新高考數(shù)學(xué)一輪復(fù)習(xí)第2章 第08講 函數(shù)與方程精講+精練(教師版)_第1頁
新高考數(shù)學(xué)一輪復(fù)習(xí)第2章 第08講 函數(shù)與方程精講+精練(教師版)_第2頁
新高考數(shù)學(xué)一輪復(fù)習(xí)第2章 第08講 函數(shù)與方程精講+精練(教師版)_第3頁
新高考數(shù)學(xué)一輪復(fù)習(xí)第2章 第08講 函數(shù)與方程精講+精練(教師版)_第4頁
新高考數(shù)學(xué)一輪復(fù)習(xí)第2章 第08講 函數(shù)與方程精講+精練(教師版)_第5頁
已閱讀5頁,還剩36頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

第08講函數(shù)與方程(精講+精練)目錄第一部分:知識(shí)點(diǎn)精準(zhǔn)記憶第二部分:課前自我評(píng)估測(cè)試第三部分:典型例題剖析高頻考點(diǎn)一:函數(shù)零點(diǎn)所在區(qū)間的判斷高頻考點(diǎn)二:函數(shù)零點(diǎn)個(gè)數(shù)的判斷高頻考點(diǎn)三:根據(jù)零點(diǎn)個(gè)數(shù)求函數(shù)解析式中的參數(shù)高頻考點(diǎn)四:比較零點(diǎn)大小關(guān)系高頻考點(diǎn)五:求零點(diǎn)和高頻考點(diǎn)六:根據(jù)零點(diǎn)所在區(qū)間求參數(shù)高頻考點(diǎn)七:二分法求零點(diǎn)第四部分:高考真題感悟第五部分:第08講函數(shù)與方程(精練)第一部分:知識(shí)點(diǎn)精準(zhǔn)記憶第一部分:知識(shí)點(diǎn)精準(zhǔn)記憶1、函數(shù)的零點(diǎn)對(duì)于一般函數(shù)SKIPIF1<0,我們把使SKIPIF1<0成立的實(shí)數(shù)SKIPIF1<0叫做函數(shù)SKIPIF1<0的零點(diǎn).注意函數(shù)的零點(diǎn)不是點(diǎn),是一個(gè)數(shù).2、函數(shù)的零點(diǎn)與方程的根之間的聯(lián)系函數(shù)SKIPIF1<0的零點(diǎn)就是方程SKIPIF1<0的實(shí)數(shù)根,也就是函數(shù)SKIPIF1<0的圖象與SKIPIF1<0軸的交點(diǎn)的橫坐標(biāo)即方程SKIPIF1<0有實(shí)數(shù)根SKIPIF1<0函數(shù)SKIPIF1<0的圖象與SKIPIF1<0軸有交點(diǎn)SKIPIF1<0函數(shù)SKIPIF1<0有零點(diǎn).3、零點(diǎn)存在性定理如果函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上的圖象是連續(xù)不斷的一條曲線,并且有SKIPIF1<0,那么,函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)有零點(diǎn),即存在SKIPIF1<0,使得SKIPIF1<0,這個(gè)SKIPIF1<0也就是方程SKIPIF1<0的根.注:上述定理只能判斷出零點(diǎn)存在,不能確定零點(diǎn)個(gè)數(shù).4、二分法對(duì)于在區(qū)間上連續(xù)不斷且SKIPIF1<0的函數(shù)SKIPIF1<0,通過不斷地把函數(shù)SKIPIF1<0的零點(diǎn)所在的區(qū)間一分為二,使區(qū)間的兩個(gè)端點(diǎn)逐步逼近零點(diǎn),進(jìn)而得到零點(diǎn)近似值的方法叫做二分法.求方程SKIPIF1<0的近似解就是求函數(shù)SKIPIF1<0零點(diǎn)的近似值.5、高頻考點(diǎn)技巧①若連續(xù)不斷的函數(shù)是定義域上的單調(diào)函數(shù),則至多有一個(gè)零點(diǎn);②連續(xù)不斷的函數(shù),其相鄰兩個(gè)零點(diǎn)之間的所有函數(shù)值保持同號(hào);③函數(shù)SKIPIF1<0有零點(diǎn)SKIPIF1<0方程SKIPIF1<0有實(shí)數(shù)根SKIPIF1<0函數(shù)SKIPIF1<0與SKIPIF1<0的圖象有交點(diǎn);④函數(shù)SKIPIF1<0有零點(diǎn)SKIPIF1<0方程SKIPIF1<0有實(shí)數(shù)根SKIPIF1<0函數(shù)SKIPIF1<0與SKIPIF1<0的圖象有交點(diǎn)SKIPIF1<0SKIPIF1<0,其中SKIPIF1<0為常數(shù).第二部分:課前自我評(píng)估測(cè)試第二部分:課前自我評(píng)估測(cè)試1.(2022·廣東中山·高一期末)函數(shù)SKIPIF1<0的零點(diǎn)所在的區(qū)間為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】ASKIPIF1<0在SKIPIF1<0上遞增,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0的零點(diǎn)在區(qū)間SKIPIF1<0.故選:A2.(2022·江蘇·南京市第二十九中學(xué)高一開學(xué)考試)用二分法研究函數(shù)SKIPIF1<0的零點(diǎn)時(shí),第一次經(jīng)過計(jì)算得SKIPIF1<0,SKIPIF1<0,則其中一個(gè)零點(diǎn)所在區(qū)間和第二次應(yīng)計(jì)算的函數(shù)值分別為(

