版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2025屆吉林省長春市榆樹市第一高級(jí)中學(xué)高三最后一模數(shù)學(xué)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)拋物線的焦點(diǎn)為F,拋物線C與圓交于M,N兩點(diǎn),若,則的面積為()A. B. C. D.2.已知雙曲線:的左右焦點(diǎn)分別為,,為雙曲線上一點(diǎn),為雙曲線C漸近線上一點(diǎn),,均位于第一象限,且,,則雙曲線的離心率為()A. B. C. D.3.設(shè),,分別是中,,所對邊的邊長,則直線與的位置關(guān)系是()A.平行 B.重合C.垂直 D.相交但不垂直4.已知全集,集合,,則()A. B. C. D.5.已知為銳角,且,則等于()A. B. C. D.6.已知直線:與圓:交于,兩點(diǎn),與平行的直線與圓交于,兩點(diǎn),且與的面積相等,給出下列直線:①,②,③,④.其中滿足條件的所有直線的編號(hào)有()A.①② B.①④ C.②③ D.①②④7.在棱長為2的正方體ABCD?A1B1C1D1中,P為A1D1的中點(diǎn),若三棱錐P?ABC的四個(gè)頂點(diǎn)都在球O的球面上,則球O的表面積為()A.12 B. C. D.108.已知(i為虛數(shù)單位,),則ab等于()A.2 B.-2 C. D.9.函數(shù)的定義域?yàn)椋ǎ〢.或 B.或C. D.10.在正項(xiàng)等比數(shù)列{an}中,a5-a1=15,a4-a2=6,則a3=()A.2 B.4 C. D.811.為比較甲、乙兩名高二學(xué)生的數(shù)學(xué)素養(yǎng),對課程標(biāo)準(zhǔn)中規(guī)定的數(shù)學(xué)六大素養(yǎng)進(jìn)行指標(biāo)測驗(yàn)(指標(biāo)值滿分為5分,分值高者為優(yōu)),根據(jù)測驗(yàn)情況繪制了如圖所示的六大素養(yǎng)指標(biāo)雷達(dá)圖,則下面敘述正確的是()A.乙的數(shù)據(jù)分析素養(yǎng)優(yōu)于甲B.乙的數(shù)學(xué)建模素養(yǎng)優(yōu)于數(shù)學(xué)抽象素養(yǎng)C.甲的六大素養(yǎng)整體水平優(yōu)于乙D.甲的六大素養(yǎng)中數(shù)據(jù)分析最差12.趙爽是我國古代數(shù)學(xué)家、天文學(xué)家,大約公元222年,趙爽為《周髀算經(jīng)》一書作序時(shí),介紹了“勾股圓方圖”,又稱“趙爽弦圖”(以弦為邊長得到的正方形是由個(gè)全等的直角三角形再加上中間的一個(gè)小正方形組成的,如圖(1)),類比“趙爽弦圖”,可類似地構(gòu)造如圖(2)所示的圖形,它是由個(gè)全等的三角形與中間的一個(gè)小正六邊形組成的一個(gè)大正六邊形,設(shè),若在大正六邊形中隨機(jī)取一點(diǎn),則此點(diǎn)取自小正六邊形的概率為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知向量滿足,,則______________.14.已知,則________.(填“>”或“=”或“<”).15.如圖,在矩形中,為邊的中點(diǎn),,,分別以、為圓心,為半徑作圓弧、(在線段上).由兩圓弧、及邊所圍成的平面圖形繞直線旋轉(zhuǎn)一周,則所形成的幾何體的體積為.16.實(shí)數(shù)滿足,則的最大值為_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)某公園準(zhǔn)備在一圓形水池里設(shè)置兩個(gè)觀景噴泉,觀景噴泉的示意圖如圖所示,兩點(diǎn)為噴泉,圓心為的中點(diǎn),其中米,半徑米,市民可位于水池邊緣任意一點(diǎn)處觀賞.