版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
廣東省深圳市外國(guó)語(yǔ)學(xué)校2023-2024學(xué)年高三第五次月考數(shù)學(xué)試題試卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫(xiě)在答題紙相應(yīng)的答題區(qū)內(nèi)。寫(xiě)在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.下圖是民航部門(mén)統(tǒng)計(jì)的某年春運(yùn)期間,六個(gè)城市售出的往返機(jī)票的平均價(jià)格(單位元),以及相比于上一年同期價(jià)格變化幅度的數(shù)據(jù)統(tǒng)計(jì)圖,以下敘述不正確的是()A.深圳的變化幅度最小,北京的平均價(jià)格最高B.天津的往返機(jī)票平均價(jià)格變化最大C.上海和廣州的往返機(jī)票平均價(jià)格基本相當(dāng)D.相比于上一年同期,其中四個(gè)城市的往返機(jī)票平均價(jià)格在增加2.已知展開(kāi)式中第三項(xiàng)的二項(xiàng)式系數(shù)與第四項(xiàng)的二項(xiàng)式系數(shù)相等,,若,則的值為()A.1 B.-1 C.8l D.-813.雙曲線的右焦點(diǎn)為,過(guò)點(diǎn)且與軸垂直的直線交兩漸近線于兩點(diǎn),與雙曲線的其中一個(gè)交點(diǎn)為,若,且,則該雙曲線的離心率為()A. B. C. D.4.已知直線:與圓:交于,兩點(diǎn),與平行的直線與圓交于,兩點(diǎn),且與的面積相等,給出下列直線:①,②,③,④.其中滿足條件的所有直線的編號(hào)有()A.①② B.①④ C.②③ D.①②④5.下列函數(shù)中,值域?yàn)榈呐己瘮?shù)是()A. B. C. D.6.二項(xiàng)式的展開(kāi)式中,常數(shù)項(xiàng)為()A. B.80 C. D.1607.如圖是甲、乙兩位同學(xué)在六次數(shù)學(xué)小測(cè)試(滿分100分)中得分情況的莖葉圖,則下列說(shuō)法錯(cuò)誤的是()A.甲得分的平均數(shù)比乙大 B.甲得分的極差比乙大C.甲得分的方差比乙小 D.甲得分的中位數(shù)和乙相等8.在等差數(shù)列中,若為前項(xiàng)和,,則的值是()A.156 B.124 C.136 D.1809.國(guó)家統(tǒng)計(jì)局服務(wù)業(yè)調(diào)查中心和中國(guó)物流與采購(gòu)聯(lián)合會(huì)發(fā)布的2018年10月份至2019年9月份共12個(gè)月的中國(guó)制造業(yè)采購(gòu)經(jīng)理指數(shù)(PMI)如下圖所示.則下列結(jié)論中錯(cuò)誤的是()A.12個(gè)月的PMI值不低于50%的頻率為B.12個(gè)月的PMI值的平均值低于50%C.12個(gè)月的PMI值的眾數(shù)為49.4%D.12個(gè)月的PMI值的中位數(shù)為50.3%10.“”是“函數(shù)的圖象關(guān)于直線對(duì)稱(chēng)”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件11.已知復(fù)數(shù)z,則復(fù)數(shù)z的虛部為()A. B. C.i D.i12.定義在上函數(shù)滿足,且對(duì)任意的不相等的實(shí)數(shù)有成立,若關(guān)于x的不等式在上恒成立,則實(shí)數(shù)m的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知是等比數(shù)列,若,,且∥,則______.14.設(shè),則“”是“”的__________條件.15.已知,,,且,則的最小值為_(kāi)__________.16.對(duì)于任意的正數(shù),不等式恒成立,則的最大值為_(kāi)____.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知拋物線:,點(diǎn)為拋物線的焦點(diǎn),焦點(diǎn)到直線的距離為,焦點(diǎn)到拋物線的準(zhǔn)線的距離為,且.