)A.SKIPIF1<0,SKIPIF1<0 B.SKIPIF1<0,SKIPIF1<0C.SKIPIF1<0,SKIPIF1<0 D.SKIPIF1<0,SKIPIF1<0【答案】D因?yàn)镾KIPIF1<0,由零點(diǎn)存在性知:零點(diǎn)SKIPIF1<0,根據(jù)二分法,第二次應(yīng)計(jì)算SKIPIF1<0,即SKIPIF1<0,故選:D.3.(2022·廣西玉林·高一期末)若函數(shù)SKIPIF1<0的零點(diǎn)所在的區(qū)間為SKIPIF1<0,則實(shí)數(shù)a的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C易知函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,且函數(shù)SKIPIF1<0零點(diǎn)所在的區(qū)間為SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0.故選:C4.(2022·福建南平·高一期末)函數(shù)SKIPIF1<0的零點(diǎn)為SKIPIF1<0,SKIPIF1<0SKIPIF1<0,則SKIPIF1<0的值為(

)A.1 B.2 C.3 D.4【答案】CSKIPIF1<0是SKIPIF1<0上的增函數(shù),又SKIPIF1<0,SKIPIF1<0函數(shù)SKIPIF1<0的零點(diǎn)SKIPIF1<0所在區(qū)間為SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0.故選:C.5.(2022·江蘇淮安·高一期末)已知SKIPIF1<0,SKIPIF1<0均為SKIPIF1<0上連續(xù)不斷的曲線,根據(jù)下表能判斷方程SKIPIF1<0有實(shí)數(shù)解的區(qū)間是(

)x-10123SKIPIF1<0-0.6703.0115.4325.9807.651SKIPIF1<0-0.5303.4514.8905.2416.892A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B令SKIPIF1<0可得:SKIPIF1<0,SKIPIF1<0由題意得SKIPIF1<0連續(xù),根據(jù)函數(shù)的零點(diǎn)判定定理可知:SKIPIF1<0在SKIPIF1<0上有零點(diǎn)故SKIPIF1<0在SKIPIF1<0上有解故選:B第三部分:典型例題剖析第三部分:典型例題剖析高頻考點(diǎn)一:函數(shù)零點(diǎn)所在區(qū)間的判斷1.(2022·江西省銅鼓中學(xué)高一開學(xué)考試)方程SKIPIF1<0的解所在的區(qū)間為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B設(shè)SKIPIF1<0,易知SKIPIF1<0在定義域SKIPIF1<0內(nèi)是增函數(shù),又SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0的零點(diǎn)在SKIPIF1<0上,即題中方程的根屬于SKIPIF1<0.故選:B.2.(2022·安徽·池州市第一中學(xué)高一階段練習(xí))函數(shù)SKIPIF1<0的零點(diǎn)所在的一個(gè)區(qū)間是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】BSKIPIF1<0,且SKIPIF1<0是單調(diào)遞減函數(shù),故函數(shù)SKIPIF1<0的零點(diǎn)所在的一個(gè)區(qū)間是SKIPIF1<0,故選:B3.(2022·黑龍江·佳木斯一中高一期末)函數(shù)SKIPIF1<0的零點(diǎn)所在區(qū)間是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B函數(shù)的定義域?yàn)镾KIPIF1<0,且函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減;SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,所以函數(shù)SKIPIF1<0為定義在SKIPIF1<0上的連續(xù)減函數(shù),又當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,兩函數(shù)值異號(hào),所以函數(shù)SKIPIF1<0的零點(diǎn)所在區(qū)間是SKIPIF1<0,故選:B.4.(2022·黑龍江·雙鴨山一中高三期末(理))函數(shù)SKIPIF1<0的零點(diǎn)所在的區(qū)間為(

)SKIPIF1<0A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】BSKIPIF1<0,由對(duì)數(shù)函數(shù)和冪函數(shù)的性質(zhì)可知,函數(shù)在SKIPIF1<0時(shí)為單調(diào)增函數(shù),SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,因?yàn)镾KIPIF1<0在SKIPIF1<0內(nèi)是遞增,故SKIPIF1<0,函數(shù)是連續(xù)函數(shù),由零點(diǎn)判斷定理知,SKIPIF1<0的零點(diǎn)在區(qū)間SKIPIF1<0內(nèi),故選:B.高頻考點(diǎn)二:函數(shù)零點(diǎn)個(gè)數(shù)的判斷1.(2022·安徽省蚌埠第三中學(xué)高一開學(xué)考試)已知函數(shù)SKIPIF1<0的圖像是連續(xù)不斷的,且SKIPIF1<0,SKIPIF1<0有如下的對(duì)應(yīng)值表:SKIPIF1<0123456SKIPIF1<0123.5621.45SKIPIF1<07.8211.57SKIPIF1<053.76SKIPIF1<0126.49則函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上的零點(diǎn)有(