(1)若當(dāng)時(shí),,求此時(shí)的值;(2)設(shè),且.(i)試將表示為的函數(shù),并求出的取值范圍;(ii)若同時(shí)要求市民在水池邊緣任意一點(diǎn)處觀賞噴泉時(shí),觀賞角度的最大值不小于,試求兩處噴泉間距離的最小值.18.(12分)以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的參數(shù)方程是(為參數(shù),常數(shù)),曲線的極坐標(biāo)方程是.(1)寫出的普通方程及的直角坐標(biāo)方程,并指出是什么曲線;(2)若直線與曲線,均相切且相切于同一點(diǎn),求直線的極坐標(biāo)方程.19.(12分)如圖,已知四棱錐的底面是等腰梯形,,,,,為等邊三角形,且點(diǎn)P在底面上的射影為的中點(diǎn)G,點(diǎn)E在線段上,且.(1)求證:平面.(2)求二面角的余弦值.20.(12分)在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.(Ⅰ)求直線的直角坐標(biāo)方程與曲線的普通方程;(Ⅱ)已知點(diǎn)設(shè)直線與曲線相交于兩點(diǎn),求的值.21.(12分)已知函數(shù)(,為自然對數(shù)的底數(shù)),.(1)若有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍;(2)當(dāng)時(shí),對任意的恒成立,求實(shí)數(shù)的取值范圍.22.(10分)如圖,在四棱錐中,四邊形是直角梯形,底面,是的中點(diǎn).(1).求證:平面平面;(2).若二面角的余弦值為,求直線與平面所成角的正弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
由圓過原點(diǎn),知中有一點(diǎn)與原點(diǎn)重合,作出圖形,由,,得,從而直線傾斜角為,寫出點(diǎn)坐標(biāo),代入拋物線方程求出參數(shù),可得點(diǎn)坐標(biāo),從而得三角形面積.【詳解】由題意圓過原點(diǎn),所以原點(diǎn)是圓與拋物線的一個(gè)交點(diǎn),不妨設(shè)為,如圖,由于,,∴,∴,,∴點(diǎn)坐標(biāo)為,代入拋物線方程得,,∴,.故選:B.【點(diǎn)睛】本題考查拋物線與圓相交問題,解題關(guān)鍵是發(fā)現(xiàn)原點(diǎn)是其中一個(gè)交點(diǎn),從而是等腰直角三角形,于是可得點(diǎn)坐標(biāo),問題可解,如果僅從方程組角度研究兩曲線交點(diǎn),恐怕難度會(huì)大大增加,甚至沒法求解.2、D【解析】由雙曲線的方程的左右焦點(diǎn)分別為,為雙曲線上的一點(diǎn),為雙曲線的漸近線上的一點(diǎn),且都位于第一象限,且,可知為的三等分點(diǎn),且,點(diǎn)在直線上,并且,則,,設(shè),則,解得,即,代入雙曲線的方程可得,解得,故選D.點(diǎn)睛:本題考查了雙曲線的幾何性質(zhì),離心率的求法,考查了轉(zhuǎn)化思想以及運(yùn)算能力,雙曲線的離心率是雙曲線最重要的幾何性質(zhì),求雙曲線的離心率(或離心率的取值范圍),常見有兩種方法:①求出,代入公式;②只需要根據(jù)一個(gè)條件得到關(guān)于的齊次式,轉(zhuǎn)化為的齊次式,然后轉(zhuǎn)化為關(guān)于的方程(不等式),解方程(不等式),即可得(的取值范圍).3、C【解析】試題分析:由已知直線的斜率為,直線的斜率為,又由正弦定理得,故,兩直線垂直考點(diǎn):直線與直線的位置關(guān)系4、B【解析】
