版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
河南省駐馬店經(jīng)濟(jì)開發(fā)區(qū)高級(jí)中學(xué)2024年招生全國(guó)統(tǒng)一考試數(shù)學(xué)試題模擬測(cè)試試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.某幾何體的三視圖如圖所示,則該幾何體的體積為()A. B.3 C. D.42.空氣質(zhì)量指數(shù)是反映空氣狀況的指數(shù),指數(shù)值趨小,表明空氣質(zhì)量越好,下圖是某市10月1日-20日指數(shù)變化趨勢(shì),下列敘述錯(cuò)誤的是()A.這20天中指數(shù)值的中位數(shù)略高于100B.這20天中的中度污染及以上(指數(shù))的天數(shù)占C.該市10月的前半個(gè)月的空氣質(zhì)量越來越好D.總體來說,該市10月上旬的空氣質(zhì)量比中旬的空氣質(zhì)量好3.已知函數(shù)且的圖象恒過定點(diǎn),則函數(shù)圖象以點(diǎn)為對(duì)稱中心的充要條件是()A. B.C. D.4.已知實(shí)數(shù)滿足不等式組,則的最小值為()A. B. C. D.5.已知函數(shù)滿足,設(shè),則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件6.是平面上的一定點(diǎn),是平面上不共線的三點(diǎn),動(dòng)點(diǎn)滿足,,則動(dòng)點(diǎn)的軌跡一定經(jīng)過的()A.重心 B.垂心 C.外心 D.內(nèi)心7.記為數(shù)列的前項(xiàng)和數(shù)列對(duì)任意的滿足.若,則當(dāng)取最小值時(shí),等于()A.6 B.7 C.8 D.98.已知關(guān)于的方程在區(qū)間上有兩個(gè)根,,且,則實(shí)數(shù)的取值范圍是()A. B. C. D.9.設(shè),是非零向量,若對(duì)于任意的,都有成立,則A. B. C. D.10.已知平面向量滿足與的夾角為,且,則實(shí)數(shù)的值為()A. B. C. D.11.已知集合A={﹣2,﹣1,0,1,2},B={x|x2﹣4x﹣5<0},則A∩B=()A.{﹣2,﹣1,0} B.{﹣1,0,1,2} C.{﹣1,0,1} D.{0,1,2}12.已知α,β表示兩個(gè)不同的平面,l為α內(nèi)的一條直線,則“α∥β是“l(fā)∥β”的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.關(guān)于函數(shù)有下列四個(gè)命題:①函數(shù)在上是增函數(shù);②函數(shù)的圖象關(guān)于中心對(duì)稱;③不存在斜率小于且與函數(shù)的圖象相切的直線;④函數(shù)的導(dǎo)函數(shù)不存在極小值.其中正確的命題有______.(寫出所有正確命題的序號(hào))14.滿足約束條件的目標(biāo)函數(shù)的最小值是.15.設(shè)函數(shù),若在上的最大值為,則________.16.平面向量,,(R),且與的夾角等于與的夾角,則.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).若在定義域內(nèi)存在,使得成立,則稱為函數(shù)的局部對(duì)稱點(diǎn).(1)若a,且a≠0,證明:函數(shù)有局部對(duì)稱點(diǎn);(2)若函數(shù)在定義域內(nèi)有局部對(duì)稱點(diǎn),求實(shí)數(shù)c的取值范圍;(3)若函數(shù)在R上有局部對(duì)稱點(diǎn),求實(shí)數(shù)m的取值范圍.18.(12分)甲、乙兩班各派三名同學(xué)參加知識(shí)競(jìng)賽,每人回答一個(gè)問題,答對(duì)得10分,答錯(cuò)得0分,假設(shè)甲班三名同學(xué)答對(duì)的概率都是,乙班三名同學(xué)答對(duì)的概率分別是,,,且這六名同學(xué)答題正確與否相互之間沒有影響.