貴州財(cái)經(jīng)大學(xué)《數(shù)據(jù)分析與數(shù)據(jù)挖掘》2022-2023學(xué)年第一學(xué)期期末試卷_第1頁(yè)
貴州財(cái)經(jīng)大學(xué)《數(shù)據(jù)分析與數(shù)據(jù)挖掘》2022-2023學(xué)年第一學(xué)期期末試卷_第2頁(yè)
貴州財(cái)經(jīng)大學(xué)《數(shù)據(jù)分析與數(shù)據(jù)挖掘》2022-2023學(xué)年第一學(xué)期期末試卷_第3頁(yè)
貴州財(cái)經(jīng)大學(xué)《數(shù)據(jù)分析與數(shù)據(jù)挖掘》2022-2023學(xué)年第一學(xué)期期末試卷_第4頁(yè)
貴州財(cái)經(jīng)大學(xué)《數(shù)據(jù)分析與數(shù)據(jù)挖掘》2022-2023學(xué)年第一學(xué)期期末試卷_第5頁(yè)
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

自覺(jué)遵守考場(chǎng)紀(jì)律如考試作弊此答卷無(wú)效密自覺(jué)遵守考場(chǎng)紀(jì)律如考試作弊此答卷無(wú)效密封線第1頁(yè),共3頁(yè)貴州財(cái)經(jīng)大學(xué)

《數(shù)據(jù)分析與數(shù)據(jù)挖掘》2022-2023學(xué)年第一學(xué)期期末試卷院(系)_______班級(jí)_______學(xué)號(hào)_______姓名_______題號(hào)一二三四總分得分一、單選題(本大題共15個(gè)小題,每小題2分,共30分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在進(jìn)行數(shù)據(jù)分析時(shí),選擇合適的算法和模型需要考慮數(shù)據(jù)的特點(diǎn)和分析目的。假設(shè)我們有一個(gè)不平衡的數(shù)據(jù)集,其中一個(gè)類(lèi)別占比極少,以下哪種方法可以處理這種不平衡問(wèn)題?()A.過(guò)采樣B.欠采樣C.調(diào)整分類(lèi)閾值D.以上都是2、在處理大規(guī)模數(shù)據(jù)時(shí),分布式計(jì)算框架能夠提高計(jì)算效率。假設(shè)要對(duì)數(shù)十億條的用戶(hù)行為數(shù)據(jù)進(jìn)行分析,需要快速完成復(fù)雜的計(jì)算任務(wù)。以下哪個(gè)分布式計(jì)算框架在處理這種海量數(shù)據(jù)時(shí)更具優(yōu)勢(shì)?()A.HadoopB.SparkC.FlinkD.Storm3、數(shù)據(jù)可視化是數(shù)據(jù)分析的重要手段之一。以下關(guān)于數(shù)據(jù)可視化的作用,不準(zhǔn)確的是()A.數(shù)據(jù)可視化能夠?qū)?fù)雜的數(shù)據(jù)以直觀、易懂的圖形和圖表形式呈現(xiàn),幫助人們快速理解數(shù)據(jù)的含義和趨勢(shì)B.通過(guò)數(shù)據(jù)可視化,可以發(fā)現(xiàn)數(shù)據(jù)中的隱藏模式、異常值和關(guān)系,為進(jìn)一步的分析提供線索C.數(shù)據(jù)可視化只是為了讓數(shù)據(jù)看起來(lái)更美觀,對(duì)于數(shù)據(jù)分析的實(shí)質(zhì)內(nèi)容沒(méi)有太大幫助D.好的數(shù)據(jù)可視化能夠有效地傳達(dá)信息,支持決策制定,并與他人分享分析結(jié)果4、對(duì)于一個(gè)具有分類(lèi)和數(shù)值型特征的數(shù)據(jù)集合,若要進(jìn)行預(yù)處理,以下哪些步驟可能會(huì)被包括?()A.編碼分類(lèi)特征B.處理異常值C.標(biāo)準(zhǔn)化數(shù)值型特征D.以上都是5、在進(jìn)行數(shù)據(jù)預(yù)處理時(shí),數(shù)據(jù)標(biāo)準(zhǔn)化或歸一化是常見(jiàn)的操作。假設(shè)要對(duì)一組包含不同量綱的特征數(shù)據(jù)進(jìn)行標(biāo)準(zhǔn)化,以下哪種方法可能是最常用的?()A.最小-最大標(biāo)準(zhǔn)化B.Z-score標(biāo)準(zhǔn)化C.小數(shù)定標(biāo)標(biāo)準(zhǔn)化D.