版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
第02講導(dǎo)數(shù)與函數(shù)的單調(diào)性(精講+精練)目錄第一部分:知識點(diǎn)精準(zhǔn)記憶第二部分:課前自我評估測試第三部分:典型例題剖析高頻考點(diǎn)一:利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間(不含參)高頻考點(diǎn)二:已知函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)高頻考點(diǎn)三:已知函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上存在單調(diào)區(qū)間高頻考點(diǎn)四:已知函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上不單調(diào)高頻考點(diǎn)五:函數(shù)單調(diào)性的應(yīng)用①導(dǎo)函數(shù)與原函數(shù)圖象的單調(diào)性②比較大小③構(gòu)造函數(shù)解不等式高頻考點(diǎn)六:含參問題討論單調(diào)性①導(dǎo)函數(shù)有效部分是一次型(或可化為一次型)②導(dǎo)函數(shù)有效部分是二次型(或可化為二次型)且可因式分解型③導(dǎo)函數(shù)有效部分是二次型(或可化為二次型)且不可因式分解型第四部分:高考真題感悟第五部分:第02講導(dǎo)數(shù)與函數(shù)的單調(diào)性(精練)第一部分:知識點(diǎn)精準(zhǔn)記憶第一部分:知識點(diǎn)精準(zhǔn)記憶1、函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系(導(dǎo)函數(shù)看正負(fù),原函數(shù)看增減)條件恒有結(jié)論函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上可導(dǎo)SKIPIF1<0SKIPIF1<0在SKIPIF1<0內(nèi)單調(diào)遞增SKIPIF1<0SKIPIF1<0在SKIPIF1<0內(nèi)單調(diào)遞減SKIPIF1<0SKIPIF1<0在SKIPIF1<0內(nèi)是常數(shù)函數(shù)2、求已知函數(shù)(不含參)的單調(diào)區(qū)間①求SKIPIF1<0的定義域②求SKIPIF1<0③令SKIPIF1<0,解不等式,求單調(diào)增區(qū)間④令SKIPIF1<0,解不等式,求單調(diào)減區(qū)間注:求單調(diào)區(qū)間時(shí),令SKIPIF1<0(或SKIPIF1<0)不跟等號.3、由函數(shù)SKIPIF1<0的單調(diào)性求參數(shù)的取值范圍的方法(1)已知函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)①已知SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增SKIPIF1<0SKIPIF1<0,SKIPIF1<0恒成立.②已知SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減SKIPIF1<0SKIPIF1<0,SKIPIF1<0恒成立.注:已知單調(diào)性,等價(jià)條件中的不等式含等號.(2)已知函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上存在單調(diào)區(qū)間①已知SKIPIF1<0在區(qū)間SKIPIF1<0上存在單調(diào)增區(qū)間SKIPIF1<0令SKIPIF1<0,解不等式,求單調(diào)增區(qū)間SKIPIF1<0,則SKIPIF1<0②已知SKIPIF1<0在區(qū)間SKIPIF1<0上存在單調(diào)減區(qū)間SKIPIF1<0令SKIPIF1<0,解不等式,求單調(diào)減區(qū)間SKIPIF1<0,則SKIPIF1<0(3)已知函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上不單調(diào)SKIPIF1<0SKIPIF1<0,使得SKIPIF1<04、含參問題討論單調(diào)性第一步:求SKIPIF1<0的定義域第二步:求SKIPIF1<0(導(dǎo)函數(shù)中有分母通分)第三步:確定導(dǎo)函數(shù)有效部分,記為SKIPIF1<0對于SKIPIF1<0進(jìn)行求導(dǎo)得到SKIPIF1<0,對SKIPIF1<0初步處理(如通分),提出SKIPIF1<0的恒正部分,將該部分省略,留下的部分則為SKIPIF1<0的有效部分(如:SKIPIF1<0,則記SKIPIF1<0為SKIPIF1<0的有效部分).接下來就只需考慮導(dǎo)函數(shù)有效部分,只有該部分決定SKIPIF1<0的正負(fù).第四步:確定導(dǎo)函數(shù)有效部分SKIPIF1<0的類型:①SKIPIF1<0為一次型(或可化為一次型)②SKIPIF1<0為二次型(或可化為二次型)第五步:通過分析導(dǎo)函數(shù)有效部分,討論SKIPIF1<0的單調(diào)性第二部分:課前自我評估測試第二部分:課前自我評估測試一、判斷題1.(2021·全國·高二課前預(yù)習(xí))函數(shù)f(x)在定義域上都有f′(x)<0,則函數(shù)f(x)在定義域上單調(diào)遞減.()【答案】錯誤2.(2021·全國·高二課前預(yù)習(xí))函數(shù)f(x)在某區(qū)間內(nèi)單調(diào)遞增,則一定有f′(x)>0.()【答案】錯誤3.(2021·全國·高二課前預(yù)習(xí))函數(shù)y=x3+x的單調(diào)遞增區(qū)間為(-∞,+∞).()【答案】正確二、單選題1.