直接利用集合的基本運(yùn)算求解即可.【詳解】解:全集,集合,,則,故選:.【點(diǎn)睛】本題考查集合的基本運(yùn)算,屬于基礎(chǔ)題.5、C【解析】
由可得,再利用計(jì)算即可.【詳解】因?yàn)?,,所以,所?故選:C.【點(diǎn)睛】本題考查二倍角公式的應(yīng)用,考查學(xué)生對三角函數(shù)式化簡求值公式的靈活運(yùn)用的能力,屬于基礎(chǔ)題.6、D【解析】
求出圓心到直線的距離為:,得出,根據(jù)條件得出到直線的距離或時(shí)滿足條件,即可得出答案.【詳解】解:由已知可得:圓:的圓心為(0,0),半徑為2,則圓心到直線的距離為:,∴,而,與的面積相等,∴或,即到直線的距離或時(shí)滿足條件,根據(jù)點(diǎn)到直線距離可知,①②④滿足條件.故選:D.【點(diǎn)睛】本題考查直線與圓的位置關(guān)系的應(yīng)用,涉及點(diǎn)到直線的距離公式.7、C【解析】
取B1C1的中點(diǎn)Q,連接PQ,BQ,CQ,PD,則三棱柱BCQ?ADP為直三棱柱,此直三棱柱和三棱錐P?ABC有相同的外接球,求出等腰三角形的外接圓半徑,然后利用勾股定理可求出外接球的半徑【詳解】如圖,取B1C1的中點(diǎn)Q,連接PQ,BQ,CQ,PD,則三棱柱BCQ?ADP為直三棱柱,所以該直三棱柱的六個(gè)頂點(diǎn)都在球O的球面上,的外接圓直徑為,球O的半徑R滿足,所以球O的表面積S=4πR2=,故選:C.【點(diǎn)睛】此題考查三棱錐的外接球半徑與棱長的關(guān)系,及球的表面積公式,解題時(shí)要注意審題,注意空間思維能力的培養(yǎng),屬于中檔題.8、A【解析】
利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡,再由復(fù)數(shù)相等的條件列式求解.【詳解】,,得,..故選:.【點(diǎn)睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查復(fù)數(shù)相等的條件,意在考查學(xué)生對這些知識(shí)的理解掌握水平,是基礎(chǔ)題.9、A【解析】
根據(jù)偶次根式被開方數(shù)非負(fù)可得出關(guān)于的不等式,即可解得函數(shù)的定義域.【詳解】由題意可得,解得或.因此,函數(shù)的定義域?yàn)榛?故選:A.【點(diǎn)睛】本題考查具體函數(shù)定義域的求解,考查計(jì)算能力,屬于基礎(chǔ)題.10、B【解析】
根據(jù)題意得到,,解得答案.【詳解】,,解得或(舍去).故.故選:.【點(diǎn)睛】本題考查了等比數(shù)列的計(jì)算,意在考查學(xué)生的計(jì)算能力.11、C【解析】
根據(jù)題目所給圖像,填寫好表格,由表格數(shù)據(jù)選出正確選項(xiàng).【詳解】根據(jù)雷達(dá)圖得到如下數(shù)據(jù):數(shù)學(xué)抽象邏輯推理數(shù)學(xué)建模直觀想象數(shù)學(xué)運(yùn)算數(shù)據(jù)分析甲454545乙343354由數(shù)據(jù)可知選C.【點(diǎn)睛】本題考查統(tǒng)計(jì)問題,考查數(shù)據(jù)處理能力和應(yīng)用意識(shí).12、D【解析】
設(shè),則,小正六邊形的邊長為,利用余弦定理可得大正六邊形的邊長為,再利用面積之比可得結(jié)論.【詳解】由題意,設(shè),則,即小正六邊形的邊長為,所以,,,在中,由余弦定理得,即,解得,所以,大正六邊形的邊長為,所以,小正六邊形的面積為,大正六邊形的面積為,所以,此點(diǎn)取自小正六邊形的概率.故選:D.【點(diǎn)睛】本題考查概率的求法,考查余弦定理、幾何概型等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】
