




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
廣東省汕頭潮陽區(qū)2024年第二學(xué)期高三期末考試數(shù)學(xué)試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若點(diǎn)是角的終邊上一點(diǎn),則()A. B. C. D.2.已知不重合的平面和直線,則“”的充分不必要條件是()A.內(nèi)有無數(shù)條直線與平行 B.且C.且 D.內(nèi)的任何直線都與平行3.在一個(gè)數(shù)列中,如果,都有(為常數(shù)),那么這個(gè)數(shù)列叫做等積數(shù)列,叫做這個(gè)數(shù)列的公積.已知數(shù)列是等積數(shù)列,且,,公積為,則()A. B. C. D.4.已知向量與的夾角為,定義為與的“向量積”,且是一個(gè)向量,它的長度,若,,則()A. B.C.6 D.5.若函數(shù)f(x)=x3+x2-在區(qū)間(a,a+5)上存在最小值,則實(shí)數(shù)a的取值范圍是A.[-5,0) B.(-5,0) C.[-3,0) D.(-3,0)6.若復(fù)數(shù)滿足(是虛數(shù)單位),則()A. B. C. D.7.對(duì)某兩名高三學(xué)生在連續(xù)9次數(shù)學(xué)測(cè)試中的成績(單位:分)進(jìn)行統(tǒng)計(jì)得到折線圖,下面是關(guān)于這兩位同學(xué)的數(shù)學(xué)成績分析.①甲同學(xué)的成績折線圖具有較好的對(duì)稱性,故平均成績?yōu)?30分;②根據(jù)甲同學(xué)成績折線圖提供的數(shù)據(jù)進(jìn)行統(tǒng)計(jì),估計(jì)該同學(xué)平均成績?cè)趨^(qū)間110,120內(nèi);③乙同學(xué)的數(shù)學(xué)成績與測(cè)試次號(hào)具有比較明顯的線性相關(guān)性,且為正相關(guān);④乙同學(xué)連續(xù)九次測(cè)驗(yàn)成績每一次均有明顯進(jìn)步.其中正確的個(gè)數(shù)為()A.4 B.3 C.2 D.18.將函數(shù)的圖像向右平移個(gè)單位長度,再將圖像上各點(diǎn)的橫坐標(biāo)伸長到原來的6倍(縱坐標(biāo)不變),得到函數(shù)的圖像,若為奇函數(shù),則的最小值為()A. B. C. D.9.趙爽是我國古代數(shù)學(xué)家、天文學(xué)家,大約在公元222年,趙爽為《周髀算經(jīng)》一書作序時(shí),介紹了“勾股圓方圖”,亦稱“趙爽弦圖”(以弦為邊長得到的正方形是由4個(gè)全等的直角三角形再加上中間的一個(gè)小正方形組成的).類比“趙爽弦圖”.可類似地構(gòu)造如下圖所示的圖形,它是由3個(gè)全等的三角形與中間的一個(gè)小等邊三角形拼成一個(gè)大等邊三角形.設(shè),若在大等邊三角形中隨機(jī)取一點(diǎn),則此點(diǎn)取自小等邊三角形(陰影部分)的概率是()A. B. C. D.10.我國數(shù)學(xué)家陳景潤在哥德巴赫猜想的研究中取得了世界領(lǐng)先的成果,哥德巴赫猜想的內(nèi)容是:每個(gè)大于2的偶數(shù)都可以表示為兩個(gè)素?cái)?shù)的和,例如:,,,那么在不超過18的素?cái)?shù)中隨機(jī)選取兩個(gè)不同的數(shù),其和等于16的概率為()A. B. C. D.11.已知雙曲線的一條漸近線方程是,則雙曲線的離心率為()A. B. C. D.12.若x∈(0,1),a=lnx,b=,c=elnx,則a,b,c的大小關(guān)系為()A.b>c>a B.c>b>a C.a(chǎn)>b>c D.b>a>c二、填空題:本題共4小題,每小題5分,共20分。13.已知向量,,若,則________.14.“北斗三號(hào)”衛(wèi)星的運(yùn)行軌道是以地心為一個(gè)焦點(diǎn)的橢圓.