)A.兩個(gè) B.3個(gè) C.至多兩個(gè) D.至少三個(gè)【答案】D因?yàn)楹瘮?shù)SKIPIF1<0的圖像是連續(xù)不斷的,且SKIPIF1<0,所以SKIPIF1<0在區(qū)間SKIPIF1<0上至少有1個(gè)零點(diǎn),因?yàn)楹瘮?shù)SKIPIF1<0的圖像是連續(xù)不斷的,且SKIPIF1<0,所以SKIPIF1<0在區(qū)間SKIPIF1<0上至少有1個(gè)零點(diǎn),因?yàn)楹瘮?shù)SKIPIF1<0的圖像是連續(xù)不斷的,且SKIPIF1<0,所以SKIPIF1<0在區(qū)間SKIPIF1<0上至少有1個(gè)零點(diǎn),綜上,函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上的零點(diǎn)至少有3個(gè),故選:D2.(2022·山東省實(shí)驗(yàn)中學(xué)高三階段練習(xí))已知函數(shù)SKIPIF1<0,則函數(shù)SKIPIF1<0的零點(diǎn)個(gè)數(shù)是(

)A.2 B.3 C.4 D.5【答案】D令SKIPIF1<0.①當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,由于SKIPIF1<0,由零點(diǎn)存在定理可知,存在SKIPIF1<0,使得SKIPIF1<0;②當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,由SKIPIF1<0,解得SKIPIF1<0.作出函數(shù)SKIPIF1<0,直線SKIPIF1<0的圖象如下圖所示:由圖象可知,直線SKIPIF1<0與函數(shù)SKIPIF1<0的圖象有兩個(gè)交點(diǎn);直線SKIPIF1<0與函數(shù)SKIPIF1<0的圖象有兩個(gè)交點(diǎn);直線SKIPIF1<0與函數(shù)SKIPIF1<0的圖象有且只有一個(gè)交點(diǎn).綜上所述,函數(shù)SKIPIF1<0的零點(diǎn)個(gè)數(shù)為5.故選:D.3.(2022·全國·模擬預(yù)測(cè))已知函數(shù)SKIPIF1<0,則函數(shù)SKIPIF1<0的零點(diǎn)個(gè)數(shù)為(