(1)記“甲、乙兩班總得分之和是60分”為事件,求事件發(fā)生的概率;(2)用表示甲班總得分,求隨機(jī)變量的概率分布和數(shù)學(xué)期望.19.(12分)在直角坐標(biāo)平面中,已知的頂點(diǎn),,為平面內(nèi)的動(dòng)點(diǎn),且.(1)求動(dòng)點(diǎn)的軌跡的方程;(2)設(shè)過點(diǎn)且不垂直于軸的直線與交于,兩點(diǎn),點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為,證明:直線過軸上的定點(diǎn).20.(12分)已知函數(shù).(1)當(dāng)(為自然對(duì)數(shù)的底數(shù))時(shí),求函數(shù)的極值;(2)為的導(dǎo)函數(shù),當(dāng),時(shí),求證:.21.(12分)如圖:在中,,,.(1)求角;(2)設(shè)為的中點(diǎn),求中線的長(zhǎng).22.(10分)為響應(yīng)“堅(jiān)定文化自信,建設(shè)文化強(qiáng)國(guó)”,提升全民文化修養(yǎng),引領(lǐng)學(xué)生“讀經(jīng)典用經(jīng)典”,某廣播電視臺(tái)計(jì)劃推出一檔“閱讀經(jīng)典”節(jié)目.工作人員在前期的數(shù)據(jù)采集中,在某高中學(xué)校隨機(jī)抽取了120名學(xué)生做調(diào)查,統(tǒng)計(jì)結(jié)果顯示:樣本中男女比例為3:2,而男生中喜歡閱讀中國(guó)古典文學(xué)和不喜歡的比例是7:5,女生中喜歡閱讀中國(guó)古典文學(xué)和不喜歡的比例是5:3.(1)填寫下面列聯(lián)表,并根據(jù)聯(lián)表判斷是否有的把握認(rèn)為喜歡閱讀中國(guó)古典文學(xué)與性別有關(guān)系?男生女生總計(jì)喜歡閱讀中國(guó)古典文學(xué)不喜歡閱讀中國(guó)古典文學(xué)總計(jì)(2)為做好文化建設(shè)引領(lǐng),實(shí)驗(yàn)組把該校作為試點(diǎn),和該校的學(xué)生進(jìn)行中國(guó)古典文學(xué)閱讀交流.實(shí)驗(yàn)人員已經(jīng)從所調(diào)查的120人中篩選出4名男生和3名女生共7人作為代表,這7個(gè)代表中有2名男生代表和2名女生代表喜歡中國(guó)古典文學(xué).現(xiàn)從這7名代表中任選3名男生代表和2名女生代表參加座談會(huì),記為參加會(huì)議的人中喜歡古典文學(xué)的人數(shù),求5的分布列及數(shù)學(xué)期望附表及公式:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】
首先把三視圖轉(zhuǎn)換為幾何體,該幾何體為由一個(gè)三棱柱體,切去一個(gè)三棱錐體,由柱體、椎體的體積公式進(jìn)一步求出幾何體的體積.【詳解】解:根據(jù)幾何體的三視圖轉(zhuǎn)換為幾何體為:該幾何體為由一個(gè)三棱柱體,切去一個(gè)三棱錐體,如圖所示:故:.故選:C.【點(diǎn)睛】本題考查了由三視圖求幾何體的體積、需熟記柱體、椎體的體積公式,考查了空間想象能力,屬于基礎(chǔ)題.2、C【解析】
結(jié)合題意,根據(jù)題目中的天的指數(shù)值,判斷選項(xiàng)中的命題是否正確.【詳解】對(duì)于,由圖可知天的指數(shù)值中有個(gè)低于,個(gè)高于,其中第個(gè)接近,第個(gè)高于,所以中位數(shù)略高于,故正確.對(duì)于,由圖可知天的指數(shù)值中高于的天數(shù)為,即占總天數(shù)的,故正確.對(duì)于,由圖可知該市月的前天的空氣質(zhì)量越來越好,從第天到第天空氣質(zhì)量越來越差,故錯(cuò)誤.對(duì)于,由圖可知該市月上旬大部分指數(shù)在以下,中旬大部分指數(shù)在以上,所以該市月上旬的空氣質(zhì)量比中旬的空氣質(zhì)量好,故正確.故選:【點(diǎn)睛】本題考查了對(duì)折線圖數(shù)據(jù)的分析,讀懂題意是解題關(guān)鍵,并能運(yùn)用所學(xué)知識(shí)對(duì)命題進(jìn)行判斷,本題較為基礎(chǔ).3、A【解析】