(1)求拋物線的標(biāo)準(zhǔn)方程;(2)若軸上存在點(diǎn),過(guò)點(diǎn)的直線與拋物線相交于、兩點(diǎn),且為定值,求點(diǎn)的坐標(biāo).18.(12分)如圖,已知四邊形的直角梯形,∥BC,,,,為線段的中點(diǎn),平面,,為線段上一點(diǎn)(不與端點(diǎn)重合).(1)若,(?。┣笞C:PC∥平面;(ⅱ)求平面與平面所成的銳二面角的余弦值;(2)否存在實(shí)數(shù)滿足,使得直線與平面所成的角的正弦值為,若存在,確定的值,若不存在,請(qǐng)說(shuō)明理由.19.(12分)已知橢圓的左,右焦點(diǎn)分別為,,,M是橢圓E上的一個(gè)動(dòng)點(diǎn),且的面積的最大值為.(1)求橢圓E的標(biāo)準(zhǔn)方程,(2)若,,四邊形ABCD內(nèi)接于橢圓E,,記直線AD,BC的斜率分別為,,求證:為定值.20.(12分)已知函數(shù)的圖象在處的切線方程是.(1)求的值;(2)若函數(shù),討論的單調(diào)性與極值;(3)證明:.21.(12分)如圖所示,在三棱柱中,為等邊三角形,,,平面,是線段上靠近的三等分點(diǎn).(1)求證:;(2)求直線與平面所成角的正弦值.22.(10分)已知凸邊形的面積為1,邊長(zhǎng),,其內(nèi)部一點(diǎn)到邊的距離分別為.求證:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
根據(jù)條形圖可折線圖所包含的數(shù)據(jù)對(duì)選項(xiàng)逐一分析,由此得出敘述不正確的選項(xiàng).【詳解】對(duì)于A選項(xiàng),根據(jù)折線圖可知深圳的變化幅度最小,根據(jù)條形圖可知北京的平均價(jià)格最高,所以A選項(xiàng)敘述正確.對(duì)于B選項(xiàng),根據(jù)折線圖可知天津的往返機(jī)票平均價(jià)格變化最大,所以B選項(xiàng)敘述正確.對(duì)于C選項(xiàng),根據(jù)條形圖可知上海和廣州的往返機(jī)票平均價(jià)格基本相當(dāng),所以C選項(xiàng)敘述正確.對(duì)于D選項(xiàng),根據(jù)折線圖可知相比于上一年同期,除了深圳外,另外五個(gè)城市的往返機(jī)票平均價(jià)格在增加,故D選項(xiàng)敘述錯(cuò)誤.故選:D【點(diǎn)睛】本小題主要考查根據(jù)條形圖和折線圖進(jìn)行數(shù)據(jù)分析,屬于基礎(chǔ)題.2、B【解析】
根據(jù)二項(xiàng)式系數(shù)的性質(zhì),可求得,再通過(guò)賦值求得以及結(jié)果即可.【詳解】因?yàn)檎归_(kāi)式中第三項(xiàng)的二項(xiàng)式系數(shù)與第四項(xiàng)的二項(xiàng)式系數(shù)相等,故可得,令,故可得,又因?yàn)?,令,則,解得令,則.故選:B.【點(diǎn)睛】本題考查二項(xiàng)式系數(shù)的性質(zhì),以及通過(guò)賦值法求系數(shù)之和,屬綜合基礎(chǔ)題.3、D【解析】
根據(jù)已知得本題首先求出直線與雙曲線漸近線的交點(diǎn),再利用,求出點(diǎn),因?yàn)辄c(diǎn)在雙曲線上,及,代入整理及得,又已知,即可求出離心率.【詳解】由題意可知,代入得:,代入雙曲線方程整理得:,又因?yàn)?,即可得到,故選:D.【點(diǎn)睛】本題主要考查的是雙曲線的簡(jiǎn)單幾何性質(zhì)和向量的坐標(biāo)運(yùn)算,離心率問(wèn)題關(guān)鍵尋求關(guān)于,,的方程或不等式,由此計(jì)算雙曲線的離心率或范圍,屬于中檔題.4、D【解析】
求出圓心到直線的距離為:,得出,根據(jù)條件得出到直線的距離或時(shí)滿足條件,即可得出答案.【詳解】解:由已知可得:圓:的圓心為(0,0),半徑為2,則圓心到直線的距離為:,∴,而,與的面積相等,∴或,即到直線的距離或時(shí)滿足條件,根據(jù)點(diǎn)到直線距離可知,①②④滿足條件.故選:D.【點(diǎn)睛】本題考查直線與圓的位置關(guān)系的應(yīng)用,涉及點(diǎn)到直線的距離公式.5、C【解析】試題分析:A中,函數(shù)為偶函數(shù),但,不滿足條件;B中,函數(shù)為奇函數(shù),不滿足條件;C中,函數(shù)為偶函數(shù)且,滿足條件;D中,函數(shù)為偶函數(shù),但,不滿足條件,故選C.考點(diǎn):1、函數(shù)的奇偶性;2、函數(shù)的值域.6、A【解析】
