重慶市2018年中考數(shù)學(xué)試卷(b卷)(解析版)_第1頁
重慶市2018年中考數(shù)學(xué)試卷(b卷)(解析版)_第2頁
重慶市2018年中考數(shù)學(xué)試卷(b卷)(解析版)_第3頁
重慶市2018年中考數(shù)學(xué)試卷(b卷)(解析版)_第4頁
重慶市2018年中考數(shù)學(xué)試卷(b卷)(解析版)_第5頁
已閱讀5頁,還剩23頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2018年重慶市中考數(shù)學(xué)試卷(B卷)

一、選擇題:(本大題12個小題,每小題4分,共48分)在每個小題的下面,都給出了代號

為A,B,C,D的四個答案,其中只有一個是正確的,請將答題卡上題號右側(cè)正確答案所對

應(yīng)的方框涂黑

1.下列四個數(shù)中,是正整數(shù)的是()

A.-1B.OC.—D.1

2

【1題答案】

【答案】D

【解析】

【分析】正整數(shù)是指既是正數(shù)還是整數(shù),由此即可判定求解.

【詳解】A、-1是負(fù)整數(shù),故選項錯誤;

B、0既不是正整數(shù),也不是負(fù)整數(shù);故選項錯誤;

C、,是分?jǐn)?shù),不是整數(shù),錯誤;

2

D、1是正整數(shù),故選項正確.

故選D.

【點睛】此題主要考查正整數(shù)概念,解題主要把握既是正數(shù)還是整數(shù)兩個特點,比較簡單.

2.下列圖形中,是軸對稱圖形的是()

【2題答案】

【答案】B

【解析】

【分析】根據(jù)軸對稱圖形的概念求解.

【詳解】A、不是軸對稱圖形,故此選項不合題意;

B、是軸對稱圖形,故此選項符合題意;

C、不是軸對稱圖形,故此選項不合題意;

D、不是軸對稱圖形,故此選項不合題意;

故選B.

【點睛】本題考查了軸對稱圖形,軸對稱圖形的判斷方法:把某個圖象沿某條直線折疊,如果圖形的兩部

分能夠重合,那么這個是軸對稱圖形.

3.下列圖形都是由同樣大小的黑色正方形紙片組成,其中第①個圖中有3張黑色正方形紙片,第②個圖中

有5張黑色正方形紙片,第③個圖中有7張黑色正方形紙片,…,按此規(guī)律排列下去第⑥個圖中黑色正方

形紙片的張數(shù)為()

&g94m

①②③④

A.11B.13C.15D.17

【3題答案】

【答案】B

【解析】

【分析】仔細(xì)觀察圖形知道第一個圖形有3個正方形,第二個有5=3+2xl個,第三個圖形有7=3+2x2個,

由此得到規(guī)律求得第⑥個圖形中正方形個數(shù)即可.

【詳解】觀察圖形知:

第一個圖形有3個正方形,

第二個有5=3+2xl個,

第三個圖形有7=3+2x2個,

故第⑥個圖形有3+2x5=13(個),

故選B.

【點睛】此題主要考查了圖形的變化規(guī)律,是根據(jù)圖形進(jìn)行數(shù)字猜想的問題,關(guān)鍵是通過歸納與總結(jié),得

到其中的規(guī)律,然后利用規(guī)律解決一般問題.

4,下列調(diào)查中,最適合采用全面調(diào)查(普查)的是()

A.對我市中學(xué)生每周課外閱讀時間情況的調(diào)查

B.對我市市民知曉“禮讓行人”交通新規(guī)情況的調(diào)查

C.對我市中學(xué)生觀看電影《厲害了,我的國》情況的調(diào)查

D.對我國首艘國產(chǎn)航母002型各零部件質(zhì)量情況的調(diào)查

【4題答案】

【答案】D

【解析】

【分析】由普查得到的調(diào)查結(jié)果比較準(zhǔn)確,但所費人力、物力和時間較多,而抽樣調(diào)查得到的調(diào)查結(jié)果比較

近似.由此,對各選項進(jìn)行辨析即可.

【詳解】A、對我市中學(xué)生每周課外閱讀時間情況的調(diào)查,人數(shù)眾多,意義不大,應(yīng)采用抽樣調(diào)查,故此選

項錯誤;

B、對我市市民知曉“禮讓行人'‘交通新規(guī)情況的調(diào)查,人數(shù)眾多,意義不大,應(yīng)采用抽樣調(diào)查,故此選項

錯誤;

C、對我市中學(xué)生觀看電影《厲害了,我的國》情況的調(diào)查,人數(shù)眾多,意義不大,應(yīng)采用抽樣調(diào)查,故

此選項錯誤;

D、對我國首艘國產(chǎn)航母002型各零部件質(zhì)量情況的調(diào)查,意義重大,應(yīng)采用普查,故此選項正確;

故選D.