由題可得出的坐標(biāo)為,再利用點(diǎn)對(duì)稱的性質(zhì),即可求出和.【詳解】根據(jù)題意,,所以點(diǎn)的坐標(biāo)為,又,所以.故選:A.【點(diǎn)睛】本題考查指數(shù)函數(shù)過定點(diǎn)問題和函數(shù)對(duì)稱性的應(yīng)用,屬于基礎(chǔ)題.4、B【解析】
作出約束條件的可行域,在可行域內(nèi)求的最小值即為的最小值,作,平移直線即可求解.【詳解】作出實(shí)數(shù)滿足不等式組的可行域,如圖(陰影部分)令,則,作出,平移直線,當(dāng)直線經(jīng)過點(diǎn)時(shí),截距最小,故,即的最小值為.故選:B【點(diǎn)睛】本題考查了簡(jiǎn)單的線性規(guī)劃問題,解題的關(guān)鍵是作出可行域、理解目標(biāo)函數(shù)的意義,屬于基礎(chǔ)題.5、B【解析】
結(jié)合函數(shù)的對(duì)應(yīng)性,利用充分條件和必要條件的定義進(jìn)行判斷即可.【詳解】解:若,則,即成立,若,則由,得,則“”是“”的必要不充分條件,故選:B.【點(diǎn)睛】本題主要考查充分條件和必要條件的判斷,結(jié)合函數(shù)的對(duì)應(yīng)性是解決本題的關(guān)鍵,屬于基礎(chǔ)題.6、B【解析】
解出,計(jì)算并化簡(jiǎn)可得出結(jié)論.【詳解】λ(),∴,∴,即點(diǎn)P在BC邊的高上,即點(diǎn)P的軌跡經(jīng)過△ABC的垂心.故選B.【點(diǎn)睛】本題考查了平面向量的數(shù)量積運(yùn)算在幾何中的應(yīng)用,根據(jù)條件中的角計(jì)算是關(guān)鍵.7、A【解析】
先令,找出的關(guān)系,再令,得到的關(guān)系,從而可求出,然后令,可得,得出數(shù)列為等差數(shù)列,得,可求出取最小值.【詳解】解法一:由,所以,由條件可得,對(duì)任意的,所以是等差數(shù)列,,要使最小,由解得,則.解法二:由賦值法易求得,可知當(dāng)時(shí),取最小值.故選:A【點(diǎn)睛】此題考查的是由數(shù)列的遞推式求數(shù)列的通項(xiàng),采用了賦值法,屬于中檔題.8、C【解析】
先利用三角恒等變換將題中的方程化簡(jiǎn),構(gòu)造新的函數(shù),將方程的解的問題轉(zhuǎn)化為函數(shù)圖象的交點(diǎn)問題,畫出函數(shù)圖象,再結(jié)合,解得的取值范圍.【詳解】由題化簡(jiǎn)得,,作出的圖象,又由易知.故選:C.【點(diǎn)睛】本題考查了三角恒等變換,方程的根的問題,利用數(shù)形結(jié)合法,求得范圍.屬于中檔題.9、D【解析】
畫出,,根據(jù)向量的加減法,分別畫出的幾種情況,由數(shù)形結(jié)合可得結(jié)果.【詳解】由題意,得向量是所有向量中模長(zhǎng)最小的向量,如圖,當(dāng),即時(shí),最小,滿足,對(duì)于任意的,所以本題答案為D.【點(diǎn)睛】本題主要考查了空間向量的加減法,以及點(diǎn)到直線的距離最短問題,解題的關(guān)鍵在于用有向線段正確表示向量,屬于基礎(chǔ)題.10、D【解析】
由已知可得,結(jié)合向量數(shù)量積的運(yùn)算律,建立方程,求解即可.【詳解】依題意得由,得即,解得.故選:.【點(diǎn)睛】本題考查向量的數(shù)量積運(yùn)算,向量垂直的應(yīng)用,考查計(jì)算求解能力,屬于基礎(chǔ)題.11、D【解析】