(2022·廣東·佛山市南海區(qū)桂城中學(xué)高二階段練習(xí))函數(shù)SKIPIF1<0的圖象如圖所示,則(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0的符號不確定【答案】B如圖所示,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0故選:B2.(2022·河北·武安市第三中學(xué)高二階段練習(xí))函數(shù)SKIPIF1<0的單調(diào)遞減區(qū)間是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D解:函數(shù)的定義域是SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0,所以函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減.故選:D.3.(2022·江西南昌·高二期末(理))若函數(shù)SKIPIF1<0,則SKIPIF1<0的單調(diào)增區(qū)間為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C解:因?yàn)楹瘮?shù)SKIPIF1<0,所以SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0的單調(diào)增區(qū)間為SKIPIF1<0,故選:C.4.(2022·湖北·華中師大一附中高一期末)“函數(shù)SKIPIF1<0在SKIPIF1<0上是增函數(shù)”是:“實(shí)數(shù)SKIPIF1<0”的(
)A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件【答案】BSKIPIF1<0在SKIPIF1<0上恒成立,可得SKIPIF1<0,SKIPIF1<0,所以“函數(shù)SKIPIF1<0在SKIPIF1<0上是增函數(shù)”是:“實(shí)數(shù)SKIPIF1<0”的必要不充分條件.故選:B.第三部分:典型例題剖析第三部分:典型例題剖析高頻考點(diǎn)一:利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間(不含參)1.(2022·廣東·深圳市南山區(qū)華僑城中學(xué)高二階段練習(xí))函數(shù)SKIPIF1<0的單調(diào)減區(qū)間是(
)A.(-∞,SKIPIF1<0] B.(0,SKIPIF1<0) C.SKIPIF1<0和(0,SKIPIF1<0) D.SKIPIF1<0【答案】B函數(shù)定義域是SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0可得SKIPIF1<0.即減區(qū)間是SKIPIF1<0.故選:B.2.(2022·福建·福鼎市第一中學(xué)高二階段練習(xí))函數(shù)SKIPIF1<0的減區(qū)間是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C∵SKIPIF1<0,∴SKIPIF1<0,由SKIPIF1<0得,SKIPIF1<0,∴函數(shù)的減區(qū)間是SKIPIF1<0.故選:C.3.(2022·重慶八中高三階段練習(xí))函數(shù)SKIPIF1<0的遞增區(qū)間為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】DSKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0;SKIPIF1<0在SKIPIF1<0上的單調(diào)遞增區(qū)間為SKIPIF1<0.故選:D.4.(2022·全國·高二課時(shí)練習(xí))函數(shù)SKIPIF1<0的減區(qū)間是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C由題意,SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0的減區(qū)間是SKIPIF1<0.故選:C5.(2022·全國·高三專題練習(xí))函數(shù)SKIPIF1<0的遞增區(qū)間為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,且SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0的遞增區(qū)間為SKIPIF1<0.故選:A.高頻考點(diǎn)二:已知函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)1.(2022·黑龍江·鐵人中學(xué)高二開學(xué)考試)已知函數(shù)SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0在SKIPIF1<0單調(diào)遞增,a的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B因?yàn)镾KIPIF1<0在SKIPIF1<0單調(diào)遞增,故SKIPIF1<0SKIPIF1<0在區(qū)間SKIPIF1<0恒成立,即SKIPIF1<0,令SKIPIF1<0則SKIPIF1<0SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0單調(diào)遞增,則SKIPIF1<0,故SKIPIF1<0,SKIPIF1<0的取值范圍為SKIPIF1<0.故選:B.2.(2022·全國·高三專題練習(xí))若函數(shù)f(x)=x3+bx2+cx+d的單調(diào)遞減區(qū)間為(-1,3),則b+c=(