設(shè)地球半徑為R,若其近地點(diǎn)?遠(yuǎn)地點(diǎn)離地面的距離大約分別是,,則“北斗三號(hào)”衛(wèi)星運(yùn)行軌道的離心率為__________.15.西周初數(shù)學(xué)家商高在公元前1000年發(fā)現(xiàn)勾股定理的一個(gè)特例:勾三,股四,弦五.此發(fā)現(xiàn)早于畢達(dá)哥拉斯定理五百到六百年.我們把可以構(gòu)成一個(gè)直角三角形三邊的一組正整數(shù)稱為勾股數(shù).現(xiàn)從3,4,5,6,7,8,9,10,11,12,13這11個(gè)數(shù)中隨機(jī)抽取3個(gè)數(shù),則這3個(gè)數(shù)能構(gòu)成勾股數(shù)的概率為__________.16.設(shè)為拋物線的焦點(diǎn),為上互相不重合的三點(diǎn),且、、成等差數(shù)列,若線段的垂直平分線與軸交于,則的坐標(biāo)為_______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)函數(shù),是函數(shù)的導(dǎo)數(shù).(1)若,證明在區(qū)間上沒有零點(diǎn);(2)在上恒成立,求的取值范圍.18.(12分)已知,函數(shù),(是自然對(duì)數(shù)的底數(shù)).(Ⅰ)討論函數(shù)極值點(diǎn)的個(gè)數(shù);(Ⅱ)若,且命題“,”是假命題,求實(shí)數(shù)的取值范圍.19.(12分)已知函數(shù),其中,為自然對(duì)數(shù)的底數(shù).(1)當(dāng)時(shí),證明:對(duì);(2)若函數(shù)在上存在極值,求實(shí)數(shù)的取值范圍。20.(12分)已知橢圓的左右焦點(diǎn)分別是,點(diǎn)在橢圓上,滿足(1)求橢圓的標(biāo)準(zhǔn)方程;(2)直線過點(diǎn),且與橢圓只有一個(gè)公共點(diǎn),直線與的傾斜角互補(bǔ),且與橢圓交于異于點(diǎn)的兩點(diǎn),與直線交于點(diǎn)(介于兩點(diǎn)之間),是否存在直線,使得直線,,的斜率按某種排序能構(gòu)成等比數(shù)列?若能,求出的方程,若不能,請(qǐng)說理由.21.(12分)以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的參數(shù)方程是(為參數(shù),常數(shù)),曲線的極坐標(biāo)方程是.(1)寫出的普通方程及的直角坐標(biāo)方程,并指出是什么曲線;(2)若直線與曲線,均相切且相切于同一點(diǎn),求直線的極坐標(biāo)方程.22.(10分)在平面直角坐標(biāo)系中,直線與拋物線:交于,兩點(diǎn),且當(dāng)時(shí),.(1)求的值;(2)設(shè)線段的中點(diǎn)為,拋物線在點(diǎn)處的切線與的準(zhǔn)線交于點(diǎn),證明:軸.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】
根據(jù)三角函數(shù)的定義,求得,再由正弦的倍角公式,即可求解.【詳解】由題意,點(diǎn)是角的終邊上一點(diǎn),根據(jù)三角函數(shù)的定義,可得,則,故選A.【點(diǎn)睛】本題主要考查了三角函數(shù)的定義和正弦的倍角公式的化簡(jiǎn)、求值,其中解答中根據(jù)三角函數(shù)的定義和正弦的倍角公式,準(zhǔn)確化簡(jiǎn)、計(jì)算是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.2、B【解析】