解一元二次不等式化簡(jiǎn)集合,再由集合的交集運(yùn)算可得選項(xiàng).【詳解】因?yàn)榧希蔬x:D.【點(diǎn)睛】本題考查集合的交集運(yùn)算,屬于基礎(chǔ)題.12、A【解析】試題分析:利用面面平行和線面平行的定義和性質(zhì),結(jié)合充分條件和必要條件的定義進(jìn)行判斷.解:根據(jù)題意,由于α,β表示兩個(gè)不同的平面,l為α內(nèi)的一條直線,由于“α∥β,則根據(jù)面面平行的性質(zhì)定理可知,則必然α中任何一條直線平行于另一個(gè)平面,條件可以推出結(jié)論,反之不成立,∴“α∥β是“l(fā)∥β”的充分不必要條件.故選A.考點(diǎn):必要條件、充分條件與充要條件的判斷;平面與平面平行的判定.二、填空題:本題共4小題,每小題5分,共20分。13、①②③【解析】
由單調(diào)性、對(duì)稱性概念、導(dǎo)數(shù)的幾何意義、導(dǎo)數(shù)與極值的關(guān)系進(jìn)行判斷.【詳解】函數(shù)的定義域是,由于,在上遞增,∴函數(shù)在上是遞增,①正確;,∴函數(shù)的圖象關(guān)于中心對(duì)稱,②正確;,時(shí)取等號(hào),∴③正確;,設(shè),則,顯然是即的極小值點(diǎn),④錯(cuò)誤.故答案為:①②③.【點(diǎn)睛】本題考查函數(shù)的單調(diào)性、對(duì)稱性,考查導(dǎo)數(shù)的幾何意義、導(dǎo)數(shù)與極值,解題時(shí)按照相關(guān)概念判斷即可,屬于中檔題.14、-2【解析】
可行域是如圖的菱形ABCD,代入計(jì)算,知為最小.15、【解析】
求出函數(shù)的導(dǎo)數(shù),由在上,可得在上單調(diào)遞增,則函數(shù)最大值為,即可求出參數(shù)的值.【詳解】解:定義域?yàn)?,在上單調(diào)遞增,故在上的最大值為故答案為:【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性與最值,屬于基礎(chǔ)題.16、2【解析】試題分析:,與的夾角等于與的夾角,所以考點(diǎn):向量的坐標(biāo)運(yùn)算與向量夾角三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)(3)【解析】
(1)若函數(shù)有局部對(duì)稱點(diǎn),則,即有解,即可求證;(2)由題可得在內(nèi)有解,即方程在區(qū)間上有解,則,設(shè),利用導(dǎo)函數(shù)求得的范圍,即可求得的范圍;(3)由題可得在上有解,即在上有解,設(shè),則可變形為方程在區(qū)間內(nèi)有解,進(jìn)而求解即可.【詳解】(1)證明:由得,代入得,則得到關(guān)于x的方程,由于且,所以,所以函數(shù)必有局部對(duì)稱點(diǎn)(2)解:由題,因?yàn)楹瘮?shù)在定義域內(nèi)有局部對(duì)稱點(diǎn)所以在內(nèi)有解,即方程在區(qū)間上有解,所以,設(shè),則,所以令,則,當(dāng)時(shí),,故函數(shù)在區(qū)間上單調(diào)遞減,當(dāng)時(shí),,故函數(shù)在區(qū)間上單調(diào)遞增,所以,因?yàn)?,所以,所以,所以(3)解:由題,,由于,所以,所以(*)在R上有解,令,則,所以方程(*)變?yōu)樵趨^(qū)間內(nèi)有解,需滿足條件:,即,得【點(diǎn)睛】本題考查函數(shù)的局部對(duì)稱點(diǎn)的理解,利用導(dǎo)函數(shù)研究函數(shù)的最值問題,考查轉(zhuǎn)化思想與運(yùn)算能力.18、(1)(2)分布列見解析,期望為20【解析】
利用相互獨(dú)立事件概率公式求解即可;由題意知,隨機(jī)變量可能的取值為0,10,20,30,分別求出對(duì)應(yīng)的概率,列出分布列并代入數(shù)學(xué)期望公式求解即可.【詳解】(1)由相互獨(dú)立事件概率公式可得,(2)由題意知,隨機(jī)變量可能的取值為0,10,20,30.,,,,所以,的概率分布列為0102030所以數(shù)學(xué)期望.【點(diǎn)睛】本題考查相互獨(dú)立事件概率公式和離散型隨機(jī)變量的分布列及其數(shù)學(xué)期望;考查運(yùn)算求解能力;確定隨機(jī)變量可能的取值,求出對(duì)應(yīng)的概率是求解本題的關(guān)鍵;屬于中檔題、常考題型.19、(1)();(2)證明見解析.【解析】
