湖北省天門、仙桃、潛江市2024年高三下學(xué)期第三次階段檢測(cè)試題數(shù)學(xué)試題_第1頁(yè)
湖北省天門、仙桃、潛江市2024年高三下學(xué)期第三次階段檢測(cè)試題數(shù)學(xué)試題_第2頁(yè)
湖北省天門、仙桃、潛江市2024年高三下學(xué)期第三次階段檢測(cè)試題數(shù)學(xué)試題_第3頁(yè)
湖北省天門、仙桃、潛江市2024年高三下學(xué)期第三次階段檢測(cè)試題數(shù)學(xué)試題_第4頁(yè)
湖北省天門、仙桃、潛江市2024年高三下學(xué)期第三次階段檢測(cè)試題數(shù)學(xué)試題_第5頁(yè)
已閱讀5頁(yè),還剩12頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

湖北省天門、仙桃、潛江市2024年高三下學(xué)期第三次階段檢測(cè)試題數(shù)學(xué)試題注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知分別為圓與的直徑,則的取值范圍為()A. B. C. D.2.已知集合,,若,則()A.或 B.或 C.或 D.或3.已知,,是平面內(nèi)三個(gè)單位向量,若,則的最小值()A. B. C. D.54.已知集合,則=()A. B. C. D.5.已知函數(shù)且,則實(shí)數(shù)的取值范圍是()A. B. C. D.6.已知拋物線的焦點(diǎn)為,對(duì)稱軸與準(zhǔn)線的交點(diǎn)為,為上任意一點(diǎn),若,則()A.30° B.45° C.60° D.75°7.已知為等腰直角三角形,,,為所在平面內(nèi)一點(diǎn),且,則()A. B. C. D.8.直線l過(guò)拋物線的焦點(diǎn)且與拋物線交于A,B兩點(diǎn),則的最小值是A.10 B.9 C.8 D.79.若的展開式中的系數(shù)之和為,則實(shí)數(shù)的值為()A. B. C. D.110.第24屆冬奧會(huì)將于2022年2月4日至2月20日在北京市和張家口市舉行,為了解奧運(yùn)會(huì)會(huì)旗中五環(huán)所占面積與單獨(dú)五個(gè)環(huán)面積之和的比值P,某學(xué)生做如圖所示的模擬實(shí)驗(yàn):通過(guò)計(jì)算機(jī)模擬在長(zhǎng)為10,寬為6的長(zhǎng)方形奧運(yùn)會(huì)旗內(nèi)隨機(jī)取N個(gè)點(diǎn),經(jīng)統(tǒng)計(jì)落入五環(huán)內(nèi)部及其邊界上的點(diǎn)數(shù)為n個(gè),已知圓環(huán)半徑為1,則比值P的近似值為()A. B. C. D.11.設(shè)是虛數(shù)單位,若復(fù)數(shù),則()A. B. C. D.12.已知集合,,若,則實(shí)數(shù)的值可以為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知橢圓的下頂點(diǎn)為,若直線與橢圓交于不同的兩點(diǎn)、,則當(dāng)_____時(shí),外心的橫坐標(biāo)最大.14.有2名老師和3名同學(xué),將他們隨機(jī)地排成一行,用表示兩名老師之間的學(xué)生人數(shù),則對(duì)應(yīng)的排法有______種;______;15.已知等比數(shù)列滿足,,則該數(shù)列的前5項(xiàng)的和為______________.16.設(shè)命題:,,則:__________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù).(1)當(dāng)(為自然對(duì)數(shù)的底數(shù))時(shí),求函數(shù)的極值;(2)為的導(dǎo)函數(shù),當(dāng),時(shí),求證:.18.(12分)一個(gè)工廠在某年里連續(xù)10個(gè)月每月產(chǎn)品的總成本(萬(wàn)元)與該月產(chǎn)量(萬(wàn)件)之間有如下一組數(shù)據(jù):1.081.121.191.281.361.481.591.681.801.872.252.372.402.552.642.752.923.033.143.26(1)通過(guò)畫散點(diǎn)圖,發(fā)現(xiàn)可用線性回歸模型擬合與的關(guān)系,請(qǐng)用相關(guān)系數(shù)加以說(shuō)明;(2)①建立月總成本與月產(chǎn)量之間的回歸方程;②通過(guò)建立的關(guān)于的回歸方程,估計(jì)某月產(chǎn)量為1.98萬(wàn)件時(shí),產(chǎn)品的總成本為多少萬(wàn)元?(均精確到0.001)附注:①參考數(shù)據(jù):,,,,.②參考公式:相關(guān)系數(shù),,.19.(12分)在ABC中,角A,B,C的對(duì)邊分別為a,b,c,已知,(Ⅰ)求的大小;(Ⅱ)若,求面積的最大值.20.(12分)已知.(1)若是上的增函數(shù),求的取值范圍;(2)若函數(shù)有兩個(gè)極值點(diǎn),判斷函數(shù)零點(diǎn)的個(gè)數(shù).21.(12分)已知函數(shù),當(dāng)時(shí),有極大值3;(1)求,的值;(2)求函數(shù)的極小值及單調(diào)區(qū)間.22.(10分)在角中,角A、B、C的對(duì)邊分別是a、b、c,若.(1)求角A;(2)若的面積為,求的周長(zhǎng).

