版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
廣東省揭陽(yáng)一中等重點(diǎn)中學(xué)2023-2024學(xué)年高三一診模擬數(shù)學(xué)試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)是虛數(shù)單位,,,則()A. B. C.1 D.22.當(dāng)輸入的實(shí)數(shù)時(shí),執(zhí)行如圖所示的程序框圖,則輸出的不小于103的概率是()A. B. C. D.3.設(shè)函數(shù),若函數(shù)有三個(gè)零點(diǎn),則()A.12 B.11 C.6 D.34.已知函數(shù)在上都存在導(dǎo)函數(shù),對(duì)于任意的實(shí)數(shù)都有,當(dāng)時(shí),,若,則實(shí)數(shù)的取值范圍是()A. B. C. D.5.已知函數(shù)()的部分圖象如圖所示,且,則的最小值為()A. B.C. D.6.函數(shù)的圖象大致為A. B. C. D.7.已知拋物線和點(diǎn),直線與拋物線交于不同兩點(diǎn),,直線與拋物線交于另一點(diǎn).給出以下判斷:①以為直徑的圓與拋物線準(zhǔn)線相離;②直線與直線的斜率乘積為;③設(shè)過(guò)點(diǎn),,的圓的圓心坐標(biāo)為,半徑為,則.其中,所有正確判斷的序號(hào)是()A.①② B.①③ C.②③ D.①②③8.若將函數(shù)的圖象上各點(diǎn)橫坐標(biāo)縮短到原來(lái)的(縱坐標(biāo)不變)得到函數(shù)的圖象,則下列說(shuō)法正確的是()A.函數(shù)在上單調(diào)遞增 B.函數(shù)的周期是C.函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱 D.函數(shù)在上最大值是19.已知實(shí)數(shù),則下列說(shuō)法正確的是()A. B.C. D.10.已知函數(shù),若關(guān)于的方程有4個(gè)不同的實(shí)數(shù)根,則實(shí)數(shù)的取值范圍為()A. B. C. D.11.下列函數(shù)中,既是奇函數(shù),又在上是增函數(shù)的是().A. B.C. D.12.設(shè)復(fù)數(shù)滿足,在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)的坐標(biāo)為則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.一個(gè)長(zhǎng)、寬、高分別為1、2、2的長(zhǎng)方體可以在一個(gè)圓柱形容器內(nèi)任意轉(zhuǎn)動(dòng),則容器體積的最小值為_________.14.已知函數(shù),若函數(shù)有6個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是_________.15.設(shè),分別是定義在上的奇函數(shù)和偶函數(shù),且,則_________16.二項(xiàng)式的展開式中所有項(xiàng)的二項(xiàng)式系數(shù)之和是64,則展開式中的常數(shù)項(xiàng)為______.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,在直三棱柱中,,點(diǎn)分別為和的中點(diǎn).(Ⅰ)棱上是否存在點(diǎn)使得平面平面?若存在,寫出的長(zhǎng)并證明你的結(jié)論;若不存在,請(qǐng)說(shuō)明理由.(Ⅱ)求二面角的余弦值.18.(12分)在底面為菱形的四棱柱中,平面.(1)證明:平面;(2)求二面角的正弦值.19.(12分)已知函數(shù).若在定義域內(nèi)存在,使得成立,則稱為函數(shù)的局部對(duì)稱點(diǎn).