)A.-12 B.-10 C.8 D.10【答案】ASKIPIF1<0=3x2+2bx+c,由題意知,-1<x<3是不等式3x2+2bx+c<0的解,∴-1,3是SKIPIF1<0=0的兩個根,∴b=-3,c=-9,∴b+c=-12.故選:A.3.(2022·廣西欽州·高二期末(文))函數(shù)SKIPIF1<0在SKIPIF1<0單調(diào)遞增的一個必要不充分條件是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D由題得SKIPIF1<0,SKIPIF1<0函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0單調(diào)遞增,SKIPIF1<0在區(qū)間SKIPIF1<0上恒成立.SKIPIF1<0,而SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減,SKIPIF1<0.選項(xiàng)中只有SKIPIF1<0是SKIPIF1<0的必要不充分條件.選項(xiàng)AC是SKIPIF1<0的充分不必要條件,選項(xiàng)B是充要條件.故選:D4.(2022·全國·高二課時(shí)練習(xí))若函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)單調(diào)遞減,則實(shí)數(shù)SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D由SKIPIF1<0得SKIPIF1<0,由于函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)單調(diào)遞減,即SKIPIF1<0在SKIPIF1<0上恒成立,即SKIPIF1<0,即得SKIPIF1<0在SKIPIF1<0恒成立,所以SKIPIF1<0,故選:D.5.(2022·全國·高二課時(shí)練習(xí))若函數(shù)SKIPIF1<0在SKIPIF1<0上是減函數(shù),則SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A∵SKIPIF1<0在SKIPIF1<0上是減函數(shù),所以SKIPIF1<0在SKIPIF1<0上恒成立,即SKIPIF1<0,即SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,故選:A.【點(diǎn)睛】本題主要考查“分離參數(shù)”在解題中的應(yīng)用、函數(shù)的定義域及利用單調(diào)性求參數(shù)的范圍,屬于中檔題.利用單調(diào)性求參數(shù)的范圍的常見方法:①視參數(shù)為已知數(shù),依據(jù)函數(shù)的圖象或單調(diào)性定義,確定函數(shù)的單調(diào)區(qū)間,與已知單調(diào)區(qū)間比較求參數(shù)需注意若函數(shù)在區(qū)間SKIPIF1<0上是單調(diào)的,則該函數(shù)在此區(qū)間的任意子集上也是單調(diào)的;②利用導(dǎo)數(shù)轉(zhuǎn)化為不等式SKIPIF1<0或SKIPIF1<0恒成立問題求參數(shù)范圍.6.(2022·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0,若SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增,則SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A因?yàn)镾KIPIF1<0的定義域?yàn)镾KIPIF1<0,SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0的遞增區(qū)間為SKIPIF1<0.由于SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增,則SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0.因此,實(shí)數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0.故選:A.高頻考點(diǎn)三:已知函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上存在單調(diào)區(qū)間1.(2022·河北·武安市第三中學(xué)高二階段練習(xí))若函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)存在單調(diào)遞減區(qū)間,則實(shí)數(shù)SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】ASKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,不符合題意;當(dāng)SKIPIF1<0時(shí),令SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0.故選:A.2.(2022·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上存在單調(diào)遞增區(qū)間,則實(shí)數(shù)b的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A∵函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上存在單調(diào)增區(qū)間,∴函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上存在子區(qū)間使得不等式SKIPIF1<0成立,SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0或SKIPIF1<0,即SKIPIF1<0或SKIPIF1<0,得SKIPIF1<0或SKIPIF1<0,則SKIPIF1<0;故選:A.3.