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】

由題先畫出基本圖形,結(jié)合向量加法和點(diǎn)乘運(yùn)算化簡(jiǎn)可得,結(jié)合的范圍即可求解【詳解】如圖,其中,所以.故選:A【點(diǎn)睛】本題考查向量的線性運(yùn)算在幾何中的應(yīng)用,數(shù)形結(jié)合思想,屬于中檔題2、B【解析】

因?yàn)?所以,所以或.若,則,滿足.若,解得或.若,則,滿足.若,顯然不成立,綜上或,選B.3、A【解析】

由于,且為單位向量,所以可令,,再設(shè)出單位向量的坐標(biāo),再將坐標(biāo)代入中,利用兩點(diǎn)間的距離的幾何意義可求出結(jié)果.【詳解】解:設(shè),,,則,從而,等號(hào)可取到.故選:A【點(diǎn)睛】此題考查的是平面向量的坐標(biāo)、模的運(yùn)算,利用整體代換,再結(jié)合距離公式求解,屬于難題.4、D【解析】

先求出集合A,B,再求集合B的補(bǔ)集,然后求【詳解】,所以.故選:D【點(diǎn)睛】此題考查的是集合的并集、補(bǔ)集運(yùn)算,屬于基礎(chǔ)題.5、B【解析】

構(gòu)造函數(shù),判斷出的單調(diào)性和奇偶性,由此求得不等式的解集.【詳解】構(gòu)造函數(shù),由解得,所以的定義域?yàn)?,且,所以為奇函?shù),而,所以在定義域上為增函數(shù),且.由得,即,所以.故選:B【點(diǎn)睛】本小題主要考查利用函數(shù)的單調(diào)性和奇偶性解不等式,屬于中檔題.6、C【解析】

如圖所示:作垂直于準(zhǔn)線交準(zhǔn)線于,則,故,得到答案.【詳解】如圖所示:作垂直于準(zhǔn)線交準(zhǔn)線于,則,在中,,故,即.故選:.【點(diǎn)睛】本題考查了拋物線中角度的計(jì)算,意在考查學(xué)生的計(jì)算能力和轉(zhuǎn)化能力.7、D【解析】

以AB,AC分別為x軸和y軸建立坐標(biāo)系,結(jié)合向量的坐標(biāo)運(yùn)算,可求得點(diǎn)的坐標(biāo),進(jìn)而求得,由平面向量的數(shù)量積可得答案.【詳解】如圖建系,則,,,由,易得,則.故選:D【點(diǎn)睛】本題考查平面向量基本定理的運(yùn)用、數(shù)量積的運(yùn)算,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力、運(yùn)算求解能力.8、B【解析】