(1)若a,且a≠0,證明:函數(shù)有局部對(duì)稱點(diǎn);(2)若函數(shù)在定義域內(nèi)有局部對(duì)稱點(diǎn),求實(shí)數(shù)c的取值范圍;(3)若函數(shù)在R上有局部對(duì)稱點(diǎn),求實(shí)數(shù)m的取值范圍.20.(12分)已知中,角,,的對(duì)邊分別為,,,已知向量,且.(1)求角的大?。唬?)若的面積為,,求.21.(12分)如圖,設(shè)點(diǎn)為橢圓的右焦點(diǎn),圓過(guò)且斜率為的直線交圓于兩點(diǎn),交橢圓于點(diǎn)兩點(diǎn),已知當(dāng)時(shí),(1)求橢圓的方程.(2)當(dāng)時(shí),求的面積.22.(10分)[選修4-4:極坐標(biāo)與參數(shù)方程]在直角坐標(biāo)系中,曲線的參數(shù)方程為(是參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;(2)若射線與曲線交于,兩點(diǎn),與曲線交于,兩點(diǎn),求取最大值時(shí)的值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】
由,可得,通過(guò)等號(hào)左右實(shí)部和虛部分別相等即可求出的值.【詳解】解:,,解得:.故選:C.【點(diǎn)睛】本題考查了復(fù)數(shù)的運(yùn)算,考查了復(fù)數(shù)相等的涵義.對(duì)于復(fù)數(shù)的運(yùn)算類問(wèn)題,易錯(cuò)點(diǎn)是把當(dāng)成進(jìn)行運(yùn)算.2、A【解析】
根據(jù)循環(huán)結(jié)構(gòu)的運(yùn)行,直至不滿足條件退出循環(huán)體,求出的范圍,利用幾何概型概率公式,即可求出結(jié)論.【詳解】程序框圖共運(yùn)行3次,輸出的的范圍是,所以輸出的不小于103的概率為.故選:A.【點(diǎn)睛】本題考查循環(huán)結(jié)構(gòu)輸出結(jié)果、幾何概型的概率,模擬程序運(yùn)行是解題的關(guān)鍵,屬于基礎(chǔ)題.3、B【解析】
畫出函數(shù)的圖象,利用函數(shù)的圖象判斷函數(shù)的零點(diǎn)個(gè)數(shù),然后轉(zhuǎn)化求解,即可得出結(jié)果.【詳解】作出函數(shù)的圖象如圖所示,令,由圖可得關(guān)于的方程的解有兩個(gè)或三個(gè)(時(shí)有三個(gè),時(shí)有兩個(gè)),所以關(guān)于的方程只能有一個(gè)根(若有兩個(gè)根,則關(guān)于的方程有四個(gè)或五個(gè)根),由,可得的值分別為,則故選B.【點(diǎn)睛】本題考查數(shù)形結(jié)合以及函數(shù)與方程的應(yīng)用,考查轉(zhuǎn)化思想以及計(jì)算能力,屬于??碱}型.4、B【解析】
先構(gòu)造函數(shù),再利用函數(shù)奇偶性與單調(diào)性化簡(jiǎn)不等式,解得結(jié)果.【詳解】令,則當(dāng)時(shí),,又,所以為偶函數(shù),從而等價(jià)于,因此選B.【點(diǎn)睛】本題考查利用函數(shù)奇偶性與單調(diào)性求解不等式,考查綜合分析求解能力,屬中檔題.5、A【解析】
是函數(shù)的零點(diǎn),根據(jù)五點(diǎn)法求出圖中零點(diǎn)及軸左邊第一個(gè)零點(diǎn)可得.【詳解】由題意,,∴函數(shù)在軸右邊的第一個(gè)零點(diǎn)為,在軸左邊第一個(gè)零點(diǎn)是,∴的最小值是.故選:A.【點(diǎn)睛】本題考查三角函數(shù)的周期性,考查函數(shù)的對(duì)稱性.函數(shù)的零點(diǎn)就是其圖象對(duì)稱中心的橫坐標(biāo).6、D【解析】
由題可得函數(shù)的定義域?yàn)?,因?yàn)椋院瘮?shù)為奇函數(shù),排除選項(xiàng)B;又,,所以排除選項(xiàng)A、C,故選D.7、D【解析】