(2022·重慶市萬州第二高級中學(xué)高二階段練習(xí))已知函數(shù)SKIPIF1<0存在三個單調(diào)區(qū)間,則實(shí)數(shù)SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C由題意,函數(shù)SKIPIF1<0,可得SKIPIF1<0,因?yàn)楹瘮?shù)SKIPIF1<0存在三個單調(diào)區(qū)間,可得SKIPIF1<0有兩個不相等的實(shí)數(shù)根,則滿足SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,即實(shí)數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0.故選:C.4.(2022·全國·高二)若函數(shù)SKIPIF1<0存在遞減區(qū)間,則實(shí)數(shù)SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B由題設(shè),SKIPIF1<0,由SKIPIF1<0存在遞減區(qū)間,即存在SKIPIF1<0使SKIPIF1<0,∴SKIPIF1<0,可得SKIPIF1<0或SKIPIF1<0.故選:B5.(2021·內(nèi)蒙古·赤峰二中高二期末(理))若函數(shù)SKIPIF1<0存在增區(qū)間,則實(shí)數(shù)SKIPIF1<0的取值范圍為A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C若函數(shù)SKIPIF1<0不存在增區(qū)間,則函數(shù)SKIPIF1<0單調(diào)遞減,此時(shí)SKIPIF1<0在區(qū)間SKIPIF1<0恒成立,可得SKIPIF1<0,則SKIPIF1<0,可得SKIPIF1<0,故函數(shù)存在增區(qū)間時(shí)實(shí)數(shù)SKIPIF1<0的取值范圍為SKIPIF1<0.故選C.高頻考點(diǎn)四:已知函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上不單調(diào)1.(2022·重慶市青木關(guān)中學(xué)校高二階段練習(xí))已知函數(shù)SKIPIF1<0在SKIPIF1<0內(nèi)不是單調(diào)函數(shù),則實(shí)數(shù)a的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D由于函數(shù)SKIPIF1<0在SKIPIF1<0不是單調(diào)函數(shù),則SKIPIF1<0在SKIPIF1<0內(nèi)存在極值點(diǎn),所以SKIPIF1<0在SKIPIF1<0內(nèi)有解,即SKIPIF1<0在SKIPIF1<0內(nèi)有解,SKIPIF1<0.故選:D2.(2022·河南·高二階段練習(xí)(理))若函數(shù)SKIPIF1<0在定義域內(nèi)的一個子區(qū)間SKIPIF1<0上不是單調(diào)函數(shù),則實(shí)數(shù)k的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D由題意得,函數(shù)定義域?yàn)镾KIPIF1<0SKIPIF1<0,令SKIPIF1<0,解得在定義域內(nèi)SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞減,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞增,函數(shù)在區(qū)間SKIPIF1<0內(nèi)不單調(diào),所以SKIPIF1<0,解得SKIPIF1<0,又因?yàn)镾KIPIF1<0,得SKIPIF1<0,綜上SKIPIF1<0,故選:D.3.(2022·安徽·合肥一中高二階段練習(xí))若函數(shù)SKIPIF1<0在其定義域上不單調(diào),則實(shí)數(shù)SKIPIF1<0的取值范圍為(
)A.SKIPIF1<0或SKIPIF1<0 B.SKIPIF1<0或SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A由題意,函數(shù)SKIPIF1<0,可得SKIPIF1<0,因?yàn)楹瘮?shù)SKIPIF1<0在其定義域上不單調(diào),即SKIPIF1<0有變號零點(diǎn),結(jié)合二次函數(shù)的性質(zhì),可得SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,所以實(shí)數(shù)SKIPIF1<0的取值范圍為SKIPIF1<0.故選:A.4.(2022·浙江·高二階段練習(xí))函數(shù)SKIPIF1<0在區(qū)間[-1,2]上不單調(diào),則實(shí)數(shù)a的取值范圍是(
)A.(-∞,-3] B.(-3,1)C.[1,+∞) D.(-∞,-3]∪[1,+∞)【答案】BSKIPIF1<0SKIPIF1<0,如果函數(shù)SKIPIF1<0在區(qū)間[-1,2]上單調(diào),那么a-1≥0或SKIPIF1<0,即SKIPIF1<0,解得a≥1或a≤-3,所以當(dāng)函數(shù)SKIPIF1<0在區(qū)間[-1,2]上不單調(diào)時(shí),SKIPIF1<0.故選:B5.(2022·安徽省太和中學(xué)高二開學(xué)考試)已知函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上不單調(diào),則實(shí)數(shù)SKIPIF1<0的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B由SKIPIF1<0,①當(dāng)SKIPIF1<0時(shí)函數(shù)SKIPIF1<0單調(diào)遞增,不合題意;②當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0的極值點(diǎn)為SKIPIF1<0,若函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0不單調(diào),必有SKIPIF1<0,解得SKIPIF1<0.故選:B.6.(2022·江蘇·高二)若函數(shù)SKIPIF1<0在其定義域上不單調(diào),則實(shí)數(shù)SKIPIF1<0的取值范圍為(