【點睛】本題考查了抽樣調(diào)查和全面調(diào)查的區(qū)別,選擇普查還是抽樣調(diào)查要根據(jù)所要考查的對象的特征靈

活選用,一般來說,對于具有破壞性的調(diào)查、無法進(jìn)行普查、普查的意義或價值不大,應(yīng)選擇抽樣調(diào)查,

對于精確度要求高的調(diào)查,事關(guān)重大的調(diào)查往往選用普查.

5.制作一塊3mx2m長方形廣告牌的成本是120元,在每平方米制作成本相同的情況下,若將此廣告牌的

四邊都擴(kuò)大為原來的3倍,那么擴(kuò)大后長方形廣告牌的成本是()

A.360元B.720元C.1080元D.2160元

【5題答案】

【答案】C

【解析】

【分析】根據(jù)題意求出長方形廣告牌每平方米的成本,根據(jù)相似多邊形的性質(zhì)求出擴(kuò)大后長方形廣告牌的

面積,計算即可.

詳解】3mx2m=6m2,

.?.長方形廣告牌的成本是120+6=20元/n?,

將此廣告牌的四邊都擴(kuò)大為原來的3倍,

則面積擴(kuò)大為原來的9倍,

...擴(kuò)大后長方形廣告牌的面積=9x6=54m2,

.?.擴(kuò)大后長方形廣告牌的成本是54x20=1080元,

故選C.

【點睛】本題考查的是相似多邊形的性質(zhì),掌握相似多邊形的面積比等于相似比的平方是解題的關(guān)鍵.

6.下列命題是真命題的是()

A.如果一個數(shù)的相反數(shù)等于這個數(shù)本身,那么這個數(shù)一定是0

B.如果一個數(shù)的倒數(shù)等于這個數(shù)本身,那么這個數(shù)一定是1

C.如果一個數(shù)的平方等于這個數(shù)本身,那么這個數(shù)一定是0

D.如果一個數(shù)的算術(shù)平方根等于這個數(shù)本身,那么這個數(shù)一定是0

【6題答案】

【答案】A

【解析】

【分析】根據(jù)相反數(shù)是它本身的數(shù)為0;倒數(shù)等于這個數(shù)本身是±1;平方等于它本身的數(shù)為1和0:算術(shù)平

方根等于本身的數(shù)為1和。進(jìn)行分析即可.

【詳解】A、如果一個數(shù)的相反數(shù)等于這個數(shù)本身,那么這個數(shù)一定是0,是真命題;

B、如果一個數(shù)的倒數(shù)等于這個數(shù)本身,那么這個數(shù)一定是1,是假命題;

C、如果一個數(shù)的平方等于這個數(shù)本身,那么這個數(shù)一定是0,是假命題;

D、如果一個數(shù)的算術(shù)平方根等于這個數(shù)本身,那么這個數(shù)一定是0,是假命題;

故選A.

【點睛】此題主要考查了命題與定理,關(guān)鍵是掌握正確的命題為真命題,錯誤的命題為假命題.

7.估計5A/6-V24的值應(yīng)在()

A.5和6之間B.6和7之間C.7和8之間D.8和9之間

【7題答案】

【答案】C

【解析】

【分析】先化簡二次根式,合并后,再根據(jù)無理數(shù)的估計解答即可.

【詳解】5瓜-724=576-276=376=754,

V49<54<64,

,7〈病<8,

?■?5A/6-V24的值應(yīng)在7和8之間,

故選C.

【點睛】本題考查了估算無理數(shù)的大小,解決本題的關(guān)鍵是估算出無理數(shù)的大小.

8.根據(jù)如圖所示的程序計算函數(shù)y的值,若輸入的x值是4或7時,輸出的y值相等,則b等于()

A.9B.7C.-9D.-7

【8題答案】

【答案】C

【解析】

【分析】先求出x=7時y的值,再將x=4、y=-l代入y=2x+b可得答案.

【詳解】當(dāng)x=7時,y=6-7=-l,

當(dāng)x=4時,y=2x4+b=-l,

解得:b=-9,

故選C.

【點睛】本題主要考查函數(shù)值,解題的關(guān)鍵是掌握函數(shù)值的計算方法.