根據(jù)拋物線中過(guò)焦點(diǎn)的兩段線段關(guān)系,可得;再由基本不等式可求得的最小值.【詳解】由拋物線標(biāo)準(zhǔn)方程可知p=2因?yàn)橹本€l過(guò)拋物線的焦點(diǎn),由過(guò)拋物線焦點(diǎn)的弦的性質(zhì)可知所以因?yàn)闉榫€段長(zhǎng)度,都大于0,由基本不等式可知,此時(shí)所以選B【點(diǎn)睛】本題考查了拋物線的基本性質(zhì)及其簡(jiǎn)單應(yīng)用,基本不等式的用法,屬于中檔題.9、B【解析】

由,進(jìn)而分別求出展開式中的系數(shù)及展開式中的系數(shù),令二者之和等于,可求出實(shí)數(shù)的值.【詳解】由,則展開式中的系數(shù)為,展開式中的系數(shù)為,二者的系數(shù)之和為,得.故選:B.【點(diǎn)睛】本題考查二項(xiàng)式定理的應(yīng)用,考查學(xué)生的計(jì)算求解能力,屬于基礎(chǔ)題.10、B【解析】

根據(jù)比例關(guān)系求得會(huì)旗中五環(huán)所占面積,再計(jì)算比值.【詳解】設(shè)會(huì)旗中五環(huán)所占面積為,由于,所以,故可得.故選:B.【點(diǎn)睛】本題考查面積型幾何概型的問(wèn)題求解,屬基礎(chǔ)題.11、A【解析】

結(jié)合復(fù)數(shù)的除法運(yùn)算和模長(zhǎng)公式求解即可【詳解】∵復(fù)數(shù),∴,,則,故選:A.【點(diǎn)睛】本題考查復(fù)數(shù)的除法、模長(zhǎng)、平方運(yùn)算,屬于基礎(chǔ)題12、D【解析】

由題意可得,根據(jù),即可得出,從而求出結(jié)果.【詳解】,且,,∴的值可以為.故選:D.【點(diǎn)睛】考查描述法表示集合的定義,以及并集的定義及運(yùn)算.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

由已知可得、的坐標(biāo),求得的垂直平分線方程,聯(lián)立已知直線方程與橢圓方程,求得的垂直平分線方程,兩垂直平分線方程聯(lián)立求得外心的橫坐標(biāo),再由導(dǎo)數(shù)求最值.【詳解】如圖,由已知條件可知,不妨設(shè),則外心在的垂直平分線上,即在直線,也就是在直線上,聯(lián)立,得或,的中點(diǎn)坐標(biāo)為,則的垂直平分線方程為,把代入上式,得,令,則,由,得(舍)或.當(dāng)時(shí),,當(dāng)時(shí),.當(dāng)時(shí),函數(shù)取極大值,亦為最大值.故答案為:.【點(diǎn)睛】本題考查直線與橢圓位置關(guān)系的應(yīng)用,訓(xùn)練了利用導(dǎo)數(shù)求最值,是中等題.14、36;1.【解析】

的可能取值為0,1,2,3,對(duì)應(yīng)的排法有:.分別求出,,,,由此能求出.【詳解】解:有2名老師和3名同學(xué),將他們隨機(jī)地排成一行,用表示兩名老師之間的學(xué)生人數(shù),則的可能取值為0,1,2,3,對(duì)應(yīng)的排法有:.∴對(duì)應(yīng)的排法有36種;,,,,∴故答案為:36;1.【點(diǎn)睛】本題考查了排列、組合的應(yīng)用,離散型隨機(jī)變量的分布列以及數(shù)學(xué)期望,屬于中檔題.15、31【解析】設(shè),可化為,得,,,16、,【解析】

