2025屆陜西省西安市西安中學高三下學期一模考試數(shù)學試題含解析_第1頁
2025屆陜西省西安市西安中學高三下學期一模考試數(shù)學試題含解析_第2頁
2025屆陜西省西安市西安中學高三下學期一??荚嚁?shù)學試題含解析_第3頁
2025屆陜西省西安市西安中學高三下學期一??荚嚁?shù)學試題含解析_第4頁
2025屆陜西省西安市西安中學高三下學期一??荚嚁?shù)學試題含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2025屆陜西省西安市西安中學高三下學期一模考試數(shù)學試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.近年來,隨著網(wǎng)絡(luò)的普及和智能手機的更新?lián)Q代,各種方便的相繼出世,其功能也是五花八門.某大學為了調(diào)查在校大學生使用的主要用途,隨機抽取了名大學生進行調(diào)查,各主要用途與對應(yīng)人數(shù)的結(jié)果統(tǒng)計如圖所示,現(xiàn)有如下說法:①可以估計使用主要聽音樂的大學生人數(shù)多于主要看社區(qū)、新聞、資訊的大學生人數(shù);②可以估計不足的大學生使用主要玩游戲;③可以估計使用主要找人聊天的大學生超過總數(shù)的.其中正確的個數(shù)為()A. B. C. D.2.已知斜率為的直線與雙曲線交于兩點,若為線段中點且(為坐標原點),則雙曲線的離心率為()A. B.3 C. D.3.已知雙曲線的實軸長為,離心率為,、分別為雙曲線的左、右焦點,點在雙曲線上運動,若為銳角三角形,則的取值范圍是()A. B. C. D.4.已知曲線的一條對稱軸方程為,曲線向左平移個單位長度,得到曲線的一個對稱中心的坐標為,則的最小值是()A. B. C. D.5.已知雙曲線C:1(a>0,b>0)的焦距為8,一條漸近線方程為,則C為()A. B.C. D.6.已知復(fù)數(shù)為虛數(shù)單位),則z的虛部為()A.2 B. C.4 D.7.已知底面是等腰直角三角形的三棱錐P-ABC的三視圖如圖所示,俯視圖中的兩個小三角形全等,則()A.PA,PB,PC兩兩垂直 B.三棱錐P-ABC的體積為C. D.三棱錐P-ABC的側(cè)面積為8.直線與圓的位置關(guān)系是()A.相交 B.相切 C.相離 D.相交或相切9.已知的共軛復(fù)數(shù)是,且(為虛數(shù)單位),則復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.已知,,若,則實數(shù)的值是()A.-1 B.7 C.1 D.1或711.函數(shù)f(x)=lnA. B. C. D.12.平行四邊形中,已知,,點、分別滿足,,且,則向量在上的投影為()A.2 B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.“今有女善織,日益功疾,初日織五尺,今一月共織九匹三丈.”其白話意譯為:“現(xiàn)有一善織布的女子,從第2天開始,每天比前一天多織相同數(shù)量的布,第一天織了5尺布,現(xiàn)在一個月(按30天計算)共織布390尺.”則每天增加的數(shù)量為____尺,設(shè)該女子一個月中第n天所織布的尺數(shù)為,則______.14.已知正項等比數(shù)列中,,則__________.15.已知函數(shù)的定義域為R,導(dǎo)函數(shù)為,若,且,則滿足的x的取值范圍為______.16.已知一組數(shù)據(jù),1,0,,的方差為10,則________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知關(guān)于的不等式有解.(1)求實數(shù)的最大值;(2)若,,均為正實數(shù),且滿足.證明:.18.(12分)設(shè)橢圓,直線經(jīng)過點,直線經(jīng)過點,直線直線,且直線分別與橢圓相交于兩點和兩點.(Ⅰ)若分別為橢圓的左、右焦點,且直線軸,求四邊形的面積;(Ⅱ)若直線的斜率存在且不為0,四邊形為平行四邊形,求證:;(Ⅲ)在(Ⅱ)的條件下,判斷四邊形能否為矩形,說明理由.19.(12分)已知函數(shù).(1)求函數(shù)的最小正周期以及單調(diào)遞增區(qū)間;(2)已知,若,,,求的面積.20.(12分)設(shè)都是正數(shù),且,.求證:.21.(12分)已知函數(shù),.(1)求函數(shù)在處的切線方程;(2)當時,證明:對任意恒成立.22.(10分)如圖,直三棱柱中,分別是的中點,.(1)證明:平面;(2)求二面角的余弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

根據(jù)利用主要聽音樂的人數(shù)和使用主要看社區(qū)、新聞、資訊的人數(shù)作大小比較,可判斷①的正誤;計算使用主要玩游戲的大學生所占的比例,可判斷②的正誤;計算使用主要找人聊天的大學生所占的比例,可判斷③的正誤.綜合得出結(jié)論.【詳解】使用主要聽音樂的人數(shù)為,使用主要看社區(qū)、新聞、資訊的人數(shù)為,所以①正確;使用主要玩游戲的人數(shù)為,而調(diào)查的總?cè)藬?shù)為,,故超過的大學生使用主要玩游戲,所以②錯誤;使用主要找人聊天的大學生人數(shù)為,因為,所以③正確.故選:C.【點睛】本題考查統(tǒng)計中相關(guān)命題真假的判斷,計算出相應(yīng)的頻數(shù)與頻率是關(guān)鍵,考查數(shù)據(jù)處理能力,屬于基礎(chǔ)題.2、B【解析】