以上方法使用頻率相同6、假設(shè)要分析一個(gè)電商平臺(tái)的用戶(hù)評(píng)論數(shù)據(jù),以提取用戶(hù)的意見(jiàn)和情感傾向。以下哪種自然語(yǔ)言處理技術(shù)和方法可能是關(guān)鍵的?()A.詞袋模型B.情感分析C.命名實(shí)體識(shí)別D.以上都是7、在數(shù)據(jù)分析中,數(shù)據(jù)分析的方法有很多,其中關(guān)聯(lián)規(guī)則挖掘是一種常用的方法。以下關(guān)于關(guān)聯(lián)規(guī)則挖掘的描述中,錯(cuò)誤的是?()A.關(guān)聯(lián)規(guī)則挖掘可以用來(lái)發(fā)現(xiàn)數(shù)據(jù)中不同變量之間的關(guān)聯(lián)關(guān)系B.關(guān)聯(lián)規(guī)則挖掘的結(jié)果可以用支持度和置信度來(lái)衡量C.關(guān)聯(lián)規(guī)則挖掘只適用于數(shù)值型數(shù)據(jù),對(duì)于分類(lèi)型數(shù)據(jù)無(wú)法處理D.關(guān)聯(lián)規(guī)則挖掘可以幫助企業(yè)進(jìn)行商品推薦和營(yíng)銷(xiāo)策略制定8、在數(shù)據(jù)分析中,假設(shè)檢驗(yàn)是常用的方法之一。在進(jìn)行雙側(cè)檢驗(yàn)時(shí),如果P值小于0.05,我們可以得出什么結(jié)論?()A.拒絕原假設(shè)B.接受原假設(shè)C.無(wú)法得出結(jié)論D.原假設(shè)可能成立9、假設(shè)要分析一個(gè)醫(yī)療保健系統(tǒng)中的患者病歷數(shù)據(jù),包括診斷結(jié)果、治療方案、康復(fù)情況等,以發(fā)現(xiàn)疾病的趨勢(shì)和治療效果的影響因素??紤]到醫(yī)療數(shù)據(jù)的敏感性和隱私性,以下哪個(gè)方面需要特別注意?()A.數(shù)據(jù)加密和安全保護(hù)B.快速得出分析結(jié)果C.忽略數(shù)據(jù)的隱私問(wèn)題D.公開(kāi)所有數(shù)據(jù)以獲取更多幫助10、在進(jìn)行數(shù)據(jù)分析時(shí),異常值檢測(cè)是重要的環(huán)節(jié)。假設(shè)要在一組銷(xiāo)售數(shù)據(jù)中檢測(cè)異常值,以下關(guān)于異常值檢測(cè)的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.可以基于數(shù)據(jù)的統(tǒng)計(jì)特征,如均值和標(biāo)準(zhǔn)差,來(lái)確定異常值的范圍B.箱線圖能夠直觀地展示數(shù)據(jù)的分布情況,并幫助識(shí)別異常值C.異常值一定是錯(cuò)誤的數(shù)據(jù),應(yīng)該直接刪除,以免影響分析結(jié)果D.考慮數(shù)據(jù)的業(yè)務(wù)背景和上下文信息,有助于更準(zhǔn)確地判斷異常值11、在數(shù)據(jù)預(yù)處理階段,若發(fā)現(xiàn)數(shù)據(jù)中存在大量缺失值,以下哪種處理方法較為合適?()A.直接刪除含缺失值的記錄B.用均值或中位數(shù)填充缺失值C.根據(jù)其他變量推測(cè)缺失值D.以上方法均可12、在進(jìn)行數(shù)據(jù)分析時(shí),如果需要對(duì)數(shù)據(jù)進(jìn)行標(biāo)準(zhǔn)化處理以消除量綱的影響,以下哪種方法在Python中常用?()A.StandardScaler類(lèi)B.MinMaxScaler類(lèi)C.Normalizer類(lèi)D.以上都是13、在數(shù)據(jù)分析中,因果推斷用于確定變量之間的因果關(guān)系。假設(shè)要研究廣告投入與銷(xiāo)售額之間的因果關(guān)系,以下關(guān)于因果推斷的描述,哪一項(xiàng)是不正確的?()A.隨機(jī)對(duì)照實(shí)驗(yàn)是確定因果關(guān)系的黃金標(biāo)準(zhǔn),但在實(shí)際中可能難以實(shí)施B.觀察性研究可以通過(guò)控制混雜因素來(lái)推斷因果關(guān)系,但存在一定的局限性C.相關(guān)性強(qiáng)就意味著存在因果關(guān)系,可以直接根據(jù)相關(guān)性得出因果結(jié)論D.