對(duì)于①,利用拋物線的定義,利用可判斷;對(duì)于②,設(shè)直線的方程為,與拋物線聯(lián)立,用坐標(biāo)表示直線與直線的斜率乘積,即可判斷;對(duì)于③,將代入拋物線的方程可得,,從而,,利用韋達(dá)定理可得,再由,可用m表示,線段的中垂線與軸的交點(diǎn)(即圓心)橫坐標(biāo)為,可得a,即可判斷.【詳解】如圖,設(shè)為拋物線的焦點(diǎn),以線段為直徑的圓為,則圓心為線段的中點(diǎn).設(shè),到準(zhǔn)線的距離分別為,,的半徑為,點(diǎn)到準(zhǔn)線的距離為,顯然,,三點(diǎn)不共線,則.所以①正確.由題意可設(shè)直線的方程為,代入拋物線的方程,有.設(shè)點(diǎn),的坐標(biāo)分別為,,則,.所以.則直線與直線的斜率乘積為.所以②正確.將代入拋物線的方程可得,,從而,.根據(jù)拋物線的對(duì)稱性可知,,兩點(diǎn)關(guān)于軸對(duì)稱,所以過(guò)點(diǎn),,的圓的圓心在軸上.由上,有,,則.所以,線段的中垂線與軸的交點(diǎn)(即圓心)橫坐標(biāo)為,所以.于是,,代入,,得,所以.所以③正確.故選:D【點(diǎn)睛】本題考查了拋物線的性質(zhì)綜合,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)形結(jié)合,數(shù)學(xué)運(yùn)算的能力,屬于較難題.8、A【解析】
根據(jù)三角函數(shù)伸縮變換特點(diǎn)可得到解析式;利用整體對(duì)應(yīng)的方式可判斷出在上單調(diào)遞增,正確;關(guān)于點(diǎn)對(duì)稱,錯(cuò)誤;根據(jù)正弦型函數(shù)最小正周期的求解可知錯(cuò)誤;根據(jù)正弦型函數(shù)在區(qū)間內(nèi)值域的求解可判斷出最大值無(wú)法取得,錯(cuò)誤.【詳解】將橫坐標(biāo)縮短到原來(lái)的得:當(dāng)時(shí),在上單調(diào)遞增在上單調(diào)遞增,正確;的最小正周期為:不是的周期,錯(cuò)誤;當(dāng)時(shí),,關(guān)于點(diǎn)對(duì)稱,錯(cuò)誤;當(dāng)時(shí),此時(shí)沒(méi)有最大值,錯(cuò)誤.本題正確選項(xiàng):【點(diǎn)睛】本題考查正弦型函數(shù)的性質(zhì),涉及到三角函數(shù)的伸縮變換、正弦型函數(shù)周期性、單調(diào)性和對(duì)稱性、正弦型函數(shù)在一段區(qū)間內(nèi)的值域的求解;關(guān)鍵是能夠靈活應(yīng)用整體對(duì)應(yīng)的方式,通過(guò)正弦函數(shù)的圖象來(lái)判斷出所求函數(shù)的性質(zhì).9、C【解析】
利用不等式性質(zhì)可判斷,利用對(duì)數(shù)函數(shù)和指數(shù)函數(shù)的單調(diào)性判斷.【詳解】解:對(duì)于實(shí)數(shù),,不成立對(duì)于不成立.對(duì)于.利用對(duì)數(shù)函數(shù)單調(diào)遞增性質(zhì),即可得出.對(duì)于指數(shù)函數(shù)單調(diào)遞減性質(zhì),因此不成立.故選:.【點(diǎn)睛】利用不等式性質(zhì)比較大?。⒁獠坏仁叫再|(zhì)成立的前提條件.解決此類問(wèn)題除根據(jù)不等式的性質(zhì)求解外,還經(jīng)常采用特殊值驗(yàn)證的方法.10、C【解析】