存在符號(hào)改任意符號(hào),結(jié)論變相反.【詳解】命題是特稱命題,則為全稱命題,故將“”改為“”,將“”改為“”,故:,.故答案為:,.【點(diǎn)睛】本題考查全(特)稱命題.對(duì)全(特)稱命題進(jìn)行否定的方法:(1)改寫量詞:全稱量詞改寫為存在量詞,存在量詞改寫為全稱量詞;(2)否定結(jié)論:對(duì)于一般命題的否定只需直接否定結(jié)論即可.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)極大值,極小值;(2)詳見(jiàn)解析.【解析】

首先確定函數(shù)的定義域和;(1)當(dāng)時(shí),根據(jù)的正負(fù)可確定單調(diào)性,進(jìn)而確定極值點(diǎn),代入可求得極值;(2)通過(guò)分析法可將問(wèn)題轉(zhuǎn)化為證明,設(shè),令,利用導(dǎo)數(shù)可證得,進(jìn)而得到結(jié)論.【詳解】由題意得:定義域?yàn)?,,?)當(dāng)時(shí),,當(dāng)和時(shí),;當(dāng)時(shí),,在,上單調(diào)遞增,在上單調(diào)遞減,極大值為,極小值為.(2)要證:,即證:,即證:,化簡(jiǎn)可得:.,,即證:,設(shè),令,則,在上單調(diào)遞增,,則由,從而有:.【點(diǎn)睛】本題考查導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用,涉及到函數(shù)極值的求解、利用導(dǎo)數(shù)證明不等式的問(wèn)題;本題不等式證明的關(guān)鍵是能夠?qū)⒍鄠€(gè)變量的問(wèn)題轉(zhuǎn)化為一個(gè)變量的問(wèn)題,通過(guò)構(gòu)造函數(shù)的方式將問(wèn)題轉(zhuǎn)化為函數(shù)最值的求解問(wèn)題.18、(1)見(jiàn)解析;(2)①②3.386(萬(wàn)元)【解析】

(1)利用代入數(shù)值,求出后即可得解;(2)①計(jì)算出、后,利用求出后即可得解;②把代入線性回歸方程,計(jì)算即可得解.【詳解】(1)由已知條件得,,∴,說(shuō)明與正相關(guān),且相關(guān)性很強(qiáng).(2)①由已知求得,,所以,所求回歸直線方程為.②當(dāng)時(shí),(萬(wàn)元),此時(shí)產(chǎn)品的總成本約為3.386萬(wàn)元.【點(diǎn)睛】本題考查了相關(guān)系數(shù)的應(yīng)用以及線性回歸方程的求解和應(yīng)用,考查了計(jì)算能力,屬于中檔題.19、(1)(2)【解析】

分析:(1)利用正弦定理以及誘導(dǎo)公式與和角公式,結(jié)合特殊角的三角函數(shù)值,求得角C;(2)運(yùn)用向量的平方就是向量模的平方,以及向量數(shù)量積的定義,結(jié)合基本不等式,求得的最大值,再由三角形的面積公式計(jì)算即可得到所求的值.詳解:(1)∵,,(Ⅱ)取中點(diǎn),則,在中,,(注:也可將兩邊平方)即,,所以,當(dāng)且僅當(dāng)時(shí)取等號(hào).此時(shí),其最大值為.點(diǎn)睛:該題考查的是有關(guān)三角形的問(wèn)題,涉及到的知識(shí)點(diǎn)有正弦定理,誘導(dǎo)公式,和角公式,向量的平方即為向量模的平方,基本不等式,三角形的面積公式,在解題的過(guò)程中,需要正確使用相關(guān)的公式進(jìn)行運(yùn)算即可求得結(jié)果.20、(1)(2)三個(gè)零點(diǎn)【解析】

