關(guān)系進(jìn)行化簡,求得的橫坐標(biāo)為定值.【詳解】(1)依題意可知,解得,即;而,即,結(jié)合解得,,因此橢圓方程為(2)由題意得,左焦點,設(shè)直線的方程為:,,.由消去并整理得,∴,.直線的方程為:,直線的方程為:.聯(lián)系方程,解得,又因為.所以.所以的橫坐標(biāo)為定值.【點睛】本小題主要考查根據(jù)橢圓離心率求橢圓方程,考查直線和橢圓的位置關(guān)系,考查直線和直線交點坐標(biāo)的求法,考查運算求解能力,屬于中檔題.19、(1);(2).【解析】

若補充②③根據(jù)已知可得平面,從而有,結(jié)合,可得平面,故有,而,得到,②③成立與①②相同,①③成立,可得,所以任意補充兩個條件,結(jié)果都一樣,以①②作為條件分析;(1)設(shè),可得,進(jìn)而求出梯形的面積,可求出,即可求出結(jié)論;(2),以為坐標(biāo)原點,建立空間坐標(biāo)系,求出坐標(biāo),由(1)得為平面的法向量,根據(jù)空間向量的線面角公式即可求解.【詳解】第一種情況:若將①,②作為已知條件,解答如下:(1)設(shè)平面為平面.∵,∴平面,而平面平面,∴,又為中點.設(shè),則.在三角形中,,由知平面,∴,∴梯形的面積,,,平面,,,∴,故,.(2)如圖,分別以所在直線為軸建立空間直角坐標(biāo)系,設(shè),則,由(1)得為平面的一個法向量,因為,所以直線與平面所成角的正弦值為.第二種情況:若將①,③作為已知條件,則由知平面,,又,所以平面,,又,故為中點,即,解答如上不變.第三種情況:若將②,③作為已知條件,由及第二種情況知,又,易知,解答仍如上不變.【點睛】本題考查空間點、線、面位置關(guān)系,以及體積、直線與平面所成的角,考查計算求解能力,屬于中檔題.20、(1);(2).【解析】分析:(1)在式子中運用正弦、余弦定理后可得.(2)由經(jīng)三角變換可得,然后運用余弦定理可得,從而得到,故得.詳解:(1)由題意及正、余弦定理得,整理得,∴(2)由題意得,∴,∵,∴,∴.由余弦定理得,∴,,當(dāng)且僅當(dāng)時等號成立.∴.∴面積的最大值為.點睛:(1)正、余弦定理經(jīng)常與三角形的面積綜合在一起考查,解題時要注意整體代換的應(yīng)用,如余弦定理中常用的變形,這樣自然地與三角形的面積公式結(jié)合在一起.(2)運用基本不等式求最值時,要注意等號成立的條件,在解題中必須要注明.21、(1)極大值是,無極小值;(2)【解析】

(1)當(dāng)時,可求得,令,利用導(dǎo)數(shù)可判斷的單調(diào)性并得其零點,從而可得原函數(shù)的極值點及極大值;(2)表示出,并求得,由題意,得方程有兩個不同的實根,,從而可得△及,由,得.則可化為對任意的恒成立,按照、、三種情況分類討論,分離參數(shù)后轉(zhuǎn)化為求函數(shù)的最值可解決;【詳解】(1)當(dāng)時,.令,則,顯然在上單調(diào)遞減,又因為,故時,總有,所以在上單

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論