)A.4 B.5 C.6 D.7【答案】D當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0;以此類推,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;…;在平面直角坐標(biāo)系中作出函數(shù)SKIPIF1<0與SKIPIF1<0的部分圖象如圖所示.由圖可知,SKIPIF1<0與SKIPIF1<0的圖象有7個(gè)不同的交點(diǎn)故選:D4.(2022·全國·高三專題練習(xí))已知SKIPIF1<0,給出下列四個(gè)結(jié)論:(1)若SKIPIF1<0,則SKIPIF1<0有兩個(gè)零點(diǎn);(2)SKIPIF1<0,使得SKIPIF1<0有一個(gè)零點(diǎn);(3)SKIPIF1<0,使得SKIPIF1<0有三個(gè)零點(diǎn);(4)SKIPIF1<0,使得SKIPIF1<0有三個(gè)零點(diǎn).以上正確結(jié)論的序號(hào)是__.【答案】(1)(2)(4)函數(shù)SKIPIF1<0的零點(diǎn)的個(gè)數(shù)可轉(zhuǎn)化為函數(shù)SKIPIF1<0與直線SKIPIF1<0的交點(diǎn)的個(gè)數(shù);作函數(shù)SKIPIF1<0與直線SKIPIF1<0的圖象如圖,若SKIPIF1<0,則函數(shù)SKIPIF1<0與直線SKIPIF1<0的圖象在SKIPIF1<0與SKIPIF1<0上各有一個(gè)交點(diǎn),則SKIPIF1<0有兩個(gè)零點(diǎn),故(1)正確;若SKIPIF1<0,則當(dāng)函數(shù)SKIPIF1<0與直線SKIPIF1<0的圖象相切時(shí),SKIPIF1<0有一個(gè)零點(diǎn),故(2)正確;當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0與直線SKIPIF1<0的圖象至多有兩個(gè)交點(diǎn),故(3)不正確;當(dāng)SKIPIF1<0且SKIPIF1<0足夠小時(shí),函數(shù)SKIPIF1<0與直線SKIPIF1<0的圖象在SKIPIF1<0與SKIPIF1<0上分別有1個(gè)、2個(gè)交點(diǎn),故(4)正確;故答案為:(1)(2)(4).5.(2022·重慶九龍坡·高一期末)若函數(shù)SKIPIF1<0滿足SKIPIF1<0,且SKIPIF1<0時(shí),SKIPIF1<0,已知函數(shù)SKIPIF1<0,則函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)的零點(diǎn)的個(gè)數(shù)為__________.【答案】10解:因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以函數(shù)SKIPIF1<0是以2為周期的周期函數(shù),令SKIPIF1<0,則SKIPIF1<0,在同一平面直角坐標(biāo)系中作出函數(shù)SKIPIF1<0的圖像,如圖所示,由圖可知函數(shù)SKIPIF1<0有10個(gè)交點(diǎn),所以函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)的零點(diǎn)有10個(gè).故答案為:10.高頻考點(diǎn)三:根據(jù)零點(diǎn)個(gè)數(shù)求函數(shù)解析式中的參數(shù)1.(2022·浙江·高三專題練習(xí))已知函數(shù)SKIPIF1<0恰有SKIPIF1<0個(gè)零點(diǎn),則實(shí)數(shù)SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A由題意,函數(shù)SKIPIF1<0,的圖象如圖:方程SKIPIF1<0的解為SKIPIF1<0,方程SKIPIF1<0的解為SKIPIF1<0或SKIPIF1<0;①當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0恰有兩個(gè)零點(diǎn)SKIPIF1<0,3;②當(dāng)SKIPIF1<0時(shí),函數(shù)有2個(gè)零點(diǎn)SKIPIF1<0,5;則實(shí)數(shù)m的取值范圍是:SKIPIF1<0.故選:A.2.(2022·上海楊浦·高一期末)已知函數(shù)SKIPIF1<0若函數(shù)SKIPIF1<0存在零點(diǎn),則實(shí)數(shù)a的取值范圍是()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B如圖所示:指數(shù)函數(shù)SKIPIF1<0,沒有零點(diǎn),SKIPIF1<0有唯一的零點(diǎn)SKIPIF1<0,所以若函數(shù)SKIPIF1<0存在零點(diǎn),須SKIPIF1<0有零點(diǎn),即SKIPIF1<0,所以SKIPIF1<0,故選:B.3.(2022·北京大興·高一期末)若函數(shù)SKIPIF1<0恰有SKIPIF1<0個(gè)零點(diǎn),則SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D因?yàn)镾KIPIF1<0時(shí)至多有一個(gè)零點(diǎn),單調(diào)函數(shù)SKIPIF1<0至多一個(gè)零點(diǎn),而函數(shù)SKIPIF1<0恰有SKIPIF1<0個(gè)零點(diǎn),所以需滿足SKIPIF1<0有1個(gè)零點(diǎn),SKIPIF1<0有1個(gè)零點(diǎn),所以SKIPIF1<0,解得SKIPIF1<0,故選:D4.(2022·福建龍巖·高一期末)若函數(shù)SKIPIF1<0在SKIPIF1<0上存在零點(diǎn),則實(shí)數(shù)SKIPIF1<0的取值范圍是________.【答案】SKIPIF1<0解:令SKIPIF1<0,則有SKIPIF1<0,原命題等價(jià)于函數(shù)SKIPIF1<0與SKIPIF1<0在SKIPIF1<0上有交點(diǎn),又因?yàn)镾KIPIF1<0在SKIPIF1<0上單調(diào)遞減,且當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,當(dāng)SKIPIF1<0時(shí),作出兩函數(shù)的圖像,則兩函數(shù)在SKIPIF1<0上必有交點(diǎn),滿足題意;當(dāng)SKIPIF1<0時(shí),如圖所示,只需SKIPIF1<0,解得SKIPIF1<0,即SKIPIF1<0,綜上所述實(shí)數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0.故答案為:SKIPIF1<0.5.(2022·山西省長治市第二中學(xué)校高一期末)已知函數(shù)SKIPIF1<0,則使函數(shù)SKIPIF1<0有零點(diǎn)的實(shí)數(shù)SKIPIF1<0的取值范圍是____________【答案】SKIPIF1<0令SKIPIF1<0,現(xiàn)作出SKIPIF1<0的圖象,如圖:于是,當(dāng)SKIPIF1<0時(shí),圖象有交點(diǎn),即函數(shù)SKIPIF1<0有零點(diǎn).故答案為:SKIPIF1<0.6.(2022·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0,SKIPIF1<0.(1)求SKIPIF1<0的解析式.(2)若方程SKIPIF1<0有實(shí)數(shù)根,求實(shí)數(shù)a的取值范圍.【答案】(1)SKIPIF1<0,SKIPIF1<0;(2)SKIPIF1<0.解:(1)設(shè)SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0;且SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0;(2)設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以當(dāng)SKIPIF1<0時(shí)函數(shù)有最小值SKIPIF1<0,而SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.【點(diǎn)睛】本題主要考查的是換元法求函數(shù)的解析式,利用函數(shù)值域求參數(shù)范圍的問題,需要注意:(1)采用換元法求解函數(shù)解析式時(shí),注意換元必?fù)Q域,不要漏掉SKIPIF1<0的范圍;(2)求解參數(shù)范圍時(shí)需要轉(zhuǎn)化為求解函數(shù)的最值問題,即求函數(shù)的值域,再利用SKIPIF1<0的范圍解不等式即可,需要注意定義域的限制.高頻考點(diǎn)四:比較零點(diǎn)大小關(guān)系1.(2022·浙江·於潛中學(xué)高二期中)已知函數(shù)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的零點(diǎn)分別為a,b,c,則(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B解:在同一坐標(biāo)系中作出SKIPIF1<0的圖象,由圖象知:SKIPIF1<0,故選:B2.(2022·河北石家莊·高三階段練習(xí))若SKIPIF1<0,則下列不等關(guān)系一定不成立的是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D由SKIPIF1<0,得SKIPIF1<0.由SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0,作函數(shù)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的圖象,再作直線SKIPIF1<0.變換m的值發(fā)現(xiàn):SKIPIF1<0,SKIPIF1<0,SKIPIF1<0均能夠成立,D不可能成立.故選:D.3.(2022·山東濰坊·高三期末)已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B在同一坐標(biāo)系中分別畫出SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的圖象,SKIPIF1<0與SKIPIF1<0的交點(diǎn)的橫坐標(biāo)為SKIPIF1<0,SKIPIF1<0與SKIPIF1<0的圖象的交點(diǎn)的橫坐標(biāo)為SKIPIF1<0,SKIPIF1<0與SKIPIF1<0的圖象的交點(diǎn)的橫坐標(biāo)為SKIPIF1<0,從圖象可以看出.SKIPIF1<0故選:B4.(2022·湖北·鄂州市鄂城區(qū)教學(xué)研究室高一期末)已知方程SKIPIF1<0、SKIPIF1<0、SKIPIF1<0的根分別為a,b,c,則a,b,c的大小順序?yàn)椋?/p>