求出二項(xiàng)式的展開(kāi)式的通式,再令的次數(shù)為零,可得結(jié)果.【詳解】解:二項(xiàng)式展開(kāi)式的通式為,令,解得,則常數(shù)項(xiàng)為.故選:A.【點(diǎn)睛】本題考查二項(xiàng)式定理指定項(xiàng)的求解,關(guān)鍵是熟練應(yīng)用二項(xiàng)展開(kāi)式的通式,是基礎(chǔ)題.7、B【解析】
由平均數(shù)、方差公式和極差、中位數(shù)概念,可得所求結(jié)論.【詳解】對(duì)于甲,;對(duì)于乙,,故正確;甲的極差為,乙的極差為,故錯(cuò)誤;對(duì)于甲,方差.5,對(duì)于乙,方差,故正確;甲得分的中位數(shù)為,乙得分的中位數(shù)為,故正確.故選:.【點(diǎn)睛】本題考查莖葉圖的應(yīng)用,考查平均數(shù)和方差等概念,培養(yǎng)計(jì)算能力,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平,屬于基礎(chǔ)題.8、A【解析】
因?yàn)?,可得,根?jù)等差數(shù)列前項(xiàng)和,即可求得答案.【詳解】,,.故選:A.【點(diǎn)睛】本題主要考查了求等差數(shù)列前項(xiàng)和,解題關(guān)鍵是掌握等差中項(xiàng)定義和等差數(shù)列前項(xiàng)和公式,考查了分析能力和計(jì)算能力,屬于基礎(chǔ)題.9、D【解析】
根據(jù)圖形中的信息,可得頻率、平均值的估計(jì)、眾數(shù)、中位數(shù),從而得到答案.【詳解】對(duì)A,從圖中數(shù)據(jù)變化看,PMI值不低于50%的月份有4個(gè),所以12個(gè)月的PMI值不低于50%的頻率為,故A正確;對(duì)B,由圖可以看出,PMI值的平均值低于50%,故B正確;對(duì)C,12個(gè)月的PMI值的眾數(shù)為49.4%,故C正確,;對(duì)D,12個(gè)月的PMI值的中位數(shù)為49.6%,故D錯(cuò)誤故選:D.【點(diǎn)睛】本題考查頻率、平均值的估計(jì)、眾數(shù)、中位數(shù)計(jì)算,考查數(shù)據(jù)處理能力,屬于基礎(chǔ)題.10、A【解析】
先求解函數(shù)的圖象關(guān)于直線對(duì)稱(chēng)的等價(jià)條件,得到,分析即得解.【詳解】若函數(shù)的圖象關(guān)于直線對(duì)稱(chēng),則,解得,故“”是“函數(shù)的圖象關(guān)于直線對(duì)稱(chēng)”的充分不必要條件.故選:A【點(diǎn)睛】本題考查了充分不必要條件的判斷,考查了學(xué)生邏輯推理,概念理解,數(shù)學(xué)運(yùn)算的能力,屬于基礎(chǔ)題.11、B【解析】
利用復(fù)數(shù)的運(yùn)算法則、虛部的定義即可得出【詳解】,則復(fù)數(shù)z的虛部為.故選:B.【點(diǎn)睛】本題考查了復(fù)數(shù)的運(yùn)算法則、虛部的定義,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.12、B【解析】
結(jié)合題意可知是偶函數(shù),且在單調(diào)遞減,化簡(jiǎn)題目所給式子,建立不等式,結(jié)合導(dǎo)函數(shù)與原函數(shù)的單調(diào)性關(guān)系,構(gòu)造新函數(shù),計(jì)算最值,即可.【詳解】結(jié)合題意可知為偶函數(shù),且在單調(diào)遞減,故可以轉(zhuǎn)換為對(duì)應(yīng)于恒成立,即即對(duì)恒成立即對(duì)恒成立令,則上遞增,在上遞減,所以令,在上遞減所以.故,故選B.【點(diǎn)睛】本道題考查了函數(shù)的基本性質(zhì)和導(dǎo)函數(shù)與原函數(shù)單調(diào)性關(guān)系,計(jì)算范圍,可以轉(zhuǎn)化為函數(shù),結(jié)合導(dǎo)函數(shù),計(jì)算最值,即可得出答案.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】若,,且∥,則,由是等比數(shù)列,可知公比為..故答案為.14、充分必要【解析】