根據(jù)充分不必要條件和直線和平面,平面和平面的位置關(guān)系,依次判斷每個(gè)選項(xiàng)得到答案.【詳解】A.內(nèi)有無數(shù)條直線與平行,則相交或,排除;B.且,故,當(dāng),不能得到且,滿足;C.且,,則相交或,排除;D.內(nèi)的任何直線都與平行,故,若,則內(nèi)的任何直線都與平行,充要條件,排除.故選:.【點(diǎn)睛】本題考查了充分不必要條件和直線和平面,平面和平面的位置關(guān)系,意在考查學(xué)生的綜合應(yīng)用能力.3、B【解析】
計(jì)算出的值,推導(dǎo)出,再由,結(jié)合數(shù)列的周期性可求得數(shù)列的前項(xiàng)和.【詳解】由題意可知,則對(duì)任意的,,則,,由,得,,,,因此,.故選:B.【點(diǎn)睛】本題考查數(shù)列求和,考查了數(shù)列的新定義,推導(dǎo)出數(shù)列的周期性是解答的關(guān)鍵,考查推理能力與計(jì)算能力,屬于中等題.4、D【解析】
先根據(jù)向量坐標(biāo)運(yùn)算求出和,進(jìn)而求出,代入題中給的定義即可求解.【詳解】由題意,則,,得,由定義知,故選:D.【點(diǎn)睛】此題考查向量的坐標(biāo)運(yùn)算,引入新定義,屬于簡(jiǎn)單題目.5、C【解析】
求函數(shù)導(dǎo)數(shù),分析函數(shù)單調(diào)性得到函數(shù)的簡(jiǎn)圖,得到a滿足的不等式組,從而得解.【詳解】由題意,f′(x)=x2+2x=x(x+2),故f(x)在(-∞,-2),(0,+∞)上是增函數(shù),在(-2,0)上是減函數(shù),作出其圖象如圖所示.令x3+x2-=-,得x=0或x=-3,則結(jié)合圖象可知,解得a∈[-3,0),故選C.【點(diǎn)睛】本題主要考查了利用函數(shù)導(dǎo)數(shù)研究函數(shù)的單調(diào)性,進(jìn)而研究函數(shù)的最值,屬于常考題型.6、B【解析】
利用復(fù)數(shù)乘法運(yùn)算化簡(jiǎn),由此求得.【詳解】依題意,所以.故選:B【點(diǎn)睛】本小題主要考查復(fù)數(shù)的乘法運(yùn)算,考查復(fù)數(shù)模的計(jì)算,屬于基礎(chǔ)題.7、C【解析】
利用圖形,判斷折線圖平均分以及線性相關(guān)性,成績的比較,說明正誤即可.【詳解】①甲同學(xué)的成績折線圖具有較好的對(duì)稱性,最高130分,平均成績?yōu)榈陀?30分,①錯(cuò)誤;②根據(jù)甲同學(xué)成績折線圖提供的數(shù)據(jù)進(jìn)行統(tǒng)計(jì),估計(jì)該同學(xué)平均成績?cè)趨^(qū)間[110,120]內(nèi),②正確;③乙同學(xué)的數(shù)學(xué)成績與測(cè)試次號(hào)具有比較明顯的線性相關(guān)性,且為正相關(guān),③正確;④乙同學(xué)在這連續(xù)九次測(cè)驗(yàn)中第四次、第七次成績較上一次成績有退步,故④不正確.故選:C.【點(diǎn)睛】本題考查折線圖的應(yīng)用,線性相關(guān)以及平均分的求解,考查轉(zhuǎn)化思想以及計(jì)算能力,屬于基礎(chǔ)題.8、C【解析】
根據(jù)三角函數(shù)的變換規(guī)則表示出,根據(jù)是奇函數(shù),可得的取值,再求其最小值.【詳解】解:由題意知,將函數(shù)的圖像向右平移個(gè)單位長度,得,再將圖像上各點(diǎn)的橫坐標(biāo)伸長到原來的6倍(縱坐標(biāo)不變),得到函數(shù)的圖像,,因?yàn)槭瞧婧瘮?shù),所以,解得,因?yàn)椋缘淖钚≈禐?故選:【點(diǎn)睛】本題考查三角函數(shù)的變換以及三角函數(shù)的性質(zhì),屬于基礎(chǔ)題.9、A【解析】
根據(jù)幾何概率計(jì)算公式,求出中間小三角形區(qū)域的面積與大三角形面積的比值即可.【詳解】在中,,,,由余弦定理,得,所以.所以所求概率為.故選A.【點(diǎn)睛】本題考查了幾何概型的概率計(jì)算問題,是基礎(chǔ)題.10、B【解析】