(1)設(shè)點(diǎn),分別用表示、表示和余弦定理表示,將表示為、的方程,再化簡(jiǎn)即可;(2)設(shè)直線方程代入的軌跡方程,得,設(shè)點(diǎn),,,表示出直線,取,得,即可證明直線過軸上的定點(diǎn).【詳解】(1)設(shè),由已知,∴,∴(),化簡(jiǎn)得點(diǎn)的軌跡的方程為:();(2)由(1)知,過點(diǎn)的直線的斜率為0時(shí)與無交點(diǎn),不合題意故可設(shè)直線的方程為:(),代入的方程得:.設(shè),,則,,.∴直線:.令,得.直線過軸上的定點(diǎn).【點(diǎn)睛】本題主要考查軌跡方程的求法、余弦定理的應(yīng)用和利用直線和圓錐曲線的位置關(guān)系求定點(diǎn)問題,考查學(xué)生的計(jì)算能力,屬于中檔題.20、(1)極大值,極小值;(2)詳見解析.【解析】
首先確定函數(shù)的定義域和;(1)當(dāng)時(shí),根據(jù)的正負(fù)可確定單調(diào)性,進(jìn)而確定極值點(diǎn),代入可求得極值;(2)通過分析法可將問題轉(zhuǎn)化為證明,設(shè),令,利用導(dǎo)數(shù)可證得,進(jìn)而得到結(jié)論.【詳解】由題意得:定義域?yàn)?,,?)當(dāng)時(shí),,當(dāng)和時(shí),;當(dāng)時(shí),,在,上單調(diào)遞增,在上單調(diào)遞減,極大值為,極小值為.(2)要證:,即證:,即證:,化簡(jiǎn)可得:.,,即證:,設(shè),令,則,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 江西省上饒市2024-2025學(xué)年度第一學(xué)期八年級(jí)上冊(cè)生物期末綠色評(píng)價(jià)試卷(含答案)
- 安徽省蕪湖市2024-2025學(xué)年高一上學(xué)期期末教學(xué)質(zhì)量監(jiān)控歷史試卷(含答案)
- 11年1月貨幣銀行學(xué)試卷與答案
- 棉紗原料倉(cāng)庫(kù)項(xiàng)目可行性研究報(bào)告寫作模板-申批備案
- 數(shù)學(xué)-遼寧省大連市2024-2025學(xué)年高三上學(xué)期期末雙基測(cè)試卷及答案
- 2024青苔離婚經(jīng)濟(jì)補(bǔ)償協(xié)議書2篇
- 2024版服務(wù)協(xié)議續(xù)簽格式樣本版
- 福建省南平市金橋?qū)W校2021-2022學(xué)年高一語文聯(lián)考試卷含解析
- 2024鋁扣板吊頂工程節(jié)能評(píng)估與驗(yàn)收合同協(xié)議3篇
- 2025廠房租賃居間服務(wù)及市場(chǎng)調(diào)研協(xié)議3篇
- 中試部培訓(xùn)資料
- 【可行性報(bào)告】2024年第三方檢測(cè)相關(guān)項(xiàng)目可行性研究報(bào)告
- 藏醫(yī)學(xué)專業(yè)生涯發(fā)展展示
- 2024政務(wù)服務(wù)綜合窗口人員能力與服務(wù)規(guī)范考試試題
- JT∕T 1477-2023 系列2集裝箱 角件
- 《陸上風(fēng)電場(chǎng)工程設(shè)計(jì)概算編制規(guī)定及費(fèi)用標(biāo)準(zhǔn)》(NB-T 31011-2019)
- 幼兒園“值日生”工作開展論文
- 光伏電站繼電保護(hù)運(yùn)行規(guī)程
- 承兌匯票臺(tái)帳模版
- 地下管道頂管施工方案(非常全)
- 有色金屬工業(yè)安裝工程質(zhì)量檢驗(yàn)評(píng)定標(biāo)準(zhǔn)(共1004頁(yè))
評(píng)論
0/150
提交評(píng)論