)A.SKIPIF1<0或SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A可得SKIPIF1<0,SKIPIF1<0SKIPIF1<0在其定義域上不單調(diào)等價(jià)于方程SKIPIF1<0有兩個解,SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0.故選:A.7.(2022·全國·高二課時(shí)練習(xí))已知函數(shù)SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上不單調(diào)的一個充分不必要條件是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】CSKIPIF1<0,若SKIPIF1<0在SKIPIF1<0上不單調(diào),令SKIPIF1<0,對稱軸方程為SKIPIF1<0,則函數(shù)SKIPIF1<0與SKIPIF1<0軸在SKIPIF1<0上有交點(diǎn).當(dāng)SKIPIF1<0時(shí),顯然不成立;當(dāng)SKIPIF1<0時(shí),有SKIPIF1<0解得SKIPIF1<0或SKIPIF1<0.四個選項(xiàng)中的范圍,只有SKIPIF1<0為SKIPIF1<0的真子集,∴SKIPIF1<0在SKIPIF1<0上不單調(diào)的一個充分不必要條件是SKIPIF1<0.故選:C.高頻考點(diǎn)五:函數(shù)單調(diào)性的應(yīng)用①導(dǎo)函數(shù)與原函數(shù)圖象的單調(diào)性1.(2021·廣西河池·高二階段練習(xí)(理))如果函數(shù)SKIPIF1<0的導(dǎo)函數(shù)SKIPIF1<0的圖象如圖所示,則以下關(guān)于函數(shù)SKIPIF1<0的判斷:①在區(qū)間SKIPIF1<0內(nèi)單調(diào)遞增;②在區(qū)間SKIPIF1<0內(nèi)單調(diào)遞減;③在區(qū)間SKIPIF1<0內(nèi)單調(diào)遞增;④SKIPIF1<0是極小值點(diǎn);⑤SKIPIF1<0是極大值點(diǎn).其中不正確的是(
)A.③⑤ B.②③ C.①④⑤ D.①②④【答案】D由圖可知,在區(qū)間SKIPIF1<0內(nèi),SKIPIF1<0有正有負(fù),①錯誤;在區(qū)間SKIPIF1<0內(nèi),SKIPIF1<0,SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)單調(diào)遞增,②錯誤;在區(qū)間SKIPIF1<0內(nèi),SKIPIF1<0,SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)單調(diào)遞增,③正確;不存在SKIPIF1<0,使當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,④錯誤;存在SKIPIF1<0,使當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,如SKIPIF1<0,⑤正確故選:D.2.(2021·福建省漳州第一中學(xué)高二階段練習(xí))SKIPIF1<0是函數(shù)y=f(x)的導(dǎo)函數(shù),若y=SKIPIF1<0的圖象如圖所示,則函數(shù)y=f(x)的圖象可能是(
)A. B.C. D.【答案】D由導(dǎo)函數(shù)的圖象可知,當(dāng)x<0時(shí),SKIPIF1<0>0,即函數(shù)f(x)為增函數(shù);當(dāng)0<x<2時(shí),SKIPIF1<0<0,即f(x)為減函數(shù);當(dāng)x>2時(shí),SKIPIF1<0>0,即函數(shù)f(x)為增函數(shù).觀察選項(xiàng)易知D正確.故選:D3.(2021·海南·三亞華僑學(xué)校高三階段練習(xí))已知函數(shù)SKIPIF1<0的圖象如圖所示,則SKIPIF1<0的圖象可能是(
)A. B.C. D.【答案】C由函數(shù)SKIPIF1<0的圖象可知:當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,即SKIPIF1<0,此時(shí)SKIPIF1<0單調(diào)遞增;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,即SKIPIF1<0,此時(shí)SKIPIF1<0單調(diào)遞減;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,即SKIPIF1<0,此時(shí)SKIPIF1<0單調(diào)遞減;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,即SKIPIF1<0,此時(shí)SKIPIF1<0單調(diào)遞增.故選:C4.(2021·全國·高二課時(shí)練習(xí))如圖為函數(shù)SKIPIF1<0的導(dǎo)函數(shù)SKIPIF1<0的圖象,那么函數(shù)SKIPIF1<0的圖象可能為(
