




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
20212022學(xué)年高一數(shù)學(xué)【考題透析】滿分計劃系列(人教A版2019必修第二冊)7.2復(fù)數(shù)的四則運算【知識導(dǎo)學(xué)】知識點一復(fù)數(shù)加法與減法的運算法則1.設(shè)z1=a+bi,z2=c+di(a,b,c,d∈R)是任意兩個復(fù)數(shù),則(1)z1+z2=(a+c)+(b+d)i; (2)z1-z2=(a-c)+(b-d)i.2.對任意z1,z2,z3∈C,有(1)z1+z2=z2+z1; (2)(z1+z2)+z3=z1+(z2+z3).知識點二復(fù)數(shù)加減法的幾何意義如圖,設(shè)復(fù)數(shù)z1,z2對應(yīng)向量分別為eq\o(OZ1,\s\up6(→)),eq\o(OZ2,\s\up6(→)),四邊形OZ1ZZ2為平行四邊形,向量eq\o(OZ,\s\up6(→))與復(fù)數(shù)z1+z2對應(yīng),向量eq\o(Z2Z1,\s\up6(→))與復(fù)數(shù)z1-z2對應(yīng).知識點三復(fù)數(shù)乘法的運算法則和運算律1.復(fù)數(shù)的乘法法則設(shè)z1=a+bi,z2=c+di(a,b,c,d∈R)是任意兩個復(fù)數(shù),則z1·z2=(a+bi)(c+di)=(ac-bd)+(ad+bc)i.2.復(fù)數(shù)乘法的運算律對任意復(fù)數(shù)z1,z2,z3∈C,有交換律z1z2=z2z1結(jié)合律(z1z2)z3=z1(z2z3)乘法對加法的分配律z1(z2+z3)=z1z2+z1z3知識點四復(fù)數(shù)除法的法則設(shè)z1=a+bi,z2=c+di(a,b,c,d∈R,且c+di≠0)是任意兩個復(fù)數(shù),則eq\f(z1,z2)=eq\f(a+bi,c+di)=eq\f(ac+bd,c2+d2)+eq\f(bc-ad,c2+d2)i(c+di≠0).【考題透析】透析題組一:復(fù)數(shù)的加減法的代數(shù)運算1.(2022·全國·高一)復(fù)數(shù)等于(
)A. B. C. D.2.(2021·安徽·宣城市勵志中學(xué)高一階段練習(xí))計算:(1);(2)已知,,求,.3.(2021·上?!じ咭徽n時練習(xí))已知復(fù)數(shù)滿足.(1)求;(2)若,求.透析題組二:復(fù)數(shù)加減法的幾何意義4.(2020·全國·高一專題練習(xí))已知,,,,求.5.(2020·全國·高一)如圖所示,平行四邊形OABC的頂點O,A,C分別對應(yīng)復(fù)數(shù)0,3+2i,-2+4i.求:(1)向量對應(yīng)的復(fù)數(shù);(2)向量對應(yīng)的復(fù)數(shù);(3)向量對應(yīng)的復(fù)數(shù).6.(2021·全國·高一課時練習(xí))已知四邊形是復(fù)平面內(nèi)的平行四邊形,是原點,點分別表示復(fù)數(shù),是,的交點,如圖所示,求點表示的復(fù)數(shù).透析題組三:復(fù)數(shù)代數(shù)形式的乘法運算7.(2022·湖南·高一課時練習(xí))計算:(1); (2);(3); (4).8.(2021·全國·高一課時練習(xí))計算:(1) (2) (3) (4)9.(2021·全國·高一課時練習(xí))計算:(1); (2); (3); (4).透析題組四:復(fù)數(shù)范圍內(nèi)解方程10.(2021·江蘇如東·高一期中)方程的一個根為,其中為虛數(shù)單位,則實數(shù)的值為(
)A.10 B.10 C.6 D.811.(2021·江蘇·無錫市堰橋高級中學(xué)高一期中)已知是關(guān)于的方程的根,則實數(shù)(
)A. B.4 C. D.412.(2021·全國·高一專題練習(xí))已知是一元二次方程的根(,,為虛數(shù)單位),則(