先求出從不超過18的素?cái)?shù)中隨機(jī)選取兩個(gè)不同的數(shù)的所有可能結(jié)果,然后再求出其和等于16的結(jié)果,根據(jù)等可能事件的概率公式可求.【詳解】解:不超過18的素?cái)?shù)有2,3,5,7,11,13,17共7個(gè),從中隨機(jī)選取兩個(gè)不同的數(shù)共有,其和等于16的結(jié)果,共2種等可能的結(jié)果,故概率.故選:B.【點(diǎn)睛】古典概型要求能夠列舉出所有事件和發(fā)生事件的個(gè)數(shù),本題不可以列舉出所有事件但可以用分步計(jì)數(shù)得到,屬于基礎(chǔ)題.11、D【解析】雙曲線的漸近線方程是,所以,即,,即,,故選D.12、A【解析】
利用指數(shù)函數(shù)、對(duì)數(shù)函數(shù)的單調(diào)性直接求解.【詳解】∵x∈(0,1),∴a=lnx<0,b=()lnx>()0=1,0<c=elnx<e0=1,∴a,b,c的大小關(guān)系為b>c>a.故選:A.【點(diǎn)睛】本題考查三個(gè)數(shù)的大小的判斷,考查指數(shù)函數(shù)、對(duì)數(shù)函數(shù)的單調(diào)性等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、10【解析】
根據(jù)垂直得到,代入計(jì)算得到答案.【詳解】,則,解得,故,故.故答案為:.【點(diǎn)睛】本題考查了根據(jù)向量垂直求參數(shù),向量模,意在考查學(xué)生的計(jì)算能力.14、【解析】
畫出圖形,結(jié)合橢圓的定義和題設(shè)條件,求得的值,即可求得橢圓的離心率,得到答案.【詳解】如圖所示,設(shè)橢圓的長半軸為,半焦距為,因?yàn)榈厍虬霃綖镽,若其近地點(diǎn)?遠(yuǎn)地點(diǎn)離地面的距離大約分別是,,可得,解得,所以橢圓的離心率為.故答案為:.【點(diǎn)睛】本題主要考查了橢圓的離心率的求解,其中解答中熟記橢圓的幾何性質(zhì),列出方程組,求得的值是解答的關(guān)鍵,著重考查了推理與計(jì)算能力,屬于基礎(chǔ)題.15、【解析】
由組合數(shù)結(jié)合古典概型求解即可【詳解】從11個(gè)數(shù)中隨機(jī)抽取3個(gè)數(shù)有種不同的方法,其中能構(gòu)成勾股數(shù)的有共三種,所以,所求概率為.故答案為【點(diǎn)睛】本題考查古典概型與數(shù)學(xué)文化,考查組合問題,數(shù)據(jù)處理能力和應(yīng)用意識(shí).16、或【解析】
設(shè)出三點(diǎn)的坐標(biāo),結(jié)合等差數(shù)列的性質(zhì)、線段垂直平分線的性質(zhì)、拋物線的定義進(jìn)行求解即可.【詳解】拋物線的準(zhǔn)線方程為:,設(shè),由拋物線的定義可知:,,,因?yàn)?、、成等差?shù)列,所以有,所以,因?yàn)榫€段的垂直平分線與軸交于,所以,因此有,化簡(jiǎn)整理得:或.若,由可知;,這與已知矛盾,故舍去;若,所以有,因此.故答案為:或【點(diǎn)睛】本題考查了拋物線的定義的應(yīng)用,考查了等差數(shù)列的性質(zhì),考查了數(shù)學(xué)運(yùn)算能力.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】
(1)先利用導(dǎo)數(shù)的四則運(yùn)算法則和導(dǎo)數(shù)公式求出,再由函數(shù)的導(dǎo)數(shù)可知,函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,而,,可知在區(qū)間上恒成立,即在區(qū)間上沒有零點(diǎn);(2)由題意可將轉(zhuǎn)化為,構(gòu)造函數(shù),利用導(dǎo)數(shù)討論研究其在上的單調(diào)性,由,即可求出的取值范圍.【詳解】(1)若,則,,設(shè),則,,,故函數(shù)是奇函數(shù).