).A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B由SKIPIF1<0得SKIPIF1<0,SKIPIF1<0,由方程SKIPIF1<0得SKIPIF1<0的根為a,由方程SKIPIF1<0得SKIPIF1<0的根為b.在同一平面直角坐標(biāo)系中畫出SKIPIF1<0、SKIPIF1<0、SKIPIF1<0的圖象,由圖象知,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.故選:B5.(2022·江蘇蘇州·高一期末)若實(shí)數(shù)SKIPIF1<0、SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0、SKIPIF1<0的大小關(guān)系SKIPIF1<0__SKIPIF1<0(填“SKIPIF1<0”,“SKIPIF1<0”或“SKIPIF1<0”).【答案】SKIPIF1<0解:SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0為函數(shù)SKIPIF1<0與函數(shù)SKIPIF1<0圖象交點(diǎn)的橫坐標(biāo),SKIPIF1<0為函數(shù)SKIPIF1<0與函數(shù)SKIPIF1<0圖象交點(diǎn)的橫坐標(biāo),在同一直角坐標(biāo)系畫出函數(shù)SKIPIF1<0、SKIPIF1<0、SKIPIF1<0的圖象如下,由圖知SKIPIF1<0,故答案為:SKIPIF1<0.6.(2022·江蘇·高一)已知函數(shù)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的零點(diǎn)依次為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的大小關(guān)系是________.【答案】SKIPIF1<0解:令SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0的零點(diǎn)為函數(shù)SKIPIF1<0與SKIPIF1<0交點(diǎn)的橫坐標(biāo),令SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0的零點(diǎn)為函數(shù)SKIPIF1<0與SKIPIF1<0交點(diǎn)的橫坐標(biāo),令SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0的零點(diǎn)為函數(shù)SKIPIF1<0與SKIPIF1<0交點(diǎn)的橫坐標(biāo),畫出函數(shù)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的圖象,如圖所示,觀察圖象可知,函數(shù)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的零點(diǎn)依次是點(diǎn)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的橫坐標(biāo),由圖象可知SKIPIF1<0.故答案為:SKIPIF1<0.高頻考點(diǎn)五:求零點(diǎn)和1.(2022·天津市新華中學(xué)高三期末)已知函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,且SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0若關(guān)于x的方程SKIPIF1<0在SKIPIF1<0上所有實(shí)數(shù)解的和為15,則實(shí)數(shù)k的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D∵SKIPIF1<0,∴SKIPIF1<0在SKIPIF1<0上的圖象,可由SKIPIF1<0在SKIPIF1<0上的圖象向右平移SKIPIF1<0個(gè)單位,再將縱坐標(biāo)伸長為原來的SKIPIF1<0倍得到,同理,可畫出函數(shù)SKIPIF1<0在SKIPIF1<0上的大致圖象,如圖,作出函數(shù)SKIPIF1<0及SKIPIF1<0在SKIPIF1<0上的大致圖象,由條件可得,①當(dāng)SKIPIF1<0時(shí),SKIPIF1<0與SKIPIF1<0圖象的交點(diǎn)兩兩一組分別關(guān)于直線SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0對(duì)稱,則實(shí)數(shù)解的和為SKIPIF1<0;②當(dāng)SKIPIF1<0時(shí),SKIPIF1<0與SKIPIF1<0圖象的交點(diǎn)兩兩一組分別關(guān)于直線SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0對(duì)稱,則實(shí)數(shù)解的和為SKIPIF1<0;③當(dāng)SKIPIF1<0時(shí),SKIPIF1<0與SKIPIF1<0圖象的交點(diǎn)兩兩一組分別關(guān)于直線SKIPIF1<0,SKIPIF1<0,SKIPIF1<0對(duì)稱,則實(shí)數(shù)解的和為SKIPIF1<0;④當(dāng)SKIPIF1<0時(shí),SKIPIF1<0與SKIPIF1<0圖象的交點(diǎn)兩兩一組分別關(guān)于直線SKIPIF1<0,SKIPIF1<0對(duì)稱,則實(shí)數(shù)解的和為SKIPIF1<0;⑤當(dāng)SKIPIF1<0時(shí),SKIPIF1<0與SKIPIF1<0圖象的兩個(gè)交點(diǎn)關(guān)于直線SKIPIF1<0對(duì)稱,則實(shí)數(shù)解的和為SKIPIF1<0;經(jīng)驗(yàn)證,當(dāng)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0及SKIPIF1<0或SKIPIF1<0時(shí),均不符合題意.綜上所述,SKIPIF1<0.故選:D.2.(2022·安徽蚌埠·高三期末(文))已知函數(shù)SKIPIF1<0有四個(gè)不同的零點(diǎn)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的值為(