)A.8 B.7 C.4 D.透析題組五:復(fù)數(shù)代數(shù)形式的除法運算13.(2022·湖南·高一課時練習(xí))計算:(1); (2); (3); (4).14.(2022·全國·高一)已知復(fù)數(shù),是實數(shù).(1)求復(fù)數(shù)z;(2)若復(fù)數(shù)在復(fù)平面內(nèi)所表示的點在第二象限,求實數(shù)m的取值范圍.15.(2021·湖北·高一期末)已知是關(guān)于的方程的一個根,其中為虛數(shù)單位.(1)求的值;(2)記復(fù)數(shù),求復(fù)數(shù)的模.透析題型六:共軛復(fù)數(shù)的計算16.(2021·湖北·高一期末)已知復(fù)數(shù)(為虛數(shù)單位),設(shè)是的共軛復(fù)數(shù),則的虛部是(
)A. B. C. D.17.(2021·廣東·肇慶市高要區(qū)第二中學(xué)高一階段練習(xí))已知復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)點在射線上,且,則復(fù)數(shù)的虛部為(
)A. B. C. D.18.(2021·廣東海豐·高一階段練習(xí))已知,是虛數(shù)單位,復(fù)數(shù)是的共軛復(fù)數(shù),則(
)A. B. C. D.3透析題型六:復(fù)數(shù)的綜合運算19.(2021·全國·高一課時練習(xí))已知是虛數(shù)單位,則復(fù)數(shù)對應(yīng)的點所在的象限是(
)A.第一象限 B.第二象限 C.第三象限 D.第四象限20.(2021·全國·高一單元測試)已知復(fù)數(shù)(是虛數(shù)單位,),且為純虛數(shù)(是的共軛復(fù)數(shù)).(1)設(shè)復(fù)數(shù),求;(2)設(shè)復(fù)數(shù),且復(fù)數(shù)所對應(yīng)的點在第一象限,求實數(shù)的取值范圍.21.(2021·江蘇張家港·高一期中)(1)已知復(fù)數(shù)是關(guān)于x的方程的一個根,求的值;(2)已知復(fù)數(shù),,,求.【考點同練】一、單選題22.(2022·四川·眉山市彭山區(qū)第一中學(xué)模擬預(yù)測(文))已知復(fù)數(shù)z滿足,則z=(
)A. B.C. D.2-i23.(2022·河南安陽·二模(文))(
)A. B. C. D.24.(2022·黑龍江·鐵力市第一中學(xué)校高三開學(xué)考試(理))若復(fù)數(shù)z滿足(i為虛數(shù)單位),則z在復(fù)平面內(nèi)對應(yīng)的點位于(
)A.第一象限 B.第二象限C.第三象限 D.第四象限25.(2022·廣東高州·二模)設(shè)(i是虛數(shù)單位,,),則(
)A. B. C.2 D.26.(2022·新疆烏魯木齊·模擬預(yù)測(理))已知復(fù)數(shù)為z的共軛復(fù)數(shù),則(
)A. B. C. D.27.(2022·江蘇南通·一模)已知復(fù)數(shù)與都是純虛數(shù),則(
)A. B. C. D.28.(2022·湖南·雅禮中學(xué)高三階段練習(xí))已知復(fù)數(shù),則下列結(jié)論正確的是(
)A.的虛部為i B.C.的共軛復(fù)數(shù) D.為純虛數(shù)29.(2022·廣東·模擬預(yù)測)18世紀(jì)末期,挪威測量學(xué)家威塞爾首次利用坐標(biāo)平面上的點來表示復(fù)數(shù),使復(fù)數(shù)及其運算具有了幾何意義.例如,,即復(fù)數(shù)的模的幾何意義為在復(fù)平面內(nèi)對應(yīng)的點到原點的距離.在復(fù)平面內(nèi),若復(fù)數(shù)對應(yīng)的點為,為曲線上的動點,則與之間的最小距離為(
)A.3 B.4 C.5 D.6二、多選題30.(2022·湖北武漢·高三階段練習(xí))已知兩個復(fù)數(shù)滿足,且,則下面說法正確的是(