當(dāng)時(shí),,,這時(shí),又函數(shù)是奇函數(shù),所以當(dāng)時(shí),.綜上,當(dāng)時(shí),函數(shù)單調(diào)遞增;當(dāng)時(shí),函數(shù)單調(diào)遞減.又,,故在區(qū)間上恒成立,所以在區(qū)間上沒有零點(diǎn).(2),由,所以恒成立,若,則,設(shè),.故當(dāng)時(shí),,又,所以當(dāng)時(shí),,滿足題意;當(dāng)時(shí),有,與條件矛盾,舍去;當(dāng)時(shí),令,則,又,故在區(qū)間上有無窮多個(gè)零點(diǎn),設(shè)最小的零點(diǎn)為,則當(dāng)時(shí),,因此在上單調(diào)遞增.,所以.于是,當(dāng)時(shí),,得,與條件矛盾.故的取值范圍是.【點(diǎn)睛】本題主要考查導(dǎo)數(shù)的四則運(yùn)算法則和導(dǎo)數(shù)公式的應(yīng)用,以及利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和最值,涉及分類討論思想和放縮法的應(yīng)用,難度較大,意在考查學(xué)生的數(shù)學(xué)建模能力,數(shù)學(xué)運(yùn)算能力和邏輯推理能力,屬于較難題.18、(1)當(dāng)時(shí),沒有極值點(diǎn),當(dāng)時(shí),有一個(gè)極小值點(diǎn).(2)【解析】試題分析:(1),分,討論,當(dāng)時(shí),對(duì),,當(dāng)時(shí),解得,在上是減函數(shù),在上是增函數(shù)。所以,當(dāng)時(shí),沒有極值點(diǎn),當(dāng)時(shí),有一個(gè)極小值點(diǎn).(2)原命題為假命題,則逆否命題為真命題。即不等式在區(qū)間內(nèi)有解。設(shè),所以,設(shè),則,且是增函數(shù),所以。所以分和k>1討論。試題解析:(Ⅰ)因?yàn)?,所以,?dāng)時(shí),對(duì),,所以在是減函數(shù),此時(shí)函數(shù)不存在極值,所以函數(shù)沒有極值點(diǎn);當(dāng)時(shí),,令,解得,若,則,所以在上是減函數(shù),若,則,所以在上是增函數(shù),當(dāng)時(shí),取得極小值為,函數(shù)有且僅有一個(gè)極小值點(diǎn),所以當(dāng)時(shí),沒有極值點(diǎn),當(dāng)時(shí),有一個(gè)極小值點(diǎn).(Ⅱ)命題“,”是假命題,則“,”是真命題,即不等式在區(qū)間內(nèi)有解.若,則設(shè),所以,設(shè),則,且是增函數(shù),所以當(dāng)時(shí),,所以在上是增函數(shù),,即,所以在上是增函數(shù),所以,即在上恒成立.當(dāng)時(shí),因?yàn)樵谑窃龊瘮?shù),因?yàn)?,,所以在上存在唯一零點(diǎn),當(dāng)時(shí),,在上單調(diào)遞減,從而,即,所以在上單調(diào)遞減,所以當(dāng)時(shí),,即.所以不等式在區(qū)間內(nèi)有解綜上所述,實(shí)數(shù)的取值范圍為.19、(1)見證明;(2)【解析】
(1)利用導(dǎo)數(shù)說明函數(shù)的單調(diào)性,進(jìn)而求得函數(shù)的最小值,得到要證明的結(jié)論;(2)問題轉(zhuǎn)化為導(dǎo)函數(shù)在區(qū)間上有解,法一:對(duì)a分類討論,分別研究a的不同取值下,導(dǎo)函數(shù)的單調(diào)性及值域,從而得到結(jié)論.法二:構(gòu)造函數(shù),利用函數(shù)的導(dǎo)數(shù)判斷函數(shù)的單調(diào)性求得函數(shù)的值域,再利用零點(diǎn)存在定理說明函數(shù)存在極值.【詳解】(1)當(dāng)時(shí),,于是,.