可以使用工具變量、雙重差分等方法來(lái)解決因果推斷中的內(nèi)生性問(wèn)題14、在構(gòu)建數(shù)據(jù)分析模型時(shí),特征工程起著關(guān)鍵作用。假設(shè)我們正在構(gòu)建一個(gè)預(yù)測(cè)房?jī)r(jià)的模型,擁有房屋面積、房間數(shù)量、地理位置等原始數(shù)據(jù)。以下哪種特征工程方法可能有助于提高模型的性能?()A.對(duì)數(shù)值型特征進(jìn)行標(biāo)準(zhǔn)化處理B.忽略地理位置特征,因?yàn)樗y以量化C.直接使用原始數(shù)據(jù),不進(jìn)行任何處理D.將所有特征組合成一個(gè)綜合特征15、當(dāng)分析一個(gè)社交媒體平臺(tái)上用戶(hù)的行為數(shù)據(jù),包括發(fā)布內(nèi)容的頻率、互動(dòng)情況、關(guān)注對(duì)象等,以了解用戶(hù)的興趣和社交網(wǎng)絡(luò)結(jié)構(gòu)??紤]到數(shù)據(jù)的多樣性和復(fù)雜性,以下哪種數(shù)據(jù)可視化方式可能有助于更直觀地呈現(xiàn)分析結(jié)果?()A.柱狀圖B.折線圖C.餅圖D.社交網(wǎng)絡(luò)圖二、簡(jiǎn)答題(本大題共3個(gè)小題,共15分)1、(本題5分)在大數(shù)據(jù)分析中,流數(shù)據(jù)處理是常見(jiàn)的場(chǎng)景。請(qǐng)說(shuō)明流數(shù)據(jù)的特點(diǎn)和處理流數(shù)據(jù)的常用技術(shù),如Storm、Flink等的工作原理。2、(本題5分)闡述在數(shù)據(jù)分析中,如何進(jìn)行數(shù)據(jù)的可信度評(píng)估,包括數(shù)據(jù)源可靠性、數(shù)據(jù)驗(yàn)證方法等方面。3、(本題5分)闡述數(shù)據(jù)挖掘中的關(guān)聯(lián)規(guī)則挖掘中的提升度和置信度的概念和作用,并舉例說(shuō)明如何根據(jù)這兩個(gè)指標(biāo)篩選有價(jià)值的關(guān)聯(lián)規(guī)則。三、論述題(本大題共5個(gè)小題,共25分)1、(本題5分)隨著共享經(jīng)濟(jì)的發(fā)展,共享單車(chē)和共享汽車(chē)平臺(tái)積累了大量的使用數(shù)據(jù)。以某共享出行平臺(tái)為例,論述如何運(yùn)用數(shù)據(jù)分析來(lái)優(yōu)化車(chē)輛投放策略、提高車(chē)輛利用率、預(yù)測(cè)用戶(hù)需求,以及如何解決數(shù)據(jù)稀疏性和動(dòng)態(tài)變化的問(wèn)題。2、(本題5分)在電商平臺(tái)的客戶(hù)服務(wù)中,數(shù)據(jù)分析可以提升響應(yīng)效率和解決問(wèn)題的能力。以某知名電商平臺(tái)的客服部門(mén)為例,分析如何運(yùn)用數(shù)據(jù)分析來(lái)識(shí)別常見(jiàn)問(wèn)題、優(yōu)化客服流程、評(píng)估客服績(jī)效,以及如何利用數(shù)據(jù)反饋改進(jìn)產(chǎn)品和服務(wù)質(zhì)量。3、(本題5分)在金融機(jī)構(gòu)的反洗錢(qián)監(jiān)測(cè)中,如何運(yùn)用數(shù)據(jù)分析識(shí)別異常交易模式和可疑賬戶(hù),防范洗錢(qián)活動(dòng)。4、(本題5分)影視娛樂(lè)行業(yè)通過(guò)在線平臺(tái)收集了大量的用戶(hù)觀影和消費(fèi)數(shù)據(jù)。分析如何運(yùn)用數(shù)據(jù)分析手段,如內(nèi)容推薦算法優(yōu)化、觀眾喜好預(yù)測(cè)等,制作更符合觀眾需求的影視作品,提高用戶(hù)滿(mǎn)意度和平臺(tái)收益,同時(shí)探討在數(shù)據(jù)多樣性處理和文化差異影響方面可能面臨的問(wèn)題及應(yīng)對(duì)方法。5、(本題5分)在物流倉(cāng)儲(chǔ)管理中,如何利用數(shù)據(jù)分析優(yōu)化貨物存儲(chǔ)布局,提高倉(cāng)庫(kù)空間利用率和貨物出入庫(kù)效率。四、案例分析題(本大題共3個(gè)小題,共30分)1、(本題10分)某在線古玩交易平臺(tái)掌握了交易數(shù)據(jù)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論