)A.0 B.2 C.-1 D.-2【答案】D函數(shù)SKIPIF1<0有四個(gè)不同的零點(diǎn),即方程SKIPIF1<0有四個(gè)不同的解,令SKIPIF1<0,SKIPIF1<0,即函數(shù)SKIPIF1<0的圖象與SKIPIF1<0有四個(gè)不同的交點(diǎn),兩函數(shù)圖象在同一個(gè)直角坐標(biāo)系下的圖象如下圖所示:所以SKIPIF1<0,不妨設(shè)SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0.故選:D3.(2022·浙江·高三專題練習(xí))設(shè)函數(shù)SKIPIF1<0,若互不相等的實(shí)數(shù)SKIPIF1<0、SKIPIF1<0、SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B因?yàn)镾KIPIF1<0,即SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,作出函數(shù)SKIPIF1<0的圖象如下圖所示:由圖象可知,點(diǎn)SKIPIF1<0、SKIPIF1<0關(guān)于直線SKIPIF1<0對(duì)稱,則SKIPIF1<0,由圖可知,SKIPIF1<0,因此,SKIPIF1<0.故選:B.4.(2022·江蘇·高一期末)已知函數(shù)SKIPIF1<0,若存在SKIPIF1<0,使得SKIPIF1<0,則SKIPIF1<0的取值范圍是___________.【答案】SKIPIF1<0作出函數(shù)SKIPIF1<0的圖象,由圖知當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0令SKIPIF1<0,若存在SKIPIF1<0,使得SKIPIF1<0,由圖可得SKIPIF1<0,由SKIPIF1<0即SKIPIF1<0,所以SKIPIF1<0,因?yàn)楹瘮?shù)SKIPIF1<0的對(duì)稱軸為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,故答案為:SKIPIF1<0.5.(2022·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0是定義在SKIPIF1<0上的奇函數(shù),且當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則函數(shù)SKIPIF1<0的所有零點(diǎn)的和為_________【答案】3∵SKIPIF1<0是定義在R上的奇函數(shù),且當(dāng)SKIPIF1<0時(shí),SKIPIF1<0∴當(dāng)SKIPIF1<0時(shí),SKIPIF1<0則SKIPIF1<0即SKIPIF1<0.則SKIPIF1<0作出SKIPIF1<0的圖象如圖所示:∵SKIPIF1<0的圖象與SKIPIF1<0的圖象關(guān)于SKIPIF1<0對(duì)稱∴作出SKIPIF1<0的圖象,由圖象知SKIPIF1<0與SKIPIF1<0的圖象有三個(gè)交點(diǎn)即SKIPIF1<0有三個(gè)根,其中一個(gè)根為1,另外兩個(gè)根SKIPIF1<0關(guān)于SKIPIF1<0對(duì)稱即SKIPIF1<0則所有解的和為SKIPIF1<0.故答案為:3高頻考點(diǎn)六:根據(jù)零點(diǎn)所在區(qū)間求參數(shù)1.(2022·海南·高一期末)若函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)存在零點(diǎn),則實(shí)數(shù)SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)存在零點(diǎn),且函數(shù)在定義域內(nèi)單調(diào)遞增,由零點(diǎn)存在性定理知SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0所以實(shí)數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0故選:B2.(2022·全國·高三專題練習(xí))函數(shù)SKIPIF1<0的一個(gè)零點(diǎn)在區(qū)間SKIPIF1<0內(nèi),則實(shí)數(shù)SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D∵SKIPIF1<0和SKIPIF1<0在SKIPIF1<0上是增函數(shù),∴SKIPIF1<0在SKIPIF1<0上是增函數(shù),∴只需SKIPIF1<0即可,即SKIPIF1<0,解得SKIPIF1<0.故選:D.3.(多選)(2022·江蘇省太湖高級(jí)中學(xué)高二階段練習(xí))函數(shù)SKIPIF1<0的一個(gè)零點(diǎn)在區(qū)間SKIPIF1<0內(nèi),則實(shí)數(shù)a的可能取值是(