(1)由題意知恒成立,構(gòu)造函數(shù),對(duì)函數(shù)求導(dǎo),求得函數(shù)最值,進(jìn)而得到結(jié)果;(2)當(dāng)時(shí)先對(duì)函數(shù)求導(dǎo)研究函數(shù)的單調(diào)性可得到函數(shù)有兩個(gè)極值點(diǎn),再證,.【詳解】(1)由得,由題意知恒成立,即,設(shè),,時(shí),遞減,時(shí),,遞增;故,即,故的取值范圍是.(2)當(dāng)時(shí),單調(diào),無(wú)極值;當(dāng)時(shí),,一方面,,且在遞減,所以在區(qū)間有一個(gè)零點(diǎn).另一方面,,設(shè),則,從而在遞增,則,即,又在遞增,所以在區(qū)間有一個(gè)零點(diǎn).因此,當(dāng)時(shí)在和各有一個(gè)零點(diǎn),將這兩個(gè)零點(diǎn)記為,,當(dāng)時(shí),即;當(dāng)時(shí),即;當(dāng)時(shí),即:從而在遞增,在遞減,在遞增;于是是函數(shù)的極大值點(diǎn),是函數(shù)的極小值點(diǎn).下面證明:,由得,即,由得,令,則,①當(dāng)時(shí),遞減,則,而,故;②當(dāng)時(shí),遞減,則,而,故;一方面,因?yàn)?,又,且在遞增,所以在上有一個(gè)零點(diǎn),即在上有一個(gè)零點(diǎn).另一方面,根據(jù)得,則有:,又,且在遞增,故在上有一個(gè)零點(diǎn),故在上有一個(gè)零點(diǎn).又,故有三個(gè)零點(diǎn).【點(diǎn)睛】本題考查函數(shù)的零點(diǎn),導(dǎo)數(shù)的綜合應(yīng)用.在研究函數(shù)零點(diǎn)時(shí),有一種方法是把函數(shù)的零點(diǎn)轉(zhuǎn)化為方程的解,再把方程的解轉(zhuǎn)化為函數(shù)圖象的交點(diǎn),特別是利用分離參數(shù)法轉(zhuǎn)化為動(dòng)直線與函數(shù)圖象交點(diǎn)問(wèn)題,這樣就可利用導(dǎo)數(shù)研究新函數(shù)的單調(diào)性與極值,從而得出函數(shù)的變化趨勢(shì),得出結(jié)論.21、(1);(2)極小值為,遞減區(qū)間為:,遞增區(qū)間為.【解析】

(1)由題意得到關(guān)于實(shí)數(shù)的方程組,求解方程組,即可求得的值;(2)結(jié)合(1)中的值得出函數(shù)的解析式,即可利用導(dǎo)數(shù)求得函數(shù)的單調(diào)區(qū)間和極小值.【詳解】(1)由題意,函數(shù),則,由當(dāng)時(shí),有極大值,則,解得.(2)由(1)可得函數(shù)的解析式為,則,令,即,解得,令,即,解得或,所以函數(shù)的單調(diào)減區(qū)間為,遞增區(qū)間為,當(dāng)時(shí),函數(shù)取得極小值,極小值為.當(dāng)時(shí),有極大值3.【點(diǎn)睛】本題主要考查了函數(shù)的極值的概念,以及利用導(dǎo)數(shù)求解函數(shù)的單調(diào)區(qū)間和極值,其中解答中熟記函數(shù)的極值的概念,以及函數(shù)的導(dǎo)數(shù)與原函數(shù)的關(guān)系,準(zhǔn)確運(yùn)算是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.22、(1);(2)1.【解析】

(1)由正弦定理化簡(jiǎn)已知等式可得sinAsinB=sinBcosA,求得tanA=,結(jié)合范圍A∈(0,π),可求A=.(2)利用三角形的面積公式可求bc=8,由余弦定理解得b+c=7,即可得解△ABC的周長(zhǎng)的值.【詳解】(1)由題意,在中,因?yàn)?/p>

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論