又因?yàn)?,?dāng)時(shí),且.故當(dāng)時(shí),,即.所以,函數(shù)為上的增函數(shù),于是,.因此,對(duì),;(2)方法一:由題意在上存在極值,則在上存在零點(diǎn),①當(dāng)時(shí),為上的增函數(shù),注意到,,所以,存在唯一實(shí)數(shù),使得成立.于是,當(dāng)時(shí),,為上的減函數(shù);當(dāng)時(shí),,為上的增函數(shù);所以為函數(shù)的極小值點(diǎn);②當(dāng)時(shí),在上成立,所以在上單調(diào)遞增,所以在上沒有極值;③當(dāng)時(shí),在上成立,所以在上單調(diào)遞減,所以在上沒有極值,綜上所述,使在上存在極值的的取值范圍是.方法二:由題意,函數(shù)在上存在極值,則在上存在零點(diǎn).即在上存在零點(diǎn).設(shè),,則由單調(diào)性的性質(zhì)可得為上的減函數(shù).即的值域?yàn)?,所以,?dāng)實(shí)數(shù)時(shí),在上存在零點(diǎn).下面證明,當(dāng)時(shí),函數(shù)在上存在極值.事實(shí)上,當(dāng)時(shí),為上的增函數(shù),注意到,,所以,存在唯一實(shí)數(shù),使得成立.于是,當(dāng)時(shí),,為上的減函數(shù);當(dāng)時(shí),,為上的增函數(shù);即為函數(shù)的極小值點(diǎn).綜上所述,當(dāng)時(shí),函數(shù)在上存在極值.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的最值,涉及函數(shù)的單調(diào)性,導(dǎo)數(shù)的應(yīng)用,函數(shù)的最值的求法,考查構(gòu)造法的應(yīng)用,是一道綜合題.20、(1);(2)不能,理由見解析【解析】
(1)設(shè),則,由此即可求出橢圓方程;(2)設(shè)直線的方程為,聯(lián)立直線與橢圓的方程可求得,則直線斜率為,設(shè)其方程為,聯(lián)立直線與橢圓方程,結(jié)合韋達(dá)定理可得關(guān)于對(duì)稱,可求得,假設(shè)存在直線滿足題意,設(shè),可得,由此可得答案.【詳解】解:(1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 學(xué)校傳統(tǒng)文化禮儀教育
- 農(nóng)村蓋房拆遷合同標(biāo)準(zhǔn)文本
- 教學(xué)設(shè)計(jì)方案【9篇】
- 農(nóng)村路燈預(yù)算合同標(biāo)準(zhǔn)文本
- zz服裝購銷合同標(biāo)準(zhǔn)文本
- 保險(xiǎn)理財(cái)電子合同標(biāo)準(zhǔn)文本
- 借錢手續(xù)合同標(biāo)準(zhǔn)文本
- 2025年高中校園綠化升級(jí)改造合同
- 農(nóng)村工地管道施工合同標(biāo)準(zhǔn)文本
- 2025商業(yè)房產(chǎn)貸款合同范本
- DBJ53-T-40-2011 云南省城鎮(zhèn)園林工程施工質(zhì)量驗(yàn)收規(guī)程
- 游泳池防水施工方案
- 一文讀懂泡泡瑪特:詳解泡泡瑪特招股說明書2020課件
- 物流企業(yè)入職申請(qǐng)表范文
- 探放老空水措施
- 個(gè)人理財(cái)概論課件
- 國家開放大學(xué)電大《小學(xué)數(shù)學(xué)教學(xué)研究》網(wǎng)絡(luò)課形考任務(wù)1題庫及答案(試卷號(hào):1825)
- 部編人教版二年級(jí)道德與法治下冊(cè)全冊(cè)教案+知識(shí)點(diǎn)總結(jié)
- 淺析棒材表面裂紋特點(diǎn)及產(chǎn)生原因解讀
- 初中生如何與父母相處(課堂PPT)
- 艾滋病合并肺孢子菌肺炎臨床路徑
評(píng)論
0/150
提交評(píng)論