根據(jù)充分條件和必要條件的定義可判斷兩者之間的條件關(guān)系.【詳解】當(dāng)時(shí),有,故“”是“”的充分條件.當(dāng)時(shí),有,故“”是“”的必要條件.故“”是“”的充分必要條件,故答案為:充分必要.【點(diǎn)睛】本題考查充分必要條件的判斷,可利用定義來(lái)判斷,也可以根據(jù)兩個(gè)條件構(gòu)成命題及逆命題的真假來(lái)判斷,還可以利用兩個(gè)條件對(duì)應(yīng)的集合的包含關(guān)系來(lái)判斷,本題屬于容易題.15、【解析】
由,先將變形為,運(yùn)用基本不等式可得最小值,再求的最小值,運(yùn)用函數(shù)單調(diào)性即可得到所求值.【詳解】解:因?yàn)?,,,且,所以因?yàn)?,所以,?dāng)且僅當(dāng)時(shí),取等號(hào),所以令,則,令,則,所以函數(shù)在上單調(diào)遞增,所以所以則所求最小值為故答案為:【點(diǎn)睛】此題考查基本不等式的運(yùn)用:求最值,注意變形和滿足的條件:一正二定三相等,考查利用單調(diào)性求最值,考查化簡(jiǎn)和運(yùn)算能力,屬于中檔題.16、【解析】
根據(jù)均為正數(shù),等價(jià)于恒成立,令,轉(zhuǎn)化為恒成立,利用基本不等式求解最值.【詳解】由題均為正數(shù),不等式恒成立,等價(jià)于恒成立,令則,當(dāng)且僅當(dāng)即時(shí)取得等號(hào),故的最大值為.故答案為:【點(diǎn)睛】此題考查不等式恒成立求參數(shù)的取值范圍,關(guān)鍵在于合理進(jìn)行等價(jià)變形,此題可以構(gòu)造二次函數(shù)求解,也可利用基本不等式求解.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)【解析】
(1)先分別表示出,然后根據(jù)求解出的值,則的標(biāo)準(zhǔn)方程可求;(2)設(shè)出直線的方程并聯(lián)立拋物線方程得到韋達(dá)定理形式,然后根據(jù)距離公式表示出并代入韋達(dá)定理形式,由此判斷出為定值時(shí)的坐標(biāo).【詳解】(1)由題意可得,焦點(diǎn),,則,,∴解得.拋物線的標(biāo)準(zhǔn)方程為(2)設(shè),設(shè)點(diǎn),,顯然直線的斜率不為0.設(shè)直線的方程為聯(lián)立方程,整理可得,,∴,∴要使為定值,必有,解得,∴為定值時(shí),點(diǎn)的坐標(biāo)為【點(diǎn)睛】本題考查拋物線方程的求解以及拋物線中的定值問(wèn)題,難度一般.(1)處理直線與拋物線相交對(duì)應(yīng)的定值問(wèn)題,聯(lián)立直線方程借助韋達(dá)定理形式是常用方法;(2)直線與圓錐曲線的問(wèn)題中,直線方程的設(shè)法有時(shí)能很大程度上起到簡(jiǎn)化運(yùn)算的作用。18、(1)(?。┳C明見(jiàn)解析(ⅱ)(2)存在,【解析】
(1)(i)連接交于點(diǎn),連接,,依題意易證四邊形為平行四邊形,從而有,,由此能證明PC∥平面(ii)推導(dǎo)出,以為原點(diǎn)建立空間直角坐標(biāo)系,利用向量法求解;(2)設(shè),求出平面的法向量,利用向量法求解.【詳解】(1)(?。┳C明:連接交于點(diǎn),連接,,因?yàn)闉榫€段的中點(diǎn),所以,因?yàn)?,所以因?yàn)椤嗡运倪呅螢槠叫兴倪呅危杂忠驗(yàn)?,所以又因?yàn)槠矫?,平面,所以平面.(ⅱ)解:如圖,在平行四邊形中因?yàn)?,,所以以為原點(diǎn)建立空間直角坐標(biāo)系則,,,所以,,,平面的法向量為設(shè)平面的法向量為,則,即,取,得,設(shè)平面和平面所成的銳二面角為,則所以銳二面角的余弦值為(2)設(shè)所以,,設(shè)平面的法向量為,則,取,得,因?yàn)橹本€與平面所成的角的正弦值為,所以解得所以存在滿足,使得直線與平面所成的角的正弦值為.【點(diǎn)睛】此題二查線面平行的證明,考查銳二面角的余弦值的求法,考查滿足線面角的正弦值的點(diǎn)是否存在的判斷與求法,考查空間中線線,線面,面面的位置關(guān)系等知識(shí),考查了推理能力與計(jì)算能力,屬于中檔題.19、(1)(2)證明見(jiàn)解析【解析】