)A. B.C. D.【答案】A由導(dǎo)函數(shù)SKIPIF1<0的圖象,可知當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減;當(dāng)SKIPIF1<0或SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0和SKIPIF1<0上單調(diào)遞增.綜上,函數(shù)SKIPIF1<0的圖象可能如A中圖所示故選:A5.(2021·江西省銅鼓中學(xué)高二階段練習(xí)(理))設(shè)SKIPIF1<0是函數(shù)SKIPIF1<0的導(dǎo)數(shù),SKIPIF1<0的圖象如圖所示,則SKIPIF1<0的圖像最有可能的是(
).A. B.C. D.【答案】C解:由導(dǎo)函數(shù)SKIPIF1<0的圖象可知:導(dǎo)函數(shù)SKIPIF1<0在SKIPIF1<0上,SKIPIF1<0,則函數(shù)SKIPIF1<0單調(diào)遞增;導(dǎo)函數(shù)SKIPIF1<0在SKIPIF1<0上,SKIPIF1<0,則函數(shù)SKIPIF1<0單調(diào)遞減;導(dǎo)函數(shù)SKIPIF1<0在SKIPIF1<0上,SKIPIF1<0,則函數(shù)SKIPIF1<0單調(diào)遞增;故選:C②比較大小1.(2022·云南省昆明市第十中學(xué)高二階段練習(xí))已知函數(shù)SKIPIF1<0,則(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】BSKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是增函數(shù),而SKIPIF1<0,所以SKIPIF1<0.故選:B.2.(2022·重慶市清華中學(xué)校高二階段練習(xí))若函數(shù)SKIPIF1<0,則(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】CSKIPIF1<0,由SKIPIF1<0,解得SKIPIF1<0所以函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增.所以SKIPIF1<0,故選項(xiàng)A不正確.SKIPIF1<0,故選項(xiàng)B,D不正確,選項(xiàng)C正確.故選:C3.(2022·河南·民權(quán)縣第一高級中學(xué)高三階段練習(xí)(理))已知函數(shù)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C因?yàn)镾KIPIF1<0得SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,又因?yàn)镾KIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,從而SKIPIF1<0.故選:C.4.(2022·四川·成都外國語學(xué)校高二階段練習(xí)(理))已知SKIPIF1<0,則(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B設(shè)SKIPIF1<0,則SKIPIF1<0,又SKIPIF1<0,于是當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,故SKIPIF1<0單調(diào)遞減,注意到SKIPIF1<0,則有SKIPIF1<0,即SKIPIF1<0.故選:B.③構(gòu)造函數(shù)解不等式1.(2022·全國·高二課時(shí)練習(xí))已知定義在R上的奇函數(shù)f(x),當(dāng)x>0時(shí),SKIPIF1<0,且f(3)=0,則不等式f(x)≥0的解集為(
)A.(﹣∞,﹣3]∪[3,+∞) B.[﹣3,3]C.(﹣∞,﹣3]∪[0,3] D.[﹣3,0]∪[3,+∞)【答案】D設(shè)SKIPIF1<0,(x>0),則其導(dǎo)數(shù)SKIPIF1<0,而當(dāng)x>0時(shí)SKIPIF1<0,所以g′(x)>0,即g(x)在(0,+∞)上為增函數(shù),又由f(3)=0,則SKIPIF1<00,所以SKIPIF1<0區(qū)間(0,3)上,g(x)<0,在區(qū)間(3,+∞)上,g(x)>0,則在區(qū)間(0,3)上,f(x)<0,在區(qū)間(3,+∞)上,f(x)>0,又由f(x)是定義在R上的奇函數(shù),則f(0)=0,SKIPIF1<0,且在區(qū)間(﹣∞,﹣3)上,f(x)<0,在區(qū)間(﹣3,0)上,f(x)>0,綜合可得:不等式f(x)≥0的解集為[﹣3,0]∪[3,+∞).故選:D.2.(2022·河南·高二階段練習(xí)(文))已知函數(shù)SKIPIF1<0對于任意的SKIPIF1<0滿足SKIPIF1<0,其中SKIPIF1<0是函數(shù)SKIPIF1<0的導(dǎo)函數(shù),則下列各式正確的是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0D.SKIPIF1<0【答案】C令SKIPIF1<0,則SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,令SKIPIF1<0,令SKIPIF1<0,所以函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0單調(diào)遞增,所以SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0.故選:C3.(2022·全國·高三專題練習(xí)(理))設(shè)函數(shù)SKIPIF1<0是偶函數(shù)SKIPIF1<0(SKIPIF1<0)的導(dǎo)函數(shù),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則使得SKIPIF1<0成立的x的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0D.SKIPIF1<0【答案】D令SKIPIF1<0,則SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0在SKIPIF1<0上為減函數(shù),又∵SKIPIF1<0,∴函數(shù)SKIPIF1<0為定義域上的奇函數(shù),SKIPIF1<0在SKIPIF1<0上為減函數(shù).