首先根據(jù)向量的數(shù)量積的運(yùn)算律求出,再根據(jù)計(jì)算可得;【詳解】解:因?yàn)?,所以又所以所以故答案為:【點(diǎn)睛】本題考查平面向量的數(shù)量積的運(yùn)算,屬于基礎(chǔ)題.14、【解析】
注意到,故只需比較與1的大小即可.【詳解】由已知,,故有.又由,故有.故答案為:.【點(diǎn)睛】本題考查對數(shù)式比較大小,涉及到換底公式的應(yīng)用,考查學(xué)生的數(shù)學(xué)運(yùn)算能力,是一道中檔題.15、【解析】由題意,可得所得到的幾何體是由一個(gè)圓柱挖去兩個(gè)半球而成;其中,圓柱的底面半徑為1,母線長為2;體積為;兩個(gè)半球的半徑都為1,則兩個(gè)半球的體積為;則所求幾何體的體積為.考點(diǎn):旋轉(zhuǎn)體的組合體.16、.【解析】
畫出可行域,解出可行域的頂點(diǎn)坐標(biāo),代入目標(biāo)函數(shù)求出相應(yīng)的數(shù)值,比較大小得到目標(biāo)函數(shù)最值.【詳解】解:作出可行域,如圖所示,則當(dāng)直線過點(diǎn)時(shí)直線的截距最大,z取最大值.由同理,,取最大值.故答案為:.【點(diǎn)睛】本題考查線性規(guī)劃的線性目標(biāo)函數(shù)的最優(yōu)解問題.線性目標(biāo)函數(shù)的最優(yōu)解一般在平面區(qū)域的頂點(diǎn)或邊界處取得,所以對于一般的線性規(guī)劃問題,若可行域是一個(gè)封閉的圖形,我們可以直接解出可行域的頂點(diǎn),然后將坐標(biāo)代入目標(biāo)函數(shù)求出相應(yīng)的數(shù)值,從而確定目標(biāo)函數(shù)的最值;若可行域不是封閉圖形還是需要借助截距的幾何意義來求最值.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)(i),;(ii).【解析】
(1)在中,由正弦定理可得所求;(2)(i)由余弦定理得,兩式相加可得所求解析式.(ii)在中,由余弦定理可得,根據(jù)的最大值不小于可得關(guān)于的不等式,解不等式可得所求.【詳解】(1)在中,由正弦定理得,所以,即.(2)(i)在中,由余弦定理得,在中,由余弦定理得,又所以,即.又,解得,所以所求關(guān)系式為,.(ii)當(dāng)觀賞角度的最大時(shí),取得最小值.在中,由余弦定理可得,因?yàn)榈淖畲笾挡恍∮?,所以,解得,?jīng)驗(yàn)證知,所以.即兩處噴泉間距離的最小值為.【點(diǎn)睛】本題考查解三角形在實(shí)際中的應(yīng)用,解題時(shí)要注意把條件轉(zhuǎn)化為三角形的邊或角,然后借助正余弦定理進(jìn)行求解.解題時(shí)要注意三角形邊角關(guān)系的運(yùn)用,同時(shí)還要注意所得結(jié)果要符合實(shí)際意義.18、(1),,表示以為圓心為半徑的圓;為拋物線;(2)【解析】
(1)消去參數(shù)的直角坐標(biāo)方程,利用,即得的直角坐標(biāo)方程;(2)由直線與拋物線相切,求導(dǎo)可得切線斜率,再由直線與圓相切,故切線與圓心與切點(diǎn)連線垂直,可求解得到切點(diǎn)坐標(biāo),即得解.【詳解】(1)消去參數(shù)的直角坐標(biāo)方程為:.的極坐標(biāo)方程.∵,.當(dāng)時(shí)表示以為圓心為半徑的圓;為拋物線.(2)設(shè)切點(diǎn)為,由于,則切線斜率為,由于直線與圓相切,故切線與圓心與切點(diǎn)連線垂直,故有,直線的直角坐標(biāo)方程為,所以的極坐標(biāo)方程為.【點(diǎn)睛】本題考查了極坐標(biāo),參數(shù)方程綜合,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.19、(1)證明見解析(2)【解析】