求導(dǎo),先求出在單增,在單減,且知設(shè),則方程有4個(gè)不同的實(shí)數(shù)根等價(jià)于方程在上有兩個(gè)不同的實(shí)數(shù)根,再利用一元二次方程根的分布條件列不等式組求解可得.【詳解】依題意,,令,解得,,故當(dāng)時(shí),,當(dāng),,且,故方程在上有兩個(gè)不同的實(shí)數(shù)根,故,解得.故選:C.【點(diǎn)睛】本題考查確定函數(shù)零點(diǎn)或方程根個(gè)數(shù).其方法:(1)構(gòu)造法:構(gòu)造函數(shù)(易求,可解),轉(zhuǎn)化為確定的零點(diǎn)個(gè)數(shù)問(wèn)題求解,利用導(dǎo)數(shù)研究該函數(shù)的單調(diào)性、極值,并確定定義區(qū)間端點(diǎn)值的符號(hào)(或變化趨勢(shì))等,畫出的圖象草圖,數(shù)形結(jié)合求解;(2)定理法:先用零點(diǎn)存在性定理判斷函數(shù)在某區(qū)間上有零點(diǎn),然后利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值(最值)及區(qū)間端點(diǎn)值符號(hào),進(jìn)而判斷函數(shù)在該區(qū)間上零點(diǎn)的個(gè)數(shù).11、B【解析】
奇函數(shù)滿足定義域關(guān)于原點(diǎn)對(duì)稱且,在上即可.【詳解】A:因?yàn)槎x域?yàn)?,所以不可能時(shí)奇函數(shù),錯(cuò)誤;B:定義域關(guān)于原點(diǎn)對(duì)稱,且滿足奇函數(shù),又,所以在上,正確;C:定義域關(guān)于原點(diǎn)對(duì)稱,且滿足奇函數(shù),,在上,因?yàn)椋栽谏喜皇窃龊瘮?shù),錯(cuò)誤;D:定義域關(guān)于原點(diǎn)對(duì)稱,且,滿足奇函數(shù),在上很明顯存在變號(hào)零點(diǎn),所以在上不是增函數(shù),錯(cuò)誤;故選:B【點(diǎn)睛】此題考查判斷函數(shù)奇偶性和單調(diào)性,注意奇偶性的前提定義域關(guān)于原點(diǎn)對(duì)稱,屬于簡(jiǎn)單題目.12、B【解析】
根據(jù)共軛復(fù)數(shù)定義及復(fù)數(shù)模的求法,代入化簡(jiǎn)即可求解.【詳解】在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)的坐標(biāo)為,則,,∵,代入可得,解得.故選:B.【點(diǎn)睛】本題考查復(fù)數(shù)對(duì)應(yīng)點(diǎn)坐標(biāo)的幾何意義,復(fù)數(shù)模的求法及共軛復(fù)數(shù)的概念,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
一個(gè)長(zhǎng)、寬、高分別為1、2、2的長(zhǎng)方體可以在一個(gè)圓柱形容器內(nèi)任意轉(zhuǎn)動(dòng),則圓柱形容器的底面直徑及高的最小值均等于長(zhǎng)方體的體對(duì)角線的長(zhǎng),長(zhǎng)方體的體對(duì)角線的長(zhǎng)為,所以容器體積的最小值為.14、【解析】
由題意首先研究函數(shù)的性質(zhì),然后結(jié)合函數(shù)的性質(zhì)數(shù)形結(jié)合得到關(guān)于a的不等式,求解不等式即可確定實(shí)數(shù)a的取值范圍.【詳解】當(dāng)時(shí),函數(shù)在區(qū)間上單調(diào)遞增,很明顯,且存在唯一的實(shí)數(shù)滿足,當(dāng)時(shí),由對(duì)勾函數(shù)的性質(zhì)可知函數(shù)在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,結(jié)合復(fù)合函數(shù)的單調(diào)性可知函數(shù)在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,且當(dāng)時(shí),,考查函數(shù)在區(qū)間上的性質(zhì),由二次函數(shù)的性質(zhì)可知函數(shù)在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,函數(shù)有6個(gè)零點(diǎn),即方程有6個(gè)根,也就是有6個(gè)根,即與有6個(gè)不同交點(diǎn),注意到函數(shù)關(guān)于直線對(duì)稱,則函數(shù)關(guān)于直線對(duì)稱,繪制函數(shù)的圖像如圖所示,觀察可得:,即.