又∵SKIPIF1<0,∴SKIPIF1<0,∴不等式SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0或SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,或SKIPIF1<0,∵SKIPIF1<0成立的x的取值范圍是SKIPIF1<0,故選:D4.(2022·重慶南開中學(xué)高二期末)已知定義在SKIPIF1<0上的函數(shù)SKIPIF1<0滿足:SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的解集為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A設(shè)SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0為SKIPIF1<0上的增函數(shù),而SKIPIF1<0可化為SKIPIF1<0即SKIPIF1<0,故SKIPIF1<0即SKIPIF1<0,所以不等式SKIPIF1<0的解集為SKIPIF1<0,故選:A.5.(2022·甘肅·永昌縣第一高級中學(xué)高二階段練習(xí)(理))已知f(x)為R上的可導(dǎo)函數(shù),其導(dǎo)函數(shù)為SKIPIF1<0,且對于任意的x∈R,均有SKIPIF1<0,則(
)A.e-2021f(-2021)>f(0),e2021f(2021)<f(0) B.e-2021f(-2021)<f(0),e2021f(2021)<f(0)C.e-2021f(-2021)>f(0),e2021f(2021)>f(0) D.e-2021f(-2021)<f(0),e2021f(2021)>f(0)【答案】D構(gòu)造函數(shù)SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上遞增,所以SKIPIF1<0,即SKIPIF1<0.故選:D高頻考點(diǎn)六:含參問題討論單調(diào)性①導(dǎo)函數(shù)有效部分是一次型(或可化為一次型)1.(2022·廣東·清遠(yuǎn)市博愛學(xué)校高二階段練習(xí))已知函數(shù)SKIPIF1<0.(1)討論SKIPIF1<0的單調(diào)性;【答案】(1)答案見解析;(2)SKIPIF1<0.(1)SKIPIF1<0且SKIPIF1<0,∴當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0遞增;當(dāng)SKIPIF1<0時(shí):若SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0遞減;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0遞增;∴SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上遞增;SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上遞減,在SKIPIF1<0上遞增;2.(2022·全國·高三專題練習(xí)(理))設(shè)a為實(shí)數(shù),函數(shù)f(x)=SKIPIF1<0-2x+2a,x∈R.(1)求f(x)的單調(diào)區(qū)間與極值;【答案】(1)f(x)的單調(diào)遞減區(qū)間是(-∞,ln2),單調(diào)遞增區(qū)間是(ln2,+∞),極小值f(ln2)=2-2ln2+2a,無極大值;(1)由f(x)=SKIPIF1<0-2x+2a(x∈R)知SKIPIF1<0=SKIPIF1<0-2.令SKIPIF1<0=0,得x=ln2.當(dāng)x<ln2時(shí),SKIPIF1<0<0,故函數(shù)f(x)在區(qū)間(-∞,ln2)上單調(diào)遞減;當(dāng)x>ln2時(shí),SKIPIF1<0>0,故函數(shù)f(x)在區(qū)間(ln2,+∞)上單調(diào)遞增.∴f(x)的單調(diào)遞減區(qū)間是(-∞,ln2),單調(diào)遞增區(qū)間是(ln2,+∞),f(x)極小值為f(ln2)=SKIPIF1<0-2ln2+2a=2-2ln2+2a,無極大值;2.(2022·全國·高二)已知函數(shù)SKIPIF1<0,討論SKIPIF1<0的單調(diào)性.【答案】答案見解析解:SKIPIF1<0
SKIPIF1<0
SKIPIF1<0,SKIPIF1<0
SKIPIF1<0,SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增SKIPIF1<0當(dāng)SKIPIF1<0時(shí),當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減.綜上,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減.3.(2022·全國·高二課時(shí)練習(xí))已知函數(shù)SKIPIF1<0.討論SKIPIF1<0的單調(diào)性.解:因?yàn)镾KIPIF1<0,所以定義域?yàn)镾KIPIF1<0,所以SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0恒成立,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減;當(dāng)SKIPIF1<0時(shí),由SKIPIF1<0,得SKIPIF1<0;由SKIPIF1<0,得SKIPIF1<0.故SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增.