(1)由等腰梯形的性質(zhì)可證得,由射影可得平面,進(jìn)而求證;(2)取的中點(diǎn)F,連接,以G為原點(diǎn),所在直線為x軸,所在直線為y軸,所在直線為z軸,建立空間直角坐標(biāo)系,分別求得平面與平面的法向量,再利用數(shù)量積求解即可.【詳解】(1)在等腰梯形中,點(diǎn)E在線段上,且,點(diǎn)E為上靠近C點(diǎn)的四等分點(diǎn),,,,,點(diǎn)P在底面上的射影為的中點(diǎn)G,連接,平面,平面,.又,平面,平面,平面.(2)取的中點(diǎn)F,連接,以G為原點(diǎn),所在直線為x軸,所在直線為y軸,所在直線為z軸,建立空間直角坐標(biāo)系,如圖所示,由(1)易知,,,又,,,為等邊三角形,,則,,,,,,,,,設(shè)平面的法向量為,則,即,令,則,,,設(shè)平面的法向量為,則,即,令,則,,,設(shè)平面與平面的夾角為θ,則二面角的余弦值為.【點(diǎn)睛】本題考查線面垂直的證明,考查空間向量法求二面角,考查運(yùn)算能力與空間想象能力.20、(Ⅰ)直線的直角坐標(biāo)方程為;曲線的普通方程為;(Ⅱ).【解析】
(I)利用參數(shù)方程、普通方程、極坐標(biāo)方程間的互化公式即可;(II)將直線參數(shù)方程代入拋物線的普通方程,可得,而根據(jù)直線參數(shù)方程的幾何意義,知,代入即可解決.【詳解】由可得直線的直角坐標(biāo)方程為由曲線的參數(shù)方程,消去參數(shù)可得曲線的普通方程為.易知點(diǎn)在直線上,直線的參數(shù)方程為(為參數(shù)).將直線的參數(shù)方程代入曲線的普通方程,并整理得.設(shè)是方程的兩根,則有.【點(diǎn)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度高校教師高級(jí)職稱聘用協(xié)議5篇
- 2025年二手車買賣數(shù)據(jù)安全及隱私保護(hù)協(xié)議3篇
- 2025年度二零二五年度體育用品店租賃及銷售合同范本4篇
- 2025版美容美發(fā)店員工福利待遇與晉升管理合同4篇
- 對公金融產(chǎn)品的多場景創(chuàng)新研究
- 2025年度校園車位租賃及管理服務(wù)合同樣本3篇
- 2024水電工程設(shè)計(jì)與施工一體化合同范本3篇
- 2025年度專業(yè)廚房設(shè)備維修保養(yǎng)服務(wù)合同11篇
- 2025年度鋁扣板裝飾工程材料供應(yīng)合同范本3篇
- 個(gè)人借款用于二零二四年度創(chuàng)業(yè)投資合同3篇
- 工會(huì)換屆公示文件模板
- 江蘇省南京市協(xié)同體七校2024-2025學(xué)年高三上學(xué)期期中聯(lián)合考試英語試題答案
- 青島版二年級(jí)下冊三位數(shù)加減三位數(shù)豎式計(jì)算題200道及答案
- GB/T 12723-2024單位產(chǎn)品能源消耗限額編制通則
- GB/T 16288-2024塑料制品的標(biāo)志
- 麻風(fēng)病防治知識(shí)課件
- 干部職級(jí)晉升積分制管理辦法
- TSG ZF003-2011《爆破片裝置安全技術(shù)監(jiān)察規(guī)程》
- 2024年代理記賬工作總結(jié)6篇
- 電氣工程預(yù)算實(shí)例:清單與計(jì)價(jià)樣本
- VOC廢氣治理工程中電化學(xué)氧化技術(shù)的研究與應(yīng)用
評(píng)論
0/150
提交評(píng)論