綜上可得,實(shí)數(shù)的取值范圍是.故答案為.【點(diǎn)睛】本題主要考查分段函數(shù)的應(yīng)用,復(fù)合函數(shù)的單調(diào)性,數(shù)形結(jié)合的數(shù)學(xué)思想,等價(jià)轉(zhuǎn)化的數(shù)學(xué)思想等知識(shí),意在考查學(xué)生的轉(zhuǎn)化能力和計(jì)算求解能力.15、1【解析】
令,結(jié)合函數(shù)的奇偶性,求得,即可求解的值,得到答案.【詳解】由題意,函數(shù)分別是上的奇函數(shù)和偶函數(shù),且,令,可得,所以.故答案為:1.【點(diǎn)睛】本題主要考查了函數(shù)奇偶性的應(yīng)用,其中解答中熟記函數(shù)的奇偶性,合理賦值求解是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.16、【解析】
由二項(xiàng)式系數(shù)性質(zhì)求出,由二項(xiàng)展開式通項(xiàng)公式得出常數(shù)項(xiàng)的項(xiàng)數(shù),從而得常數(shù)項(xiàng).【詳解】由題意,.展開式通項(xiàng)為,由得,∴常數(shù)項(xiàng)為.故答案為:.【點(diǎn)睛】本題考查二項(xiàng)式定理,考查二項(xiàng)式系數(shù)的性質(zhì),掌握二項(xiàng)展開式通項(xiàng)公式是解題關(guān)鍵.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(Ⅰ)存在點(diǎn)滿足題意,且,證明詳見解析;(Ⅱ).【解析】
(Ⅰ)可考慮采用補(bǔ)形法,取的中點(diǎn)為,連接,可結(jié)合等腰三角形性質(zhì)和線面垂直性質(zhì),先證平面,即,若能證明,則可得證,可通過(guò)我們反推出點(diǎn)對(duì)應(yīng)位置應(yīng)在處,進(jìn)而得證;(Ⅱ)采用建系法,以為坐標(biāo)原點(diǎn),以分別為軸建立空間直角坐標(biāo)系,分別求出兩平面對(duì)應(yīng)法向量,再結(jié)合向量夾角公式即可求解;【詳解】(Ⅰ)存在點(diǎn)滿足題意,且.證明如下:取的中點(diǎn)為,連接.則,所以平面.因?yàn)槭堑闹悬c(diǎn),所以.在直三棱柱中,平面平面,且交線為,所以平面,所以.在平面內(nèi),,,所以,從而可得.又因?yàn)?,所以平?因?yàn)槠矫妫云矫嫫矫?(Ⅱ)如圖所示,以為坐標(biāo)原點(diǎn),以分別為軸建立空間直角坐標(biāo)系.易知,,,,所以,,.設(shè)平面的法向量為,則有取,得.同理可求得平面的法向量為.則.由圖可知二面角為銳角,所以其余弦值為.【點(diǎn)睛】本題考查面面垂直的判定定理、向量法求二面角的余弦值,屬于中檔題18、(1)證明見解析;(2)【解析】
(1)由已知可證,即可證明結(jié)論;(2)根據(jù)已知可證平面,建立空間直角坐標(biāo)系,求出坐標(biāo),進(jìn)而求出平面和平面的法向量坐標(biāo),由空間向量的二面角公式,即可求解.【詳解】方法一:(1)依題意,且∴,∴四邊形是平行四邊形,∴,∵平面,平面,∴平面.(2)∵平面,∴,∵且為的中點(diǎn),∴,∵平面且,∴平面,以為原點(diǎn),分別以為軸、軸、軸的正方向,建立如圖所示的空間直角坐標(biāo)系,則,,,,∴設(shè)平面的法向量為,則,∴,取,則.設(shè)平面的法向量為,則,∴,取,則.∴,設(shè)二面角的平面角為,則,∴二面角的正弦值為.方法二:(1)證明:連接交于點(diǎn),因?yàn)樗倪呅螢槠叫兴倪呅?,所以為中點(diǎn),又因?yàn)樗倪呅螢榱庑?,所以為中點(diǎn),∴在中,且,∵平面,平面,∴平面(2)略,同方法一.【點(diǎn)睛】本題主要考查線面平行的證明,考查空間向量法求面面角,意在考查直觀想象、邏輯推理與數(shù)學(xué)運(yùn)算的數(shù)學(xué)核心素養(yǎng),屬于中檔題.19、(1)見解析(2)(3)【解析】