設(shè),代入雙曲線方程相減可得到直線的斜率與中點坐標之間的關(guān)系,從而得到的等式,求出離心率.【詳解】,設(shè),則,兩式相減得,∴,.故選:B.【點睛】本題考查求雙曲線的離心率,解題方法是點差法,即出現(xiàn)雙曲線的弦中點坐標時,可設(shè)弦兩端點坐標代入雙曲線方程相減后得出弦所在直線斜率與中點坐標之間的關(guān)系.3、A【解析】

由已知先確定出雙曲線方程為,再分別找到為直角三角形的兩種情況,最后再結(jié)合即可解決.【詳解】由已知可得,,所以,從而雙曲線方程為,不妨設(shè)點在雙曲線右支上運動,則,當時,此時,所以,,所以;當軸時,,所以,又為銳角三角形,所以.故選:A.【點睛】本題考查雙曲線的性質(zhì)及其應(yīng)用,本題的關(guān)鍵是找到為銳角三角形的臨界情況,即為直角三角形,是一道中檔題.4、C【解析】

在對稱軸處取得最值有,結(jié)合,可得,易得曲線的解析式為,結(jié)合其對稱中心為可得即可得到的最小值.【詳解】∵直線是曲線的一條對稱軸.,又..∴平移后曲線為.曲線的一個對稱中心為..,注意到故的最小值為.故選:C.【點睛】本題考查余弦型函數(shù)性質(zhì)的應(yīng)用,涉及到函數(shù)的平移、函數(shù)的對稱性,考查學生數(shù)形結(jié)合、數(shù)學運算的能力,是一道中檔題.5、A【解析】

由題意求得c與的值,結(jié)合隱含條件列式求得a2,b2,則答案可求.【詳解】由題意,2c=8,則c=4,又,且a2+b2=c2,解得a2=4,b2=12.∴雙曲線C的方程為.故選:A.【點睛】本題考查雙曲線的簡單性質(zhì),屬于基礎(chǔ)題.6、A【解析】

對復(fù)數(shù)進行乘法運算,并計算得到,從而得到虛部為2.【詳解】因為,所以z的虛部為2.【點睛】本題考查復(fù)數(shù)的四則運算及虛部的概念,計算過程要注意.7、C【解析】

根據(jù)三視圖,可得三棱錐P-ABC的直觀圖,然后再計算可得.【詳解】解:根據(jù)三視圖,可得三棱錐P-ABC的直觀圖如圖所示,其中D為AB的中點,底面ABC.所以三棱錐P-ABC的體積為,,,,,、不可能垂直,即不可能兩兩垂直,,.三棱錐P-ABC的側(cè)面積為.故正確的為C.故選:C.【點睛】本題考查三視圖還原直觀圖,以及三棱錐的表面積、體積的計算問題,屬于中檔題.8、D【解析】

由幾何法求出圓心到直線的距離,再與半徑作比較,由此可得出結(jié)論.【詳解】解:由題意,圓的圓心為,半徑,∵圓心到直線的距離為,,,故選:D.【點睛】本題主要考查直線與圓的位置關(guān)系,屬于基礎(chǔ)題.9、D【解析】

設(shè),整理得到方程組,解方程組即可解決問題.【詳解】設(shè),因為,所以,所以,解得:,所以復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點為,此點位于第四象限.故選D【點睛】本題主要考查了復(fù)數(shù)相等、復(fù)數(shù)表示的點知識,考查了方程思想,屬于基礎(chǔ)題.10、C【解析】

根據(jù)平面向量數(shù)量積的坐標運算,化簡即可求得的值.【詳解】由平面向量數(shù)量積的坐標運算,代入化簡可得.∴解得.故選:C.【點睛】本題考查了平面向量數(shù)量積的坐標運算,屬于基礎(chǔ)題.11、C【解析】因為fx=lnx2-4x+4x-23=12、C【解析】

將用向量和表示,代入可求出,再利用投影公式可得答案.【詳解】解:,得,則向量在上的投影為.故選:C.【點睛】本題考查向量的幾何意義,考查向量的線性運算,將用向量和表示是關(guān)鍵,是基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、52【解析】

設(shè)從第2天開始,每天比前一天多織尺布,由等差數(shù)列前項和公式求出,由此利用等差數(shù)列通項公式能求出.【詳解】設(shè)從第2天開始,每天比前一天多織d尺布,

則,

解得,即每天增加的數(shù)量為,

,故答案為,52.【點睛】本題主要考查等差數(shù)列的通項公式、等差數(shù)列的求和公式,意在考查利用所學知識解決問題的能力,屬于中檔題.14、【解析】

利用等比數(shù)列的通項公式將已知兩式作商,可得,再利用等比數(shù)列的性質(zhì)可得,再利用等比數(shù)列的通項公式即可求解.【詳解】由,所以,解得.,所以,所以.故答案為:【點睛】本題考查了等比數(shù)列的通項公式以及等比中項,需熟記公式,屬于基礎(chǔ)題.15、【解析】