)A. B.C. D.31.(2022·江蘇鎮(zhèn)江·高三期末)關(guān)于復(fù)數(shù)(i為虛數(shù)單位),下列說法正確的是(
)A.|z|=1 B.z+z2=-1 C.z3=-1 D.(z+1)3=i32.(2022·全國·高三專題練習(xí))設(shè)是復(fù)數(shù),則下列命題中的真命題是(
)A.若,則B.若,則C.若,則D.若,則三、填空題33.(2022·湖南·高一課時練習(xí))若復(fù)數(shù),,則的虛部為___________.34.(2022·浙江·模擬預(yù)測)若關(guān)于的復(fù)系數(shù)一元二次方程的一個根為,則另一個根________.35.(2022·江西南昌·高二期末(理))已知復(fù)數(shù)對應(yīng)的點在復(fù)平面第一象限內(nèi),甲、乙、丙三人對復(fù)數(shù)的陳述如下為虛數(shù)單位:甲:;乙:;丙:,在甲、乙、丙三人陳述中,有且只有兩個人的陳述正確,則復(fù)數(shù)______.36.(2021·上海市徐匯中學(xué)高二期末)設(shè),復(fù)數(shù),,若是純虛數(shù),則a=______【答案精講】1.A【解析】【分析】按照復(fù)數(shù)的加法和減法法則進(jìn)行求解.【詳解】故選:A.2.(1)(2)【解析】【分析】(1)根據(jù)復(fù)數(shù)的加減法法則,實部與實部對應(yīng)加減,虛部與虛部對應(yīng)加減,即可運算得到結(jié)果;(2)根據(jù)復(fù)數(shù)的加法、減法法則運算即可.【詳解】(1);(2),,,3.(1);(2).【解析】【分析】(1)設(shè)復(fù)數(shù),利用復(fù)數(shù)的乘法運算以及復(fù)數(shù)相等即可求解.(2)利用共軛復(fù)數(shù)的概念以及復(fù)數(shù)的加法運算求出,然后再利用復(fù)數(shù)模的求法即可求解.【詳解】(1)設(shè)復(fù)數(shù),則由復(fù)數(shù)相等得,解得(2)由(1)得∴∵∴∴.【點睛】本題考查了復(fù)數(shù)的乘法運算、復(fù)數(shù)相等、共軛復(fù)數(shù)的概念、復(fù)數(shù)模的求法,屬于基礎(chǔ)題.4.【解析】利用向量的幾何意義畫出圖形,數(shù)形結(jié)合即可解答.【詳解】解:如圖,設(shè)對應(yīng)的復(fù)數(shù)為,對應(yīng)的復(fù)數(shù)為,由知,以,為鄰邊的平行四邊形是菱形,向量表示的復(fù)數(shù)為,,則為等邊三角形,,則,,表示的復(fù)數(shù)為,.【點睛】本題考查復(fù)數(shù)幾何意義的應(yīng)用,屬于基礎(chǔ)題.5.(1)-3-2i;(2)5-2i;(3)1+6i.【解析】【分析】結(jié)合復(fù)數(shù)的幾何意義和向量的線性運算即可求解.【詳解】(1)因為,所以向量對應(yīng)的復(fù)數(shù)為-3-2i;(2)因為=-,所以向量對應(yīng)的復(fù)數(shù)為(3+2i)-(-2+4i)=5-2i;(3)因為=+,所以向量對應(yīng)的復(fù)數(shù)為(3+2i)+(-2+4i)=1+6i.【點睛】本題考復(fù)數(shù)的幾何意義,向量的線性運算,屬于基礎(chǔ)題6.,【解析】利用求得點表示的復(fù)數(shù),利用求得點表示的復(fù)數(shù)【詳解】因為,分別表示復(fù)數(shù),,所以表示的復(fù)數(shù)為,即點表示的復(fù)數(shù)為,又,所以表示的復(fù)數(shù)為,即點表示的復(fù)數(shù)為【點睛】本題考查復(fù)數(shù)的幾何意義,屬于基礎(chǔ)題7.(1)(2)(3)(4)【解析】【分析】利用復(fù)數(shù)的運算法則,直接計算求解即可(1)(2)(3)(4)8.(1)(2)(3)(4)【解析】【分析】(1)利用復(fù)數(shù)的乘方運算即可求解.(2)利用復(fù)數(shù)的乘法運算即可求解.(3)利用復(fù)數(shù)的乘法運算即可求解.