綜上,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上單調(diào)遞減;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增.②導(dǎo)函數(shù)有效部分是二次型(或可化為二次型)且可因式分解型1.(2022·江蘇宿遷·高二期末)已知函數(shù)SKIPIF1<0,SKIPIF1<0.(1)討論SKIPIF1<0的單調(diào)性;(1)因?yàn)镾KIPIF1<0,故可得SKIPIF1<0SKIPIF1<0,令SKIPIF1<0SKIPIF1<0,可得SKIPIF1<0或SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0SKIPIF1<0,此時(shí)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;當(dāng)SKIPIF1<0時(shí),當(dāng)SKIPIF1<0時(shí),SKIPIF1<0SKIPIF1<0,SKIPIF1<0單調(diào)遞增;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0SKIPIF1<0,SKIPIF1<0單調(diào)遞減;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0SKIPIF1<0,SKIPIF1<0單調(diào)遞增;當(dāng)SKIPIF1<0時(shí),當(dāng)SKIPIF1<0時(shí),SKIPIF1<0SKIPIF1<0,SKIPIF1<0單調(diào)遞增;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0SKIPIF1<0,SKIPIF1<0單調(diào)遞減;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0SKIPIF1<0,SKIPIF1<0單調(diào)遞增.綜上所述:當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0和SKIPIF1<0單調(diào)遞增,在SKIPIF1<0單調(diào)遞減;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0和SKIPIF1<0單調(diào)遞增,在SKIPIF1<0單調(diào)遞減.2.(2022·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0,討論SKIPIF1<0的單調(diào)性.【答案】當(dāng)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;當(dāng)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減.SKIPIF1<0的定義域?yàn)镾KIPIF1<0,SKIPIF1<0.當(dāng)SKIPIF1<0,則x∈SKIPIF1<0時(shí),SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0單調(diào)遞增.當(dāng)a<0,則x∈SKIPIF1<0時(shí),SKIPIF1<0;x∈SKIPIF1<0時(shí),SKIPIF1<0故SKIPIF1<0在SKIPIF1<0單調(diào)遞增,在SKIPIF1<0單調(diào)遞減.綜上所述,當(dāng)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;當(dāng)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減.3.(2022·全國·高二課時(shí)練習(xí))已知函數(shù)SKIPIF1<0.(1)當(dāng)SKIPIF1<0時(shí),求曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程;(2)求SKIPIF1<0的單調(diào)區(qū)間.【答案】(1)SKIPIF1<0
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年跨境電商平臺建設(shè)運(yùn)營合同
- 2025年華師大版選擇性必修2物理下冊月考試卷
- 2025年度食品生產(chǎn)與銷售合同(有機(jī)食品)3篇
- 二零二五年度高科技企業(yè)股權(quán)置換及投資合作合同3篇
- 2025年人教新起點(diǎn)八年級語文下冊月考試卷
- 專屬貿(mào)促會下載:2024年棉花買賣標(biāo)準(zhǔn)協(xié)議版B版
- 2024版大理石采購合同匯編版B版
- 2025年外研銜接版七年級科學(xué)上冊階段測試試卷含答案
- 2025年粵教版七年級科學(xué)下冊月考試卷含答案
- 酸奶課程設(shè)計(jì)論文
- 元音輔音練習(xí)題
- 失業(yè)保險(xiǎn)待遇申領(lǐng)表
- 2024小學(xué)數(shù)學(xué)義務(wù)教育新課程標(biāo)準(zhǔn)(2022版)必考題庫與答案
- 微型頂管工藝簡介
- 2024年全國職業(yè)院校技能大賽高職組(智能節(jié)水系統(tǒng)設(shè)計(jì)與安裝賽項(xiàng))考試題庫-下(多選、判斷題)
- 小學(xué)三年級數(shù)學(xué)下冊計(jì)算題大全(每日一練共25份)
- Unit 3 同步練習(xí)人教版2024七年級英語上冊
- “十四五”期間推進(jìn)智慧水利建設(shè)實(shí)施方案
- EPC項(xiàng)目機(jī)電安裝專業(yè)工程重難點(diǎn)分析及經(jīng)驗(yàn)交流
- 大型活動聯(lián)合承辦協(xié)議
- 2024年吉林高考語文試題及答案 (2) - 副本
評論
0/150
提交評論