構(gòu)造函數(shù),再根據(jù)條件確定為奇函數(shù)且在上單調(diào)遞減,最后利用單調(diào)性以及奇偶性化簡不等式,解得結(jié)果.【詳解】依題意,,令,則,故函數(shù)為奇函數(shù),故函數(shù)在上單調(diào)遞減,則,即,故,則x的取值范圍為.故答案為:【點睛】本題考查函數(shù)奇偶性、單調(diào)性以及利用函數(shù)性質(zhì)解不等式,考查綜合分析求解能力,屬中檔題.16、7或【解析】

依據(jù)方差公式列出方程,解出即可.【詳解】,1,0,,的平均數(shù)為,所以解得或.【點睛】本題主要考查方差公式的應(yīng)用.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)見解析【解析】

(1)由題意,只需找到的最大值即可;(2),構(gòu)造并利用基本不等式可得,即.【詳解】(1),∴的最大值為4.關(guān)于的不等式有解等價于,(?。┊敃r,上述不等式轉(zhuǎn)化為,解得,(ⅱ)當時,上述不等式轉(zhuǎn)化為,解得,綜上所述,實數(shù)的取值范圍為,則實數(shù)的最大值為3,即.(2)證明:根據(jù)(1)求解知,所以,又∵,,,,,當且僅當時,等號成立,即,∴,所以,.【點睛】本題考查絕對值不等式中的能成立問題以及綜合法證明不等式問題,是一道中檔題.18、(Ⅰ);(Ⅱ)證明見解析;(Ⅲ)不能,證明見解析【解析】

(Ⅰ)計算得到故,,,,計算得到面積.(Ⅱ)設(shè)為,聯(lián)立方程得到,計算,同理,根據(jù)得到,得到證明.(Ⅲ)設(shè)中點為,根據(jù)點差法得到,同理,故,得到結(jié)論.【詳解】(Ⅰ),,故,,,.故四邊形的面積為.(Ⅱ)設(shè)為,則,故,設(shè),,故,,同理可得,,故,即,,故.(Ⅲ)設(shè)中點為,則,,相減得到,即,同理可得:的中點,滿足,故,故四邊形不能為矩形.【點睛】本題考查了橢圓內(nèi)四邊形的面積,形狀,根據(jù)四邊形形狀求參數(shù),意在考查學生的計算能力和綜合應(yīng)用能力.19、(1)最小正周期為,單調(diào)遞增區(qū)間為;(2).【解析】

(1)利用三角恒等變換思想化簡函數(shù)的解析式為,利用正弦型函數(shù)的周期公式可求得函數(shù)的最小正周期,解不等式可求得該函數(shù)的單調(diào)遞增區(qū)間;(2)由求得,由得出或,分兩種情況討論,結(jié)合余弦定理解三角形,進行利用三角形的面積公式可求得的面積.【詳解】(1),所以,函數(shù)的最小正周期為,由得,因此,函數(shù)的單調(diào)遞增區(qū)間為;(2)由,得,或,或,,,又,,即.①當時,即,則由,,得,則,此時,的面積為;②當時,則,即,則由,解得,,.綜上,的面積為.【點睛】本題考查正弦型函數(shù)的周期和單調(diào)區(qū)間的求解,同時也考查了三角形面積的計算,涉及余弦定理解三角形的應(yīng)用,考查計算能力,屬于中等題.20、證明見解析【解析】

利用比較法進行證明:把代數(shù)式展開、作差、化簡可得,,可證得成立,同理可證明,由此不等式得證.【詳解】證明:因為,,所以,∴成立,又都是正數(shù),∴,①同理,∴.【點睛】本題考查利用比較法證明不等式;考查學生的邏輯推理能力和運算求解能力;把差變形為因式乘積的形式是證明本題的關(guān)鍵;屬于中檔題。21、(1)(2)見解析【解析】

(1)因為,可得,即可求得答案;(2)要證對任意恒成立,即證對任意恒成立.設(shè),,當時,,即可求得答案.【詳解】(1),,,函數(shù)在處的切線方程為.(2)要證對任意恒成立.即證對任意恒成立.設(shè),,當時,,,令,解得,當時,,函數(shù)在上單調(diào)遞減;當時,,函數(shù)在上單調(diào)遞增.,,,當時,對任意恒成立,即當時,對任意恒成立.【點睛】本題主要考查了求曲線的切線方程和求證不等式恒成立問題,解題關(guān)鍵是掌握由導(dǎo)數(shù)求切線方程的解法和根據(jù)導(dǎo)數(shù)求證不等式恒成立的方法,考查了分析能力和計算能力,屬于難題.22、(1)證明見解析(2)【解析】

(1)連接交于點,由三角形中位線定理得,由此能證明平面.(2)以為坐標原點,的方向為軸正方向

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論