(4)利用復(fù)數(shù)的乘方以及乘法運算即可求解.(1)(2)(3)(4)9.(1)(2)(3)5(4)【解析】【分析】根據(jù)復(fù)數(shù)的乘法運算法則即可得到答案.(1).(2).(3).(4).10.B【解析】【分析】結(jié)合實系數(shù)的一元二次方程在復(fù)數(shù)范圍內(nèi)的兩根的關(guān)系求出另外一根,進(jìn)而結(jié)合韋達(dá)定理以及復(fù)數(shù)的乘法運算即可求出結(jié)果.【詳解】因為方程的一個根為,故方程的一個根為,結(jié)合韋達(dá)定理可得,即,故選:B.11.B【解析】【分析】由方程根的意義,把代入方程計算整理,借助復(fù)數(shù)為0的條件列式求解即得.【詳解】因是關(guān)于的方程的根,則有,即,而,于是得,解得,所以實數(shù).故選:B12.C【解析】【分析】將代入到方程,根據(jù)復(fù)數(shù)相等可求出,由此求出結(jié)論.【詳解】解:∵是一元二次方程的根,∴,即,∴,解得,∴,故選:C.13.(1),(2),(3),(4).【解析】【分析】這四個小問都是同一個問題,就是分母實數(shù)化,運用復(fù)數(shù)除法法則進(jìn)行計算求解結(jié)果.(1);(2);(3);(4);故答案為:,,,.14.(1)(2)【解析】【分析】(1)先將代入化簡,再由其虛部為零可求出的值,從而可求出復(fù)數(shù),(2)先對化簡,再由題意可得從而可求得結(jié)果(1)因為,所以,因為是實數(shù),所以,解得.故.(2)因為,所以.因為復(fù)數(shù)所表示的點在第二象限,所以解得,即實數(shù)m的取值范圍是.15.(1)(2)【解析】【分析】(1)由題知,即,再根據(jù)復(fù)數(shù)相等求解即可;(2)由(1)得,故,再求模即可.(1)解:知是關(guān)于的方程的一個根,所以,即,所以,解得.所以(2)解:由(1)得復(fù)數(shù),所以所以復(fù)數(shù)的模為16.B【解析】【分析】先求出共軛復(fù)數(shù),從而可求出其虛部【詳解】由,得,所以的虛部是,故選:B17.A【解析】【分析】不妨設(shè),由復(fù)數(shù)的模長公式求出的值,利用共軛復(fù)數(shù)的定義可求得復(fù)數(shù)的虛部.【詳解】不妨設(shè),則,可得,,因此,復(fù)數(shù)的虛部為.故選:A.18.D【解析】【分析】按照復(fù)數(shù)的除法法則對其進(jìn)行運算,根據(jù)共軛復(fù)數(shù)的概念列出關(guān)于的方程組,解出即可.【詳解】∵復(fù)數(shù),復(fù)數(shù)為其共軛復(fù)數(shù),∴解得∴,故選:D.19.D【解析】【分析】先化簡,再利用復(fù)數(shù)的除法化簡得解.【詳解】.所以復(fù)數(shù)對應(yīng)的點在第四象限,故選:D【點睛】結(jié)論點睛:復(fù)數(shù)對應(yīng)的點為,點在第幾象限,復(fù)數(shù)對應(yīng)的點就在第幾象限.20.(1);(2)【解析】【分析】(1)先根據(jù)條件得到,進(jìn)而得到,由復(fù)數(shù)的模的求法得到結(jié)果;(2)由第一問得到,根據(jù)復(fù)數(shù)對應(yīng)的點在第一象限得到不等式,進(jìn)而求解.【詳解】∵,∴.∴.又∵為純虛數(shù),∴,解得.∴.(1),∴;(2)∵,∴,又∵復(fù)數(shù)所對應(yīng)的點在第一象限,∴,解得:.【點睛】如果是復(fù)平面內(nèi)表示復(fù)數(shù)的點,則①當(dāng),時,點位于第一象限;當(dāng),時,點位于第二象限;當(dāng),時,點位于第三象限;當(dāng),時,點位于第四象限;②當(dāng)時,點位于實軸上方的半平面內(nèi);當(dāng)時,點位于實軸下方的半平面內(nèi).21.(1)12;(2).【解析】【分析】(1)把代換中的x,化簡,再由復(fù)數(shù)相等解得;(2)把z1,z2代入式中,利用復(fù)數(shù)運算計算出z而得解.