)A.0 B.1 C.2 D.3【答案】BC因?yàn)楹瘮?shù)SKIPIF1<0在定義域SKIPIF1<0上單調(diào)遞增,所以函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,由函數(shù)SKIPIF1<0的一個(gè)零點(diǎn)在區(qū)間SKIPIF1<0內(nèi),得SKIPIF1<0,解得SKIPIF1<0,故選:BC4.(2022·上海市建平中學(xué)高一期末)若函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上有零點(diǎn),則實(shí)數(shù)SKIPIF1<0的取值范圍是________.【答案】SKIPIF1<0因?yàn)楹瘮?shù)SKIPIF1<0在區(qū)間SKIPIF1<0上有零點(diǎn),則SKIPIF1<0=SKIPIF1<0,解得SKIPIF1<0.即實(shí)數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0.故答案為SKIPIF1<0.5.(2022·湖北省廣水市實(shí)驗(yàn)高級(jí)中學(xué)高一階段練習(xí))已知函數(shù)SKIPIF1<0,SKIPIF1<0(1)若函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上存在零點(diǎn),求實(shí)數(shù)a的取值范圍;【答案】(1)SKIPIF1<0(1)SKIPIF1<0的圖象開口向上,對(duì)稱軸為SKIPIF1<0,所以函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減.因?yàn)楹瘮?shù)SKIPIF1<0在區(qū)間SKIPIF1<0上存在零點(diǎn),所以SKIPIF1<0,解得SKIPIF1<0,即實(shí)數(shù)a的取值范圍為SKIPIF1<0.高頻考點(diǎn)七:二分法求零點(diǎn)1.(2022·黑龍江·大慶中學(xué)高一期末)若函數(shù)SKIPIF1<0的一個(gè)正數(shù)零點(diǎn)附近的函數(shù)值用二分法計(jì)算,其參考數(shù)據(jù)如下:SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0那么方程SKIPIF1<0的一個(gè)近似根(精確度SKIPIF1<0)可以是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以函數(shù)在SKIPIF1<0內(nèi)有零點(diǎn),因?yàn)镾KIPIF1<0,所以不滿足精確度SKIPIF1<0;因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以函數(shù)在SKIPIF1<0內(nèi)有零點(diǎn),因?yàn)镾KIPIF1<0,所以不滿足精確度SKIPIF1<0;因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以函數(shù)在SKIPIF1<0內(nèi)有零點(diǎn),因?yàn)镾KIPIF1<0,所以不滿足精確度SKIPIF1<0;因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以函數(shù)在SKIPIF1<0內(nèi)有零點(diǎn),因?yàn)镾KIPIF1<0,所以不滿足精確度SKIPIF1<0;因?yàn)镾KIPIF1<0,SKIPIF1<0,所以函數(shù)在SKIPIF1<0內(nèi)有零點(diǎn),因?yàn)镾KIPIF1<0,所以滿足精確度SKIPIF1<0,所以方程SKIPIF1<0的一個(gè)近似根(精確度SKIPIF1<0)是區(qū)間SKIPIF1<0內(nèi)的任意一個(gè)值(包括端點(diǎn)值),根據(jù)四個(gè)選項(xiàng)可知選C.故選:C2.(多選)(2022·湖北大學(xué)附屬中學(xué)高一階段練習(xí))某同學(xué)用二分法求函數(shù)SKIPIF1<0的零點(diǎn)時(shí),計(jì)算出如下結(jié)果:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,下列說法正確的有(

)A.精確到SKIPIF1<0的近似值為SKIPIF1<0 B.精確到SKIPIF1<0的近似值為SKIPIF1<0C.精確到SKIPIF1<0的近似值為SKIPIF1<0 D.精確到SKIPIF1<0的近似值為SKIPIF1<0【答案】ACSKIPIF1<0,SKIPIF1<0,SKIPIF1<0零點(diǎn)在SKIPIF1<0內(nèi),又SKIPIF1<0,則AC正確,D錯(cuò)誤;SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則B錯(cuò)誤.故選:AC.3.(多選)(2022·黑龍江·哈爾濱三中高一期末)若函數(shù)SKIPIF1<0的圖象是連續(xù)的,且函數(shù)SKIPIF1<0的唯一零點(diǎn)同在區(qū)間SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0內(nèi),則與SKIPIF1<0符號(hào)不同的是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】ABD由二分法的步驟可知,①零點(diǎn)在SKIPIF1<0內(nèi),則有SKIPIF1<0,不妨設(shè)SKIPIF1<0,SKIPIF1<0,取中點(diǎn)2;②零點(diǎn)在SKIPIF1<0內(nèi),則有SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,取中點(diǎn)1;③零點(diǎn)在SKIPIF1<0內(nèi),則有SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,取中點(diǎn)SKIPIF1<0;④零點(diǎn)在SKIPIF1<0內(nèi),則有SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,則取中點(diǎn)SKIPIF1<0;⑤零點(diǎn)在SKIPIF1<0內(nèi),則有SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,所以與SKIPIF1<0符號(hào)不同的是SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,故選:ABD.4.(多選)(2022·全國·高一)若函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上的圖象不間斷,則下列結(jié)論中錯(cuò)誤的是(