(1)設(shè)橢圓E的半焦距為c,由題意可知,當(dāng)M為橢圓E的上頂點(diǎn)或下頂點(diǎn)時(shí),的面積取得最大值,求出,即可得答案;(2)根據(jù)題意可知,,因?yàn)?,所以可設(shè)直線CD的方程為,將直線代入曲線的方程,利用韋達(dá)定理得到的關(guān)系,再代入斜率公式可證得為定值.【詳解】(1)設(shè)橢圓E的半焦距為c,由題意可知,當(dāng)M為橢圓E的上頂點(diǎn)或下頂點(diǎn)時(shí),的面積取得最大值.所以,所以,,故橢圓E的標(biāo)準(zhǔn)方程為.(2)根據(jù)題意可知,,因?yàn)?,所以可設(shè)直線CD的方程為.由,消去y可得,所以,即.直線AD的斜率,直線BC的斜率,所以,故為定值.【點(diǎn)睛】本題考查橢圓標(biāo)準(zhǔn)方程的求解、橢圓中的定值問(wèn)題,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運(yùn)算求解能力,求解時(shí)注意坐標(biāo)法的運(yùn)用.20、(1);(2)單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為,的極小值為,無(wú)極大值;(3)見(jiàn)解析.【解析】
(1)切點(diǎn)既在切線上又在曲線上得一方程,再根據(jù)斜率等于該點(diǎn)的導(dǎo)數(shù)再列一方程,解方程組即可;(2)先對(duì)求導(dǎo)數(shù),根據(jù)導(dǎo)數(shù)判斷和求解即可.(3)把證明轉(zhuǎn)化為證明,然后證明極小值大于極大值即可.【詳解】解:(1)函數(shù)的定義域?yàn)橛梢阎?,則,解得.(2)由題意得,則.當(dāng)時(shí),,所以單調(diào)遞減,當(dāng)時(shí),
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 云南省昆明市師大附中2025屆物理高二上期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)試題含解析
- 2025屆內(nèi)蒙古自治區(qū)包頭市第二中學(xué)高三上物理期中達(dá)標(biāo)檢測(cè)試題含解析
- 安徽省宣城2025屆物理高二第一學(xué)期期末調(diào)研試題含解析
- 2025屆成都樹(shù)德中學(xué)高三上物理期中教學(xué)質(zhì)量檢測(cè)試題含解析
- 2025屆甘肅省會(huì)寧縣第四中學(xué)物理高一上期中檢測(cè)試題含解析
- 2025屆上海市嘉定一中物理高一第一學(xué)期期中監(jiān)測(cè)試題含解析
- 江西省新余第四中學(xué)2025屆高一物理第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析
- 張掖市重點(diǎn)中學(xué)2025屆物理高三上期末學(xué)業(yè)水平測(cè)試模擬試題含解析
- 內(nèi)蒙古自治區(qū)烏蘭察布市集寧區(qū)一中2025屆高二物理第一學(xué)期期末監(jiān)測(cè)試題含解析
- 2025屆浙江省樂(lè)清外國(guó)語(yǔ)學(xué)院高三物理第一學(xué)期期中質(zhì)量跟蹤監(jiān)視模擬試題含解析
- 2024年山東省公務(wù)員考試《行測(cè)》真題及答案解析
- 2024-2030年中國(guó)發(fā)芽米行業(yè)發(fā)展現(xiàn)狀及投資規(guī)模分析報(bào)告
- (一模)寧波市2024學(xué)年第一學(xué)期高考模擬考試 歷史試卷(含答案)
- 山東省棗莊市滕州市2024-2025學(xué)年九年級(jí)上學(xué)期11月期中物理試題(無(wú)答案)
- 2024年人教版八年級(jí)歷史上冊(cè)期末考試卷(附答案)
- 天津市河?xùn)|區(qū)2024-2025學(xué)年七年級(jí)上學(xué)期期中數(shù)學(xué)試卷(含答案)
- JGJ/T235-2011建筑外墻防水工程技術(shù)規(guī)程
- (正式版)HG∕T 21633-2024 玻璃鋼管和管件選用規(guī)定
- 2024年網(wǎng)上大學(xué)智能云服務(wù)交付工程師認(rèn)證考試題庫(kù)800題(含答案)
- 農(nóng)產(chǎn)品電子商務(wù)智慧樹(shù)知到期末考試答案章節(jié)答案2024年浙江農(nóng)林大學(xué)
- MOOC 電工學(xué)(電氣工程學(xué)概論)-天津大學(xué) 中國(guó)大學(xué)慕課答案
評(píng)論
0/150
提交評(píng)論