【詳解】(1)因為是方程的一個根,∴∴,而∴∴,∴(2)∵,,∴,∴22.C【解析】【分析】利用復(fù)數(shù)的除法運算求解即可.【詳解】,故答案為:C.23.C【解析】【分析】直接利用復(fù)數(shù)的除法運算和模的公式化簡求值.【詳解】解:原式=.故選:C24.D【解析】【分析】利用復(fù)數(shù)的除法求出復(fù)數(shù)z即可判斷作答.【詳解】依題意,,復(fù)數(shù)z在復(fù)平面內(nèi)對應(yīng)的點為,所以復(fù)數(shù)z在復(fù)平面內(nèi)對應(yīng)的點在第四象限.故選:D25.B【解析】【分析】利用復(fù)數(shù)的乘法求出x、y,即可求出.【詳解】因為,所以,所以.故選:B26.A【解析】【分析】利用共軛復(fù)數(shù)、復(fù)數(shù)除法運算等知識求得正確答案.【詳解】,.故選:A27.C【解析】【分析】根據(jù)題意設(shè),根據(jù)復(fù)數(shù)的四則運算可得出關(guān)于的等式與不等式,求出的值,即可得解.【詳解】因為為純虛數(shù),設(shè),則,由題意可得,解得,因此,.故選:C.28.D【解析】【分析】根據(jù)復(fù)數(shù)的除法運算法則,結(jié)合復(fù)數(shù)模的定義、共軛復(fù)數(shù)的定義,結(jié)合復(fù)數(shù)虛部的定義、純虛數(shù)的定義逐一判斷即可.【詳解】解:∵,∴z的虛部為1,為純虛數(shù),,∴正確的結(jié)論是D.故選:D.29.B【解析】【分析】化簡,得到,再根據(jù)的幾何意義和圓的性質(zhì),即可求解.【詳解】因為,所以,又因為曲線表示以為圓心,1為半徑的圓,所以,故與之間的最小距離為.故選:B.30.ABD【解析】【分析】根據(jù)復(fù)數(shù)的乘法運算和相等復(fù)數(shù)的概念求出,進(jìn)而結(jié)合復(fù)數(shù)的幾何意義和共軛復(fù)數(shù)的概念依次判斷選項即可.【詳解】由題意知,設(shè)為實數(shù)),則,即,所以,解得,所以,故A正確;,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 湖南省衡陽縣第五中學(xué)2025屆高三第一次診斷性考試試題物理試題試卷含解析
- 上海城建職業(yè)學(xué)院《特色文化傳承》2023-2024學(xué)年第二學(xué)期期末試卷
- 潞安職業(yè)技術(shù)學(xué)院《有限元法基礎(chǔ)》2023-2024學(xué)年第二學(xué)期期末試卷
- 泰州職業(yè)技術(shù)學(xué)院《針灸醫(yī)籍》2023-2024學(xué)年第一學(xué)期期末試卷
- 北京地鐵廣告常規(guī)媒體介紹-刊例價
- 某方便面生產(chǎn)企業(yè)管理報表的優(yōu)化與工作效率的精進(jìn)
- 電壓傳感器考核試卷
- 環(huán)境污染治理中的公民參與考核試卷
- 礦產(chǎn)勘查項目管理考核試卷
- 文化藝術(shù)產(chǎn)業(yè)的創(chuàng)意人才培育與激勵機制考核試卷
- T-JSSAE 001-2021 汽車混合動力系統(tǒng) 術(shù)語
- 第十三章-希爾德吉德·E·佩普勞的人際關(guān)系理論
- 電動機拆卸與裝配培訓(xùn)
- 2024年高等教育經(jīng)濟(jì)類自考-04531微觀經(jīng)濟(jì)學(xué)筆試歷年真題薈萃含答案
- 《咖啡理論知識》課件
- 大學(xué)生創(chuàng)業(yè)計劃書在線旅游服務(wù)平臺
- 【農(nóng)產(chǎn)品網(wǎng)絡(luò)營銷策略分析文獻(xiàn)綜述2400字】
- 2022年江蘇省南京市中考語文真題(解析版)
- 超聲檢查及解讀報告課件-002
- 工作分析訪談記錄表樣例
- 2023年廣東省東莞寮步鎮(zhèn)招聘30人文化管理員高頻考點題庫(共500題含答案解析)模擬練習(xí)試卷
評論
0/150
提交評論