)A.若SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上不存在零點(diǎn) B.若SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上至少有一個(gè)零點(diǎn) C.若SKIPIF1<0在SKIPIF1<0內(nèi)有且只有一個(gè)零點(diǎn),則SKIPIF1<0 D.若SKIPIF1<0在SKIPIF1<0上存在零點(diǎn),則可用二分法求此零點(diǎn)的近似值【答案】ACDA:令SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上存在零點(diǎn)0,故A錯(cuò)誤;B:函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上的圖象不間斷,若SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上至少有一個(gè)零點(diǎn),由函數(shù)零點(diǎn)存在定理知正確,故B正確;C:如圖,SKIPIF1<0在SKIPIF1<0內(nèi)有且只有一個(gè)零點(diǎn),但SKIPIF1<0,故C錯(cuò)誤;D:如圖,SKIPIF1<0在SKIPIF1<0上存在零點(diǎn),但不可用二分法求此零點(diǎn)的近似值,故D錯(cuò)誤.故選:ACD5.(2022·廣東汕頭·一模)為檢測(cè)出新冠肺炎的感染者,醫(yī)學(xué)上可采用“二分檢測(cè)法”、假設(shè)待檢測(cè)的總?cè)藬?shù)是SKIPIF1<0(SKIPIF1<0)將SKIPIF1<0個(gè)人的樣本混合在一起做第1輪檢測(cè)(檢測(cè)一次),如果檢測(cè)結(jié)果為陰性,可確定這批人未感染;如果檢測(cè)結(jié)果為陽性,可確定其中有感染者,則將這批人平均分為兩組,每組SKIPIF1<0人的樣本混合在一起做第2輪檢測(cè),每組檢測(cè)1次,如此類推:每輪檢測(cè)后,排除結(jié)果為陰性的那組人,而將每輪檢測(cè)后結(jié)果為陽性的組在平均分成兩組,做下一輪檢測(cè),直到檢測(cè)出所有感染者(感染者必須通過檢測(cè)來確定).若待檢測(cè)的總?cè)藬?shù)為8,采用“二分檢測(cè)法”檢測(cè),經(jīng)過4輪共7次檢測(cè)后確定了所有感染者,則感染者人數(shù)最多為______人.若待檢測(cè)的總?cè)藬?shù)為SKIPIF1<0,且假設(shè)其中有不超過2名感染者,采用“二分檢測(cè)法”所需檢測(cè)總次數(shù)記為n,則n的最大值為______.【答案】

2

SKIPIF1<0若待檢測(cè)的總?cè)藬?shù)為8,則第一輪需檢測(cè)1次,第2輪需檢測(cè)2次,第3輪需檢測(cè)2次,第4輪需檢測(cè)2次,則共需檢測(cè)7次,此時(shí)感染者人數(shù)最多為2人;若待檢測(cè)的總?cè)藬?shù)為SKIPIF1<0,且假設(shè)其中有不超過2名感染者,若沒有感染者,則只需1次檢測(cè)即可;若只有1個(gè)感染者,則只需SKIPIF1<0次檢測(cè);若只有2個(gè)感染者,若要檢測(cè)次數(shù)最多,則第2輪檢測(cè)時(shí),2個(gè)感染者不位于同一組,此時(shí)相當(dāng)兩個(gè)待檢測(cè)均為SKIPIF1<0的組,每組1個(gè)感染者,此時(shí)每組需要SKIPIF1<0次檢測(cè),所以此時(shí)兩組共需SKIPIF1<0次檢測(cè),故有2個(gè)感染者,且檢測(cè)次數(shù)最多,共需SKIPIF1<0次檢測(cè),所以采用“二分檢測(cè)法”所需檢測(cè)總次數(shù)記為n,則n的最大值為SKIPIF1<0.故答案為:2,SKIPIF1<06.(2022·河南信陽·高一期末)下列函數(shù)圖象與x軸都有交點(diǎn),其中不能用二分法求其零點(diǎn)的是___________.(寫出所有符合條件的序號(hào))【答案】(1)(3)用二分法只能求“變號(hào)零點(diǎn)”,(1),(3)中的函數(shù)零點(diǎn)不是“變號(hào)零點(diǎn)”,故不能用二分法求故答案為:(1)(3)第四

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論