(1)若函數(shù)有局部對(duì)稱點(diǎn),則,即有解,即可求證;(2)由題可得在內(nèi)有解,即方程在區(qū)間上有解,則,設(shè),利用導(dǎo)函數(shù)求得的范圍,即可求得的范圍;(3)由題可得在上有解,即在上有解,設(shè),則可變形為方程在區(qū)間內(nèi)有解,進(jìn)而求解即可.【詳解】(1)證明:由得,代入得,則得到關(guān)于x的方程,由于且,所以,所以函數(shù)必有局部對(duì)稱點(diǎn)(2)解:由題,因?yàn)楹瘮?shù)在定義域內(nèi)有局部對(duì)稱點(diǎn)所以在內(nèi)有解,即方程在區(qū)間上有解,所以,設(shè),則,所以令,則,當(dāng)時(shí),,故函數(shù)在區(qū)間上單調(diào)遞減,當(dāng)時(shí),,故函數(shù)在區(qū)間上單調(diào)遞增,所以,因?yàn)?,所以,所以,所以(3)解:由題,,由于,所以,所以(*)在R上有解,令,則,所以方程(*)變?yōu)樵趨^(qū)間內(nèi)有解,需滿足條件:,即,得【點(diǎn)睛】本題考查函數(shù)的局部對(duì)稱點(diǎn)的理解,利用導(dǎo)函數(shù)研究函數(shù)的最值問(wèn)題,考查轉(zhuǎn)化思想與運(yùn)算能力.20、(1);(2).【解析】試題分析:(1)利用已知及平面向量數(shù)量積運(yùn)算可得,利用正弦定理可得,結(jié)合,可求,從而可求的值;(2)由三角形的面積可解得,利用余弦定理可得,故可得.試題解析:(1)∵,,,∴,∴,即,又∵,∴,又∵,∴.(2)∵,∴,又,即,∴,故.21、(1)(2)【解析】
(1)先求出圓心到直線的距離為,再根據(jù)得到
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 精準(zhǔn)識(shí)別課件教學(xué)課件
- 智慧養(yǎng)老中心解決方案
- 頸椎病解刨結(jié)構(gòu)
- 2024年超高速加工中心投資項(xiàng)目資金申請(qǐng)報(bào)告書
- 車場(chǎng)停電應(yīng)急預(yù)案
- 第六章 機(jī)械能守恒定律-功能關(guān)系與能量守恒 2025年高考物理基礎(chǔ)專項(xiàng)復(fù)習(xí)
- 2-1-4 微專題1-碳酸鈉與碳酸氫鈉的相關(guān)計(jì)算 高一上學(xué)期化學(xué)人教版(2019)必修第一冊(cè)
- 骨水泥在糖尿病足的應(yīng)用
- 醫(yī)療器械合作協(xié)議書范本
- 社交網(wǎng)絡(luò)鉤機(jī)租賃合同
- 滴灌安裝工程合同2024年
- 2024考研英語(yǔ)二試題及答案解析
- 基于單片機(jī)的銀行排隊(duì)叫號(hào)系統(tǒng)
- 大模型應(yīng)用開發(fā)極簡(jiǎn)入門基于GPT-4和ChatGPT
- 應(yīng)急救援人員培訓(xùn)計(jì)劃
- 中考字音字形練習(xí)題(含答案)-字音字形專項(xiàng)訓(xùn)練
- 食品安全與營(yíng)養(yǎng)健康自查制度(學(xué)校食堂)
- 安全文明施工獎(jiǎng)罰明細(xì)表
- 全球及中國(guó)個(gè)人防護(hù)裝備(PPE)行業(yè)市場(chǎng)現(xiàn)狀供需分析及市場(chǎng)深度研究發(fā)展前景及規(guī)劃可行性分析研究報(bào)告(2024-2030)
- HG/T 2782-2024 化工催化劑顆粒抗壓碎力的測(cè)定(正式版)
- CTD申報(bào)資料撰寫模板:模塊三之3.2.S.4原料藥的質(zhì)量控制
評(píng)論
0/150
提交評(píng)論