9.如圖,AB是一垂直于水平面的建筑物,某同學(xué)從建筑物底端8出發(fā),先沿水平方向向右行走20米到達(dá)

點C,再經(jīng)過一段坡度(或坡比)為i=l:0.75、坡長為10米的斜坡CD到達(dá)點然后再沿水平方向向

右行走40米到達(dá)點E(A,B,C,D,E均在同一平面內(nèi)).在E處測得建筑物頂端A的仰角為24。,則建

筑物A2的高度約為(參考數(shù)據(jù):sin24°~0.41,cos24°~0.91,tan24°=0.45)()

A.21.7米B.22.4米C.27.4米D.28.8米

【9題答案】

【答案】A

【解析】

【分析】作交E£>的延長線于M,CNLDM于N.首先解直角三角形RdCZW,求出CMDN,

再根據(jù)tan24o=A”,構(gòu)建方程即可解決問題.

EM

【詳解】作BM_LE。交ED的延長線于M,CNLDM于N.

CN14

在Rt4CDN中,——=-^―=-,設(shè)CN=4k,DN=3k,

DN0.753

ACD=10,

(3k)2+(4無)2=100,

:.k=2,

:.CN=8,DN=6,

???四邊形8MNC是矩形,

:.BM=CN=8,BC=MN=20,EM=MN+DN+DE=66,

?qAM

在放AAEM中,tan24°=------,

EM

."8=21.7(米),

故選A.

【點睛】本題考查的是解直角三角形的應(yīng)用-仰角俯角問題,根據(jù)題意作出輔助線,構(gòu)造出直角三角形是解

答此題的關(guān)鍵.

10.如圖,AABC中,NA=30。,點O是邊AB上一點,以點O為圓心,以O(shè)B為半徑作圓,。。恰好與

AC相切于點D,連接BD.若BD平分NABC,AD=2石,則線段CD的長是()

3

C.一D.—\/3

22

【10題答案】

【答案】B

【解析】

【分析】連接OD,得RtAOAD,由NA=30。,AD=2百,可求出OD、AO的長;由BD平分ZABC,OB=OD

可得OD與BC間的位置關(guān)系,根據(jù)平行線分線段成比例定理可得結(jié)論.

【詳解】連接OD,

??,OD是。O的半徑,AC是。O的切線,點D是切點,

AOD1AC,

在RlZkAOD中,VZA=30°,AD=25

AOD=OB=2,A0=4,

.\ZODB=ZOBD,

??,BD平分NABC,

AZOBD=ZCBD,

???NODB=NCBD,

???OD〃CB,

.?.必=生,即濁4

CDOBCD2

:.CD=y/3.

故選B.

【點睛】本題考查了圓的切線的性質(zhì)、含30。角的直角三角形的性質(zhì)、等邊對等角以及平行線分線段成比

例定理,解決本題亦可說明NC=90。,利用/A=30。,AB=6,先得AC的長,再求CD.遇切點連圓心得直

角,是通常添加的輔助線.

11.如圖,菱形ABCD的邊ADLy軸,垂足為點E,頂點A在第二象限,頂點B在y軸的正半軸上,反

比例函數(shù)y=&(叵0,x>0)的圖象同時經(jīng)過頂點C,D.若點C的橫坐標(biāo)為5,BE=3DE,則k的值為

)

515

A.-B.—C.3D.5

24

【11題答案】

【答案】B

【解析】

【分析】由已知,可得菱形邊長為5,設(shè)出點D坐標(biāo),即可用勾股定理構(gòu)造方程,進(jìn)而求出k值.

?.?四邊形ABCD是菱形,

;.DC=5,

VBE=3DE,

.?.設(shè)DE=x,則BE=3x,

;.DF=3x,BF=x,FC=5-x,

在RtADFC中,

DF2+FC2=DC2,

(3x)2+(5-x)2=52,

,解得x=l,

,DE=1,FD=3,

設(shè)OB=a,

則點D坐標(biāo)為(1,a+3),點C坐標(biāo)為(5,a),

?.?點D、C在雙曲線上,

lx(a+3)=5a,

4

3

.?.點C坐標(biāo)為(5,-)

4

15

*■k=—.

4

故選B.

【點睛】本題是代數(shù)幾何綜合題,考查了數(shù)形結(jié)合思想和反比例函數(shù)k值性質(zhì).解題關(guān)鍵是通過勾股定理

構(gòu)造方程.

—%—1<—(x-1)

12.若數(shù)a使關(guān)于x的不等式組《32有且僅有三個整數(shù)解,且使關(guān)于y的分式方程

lx—a<3(1—x)

3ya+12

-^r+--=1有整數(shù)解,則滿足條件的所有a的值之和是()

y-22-y

A.-10B.-12C.-16D.-18

[12題答案】

【答案】B

【解析】

【分析】根據(jù)不等式的解集,可得a的范圍,根據(jù)方程的解,可得a的值,根據(jù)有理數(shù)的加法,可得答案.

【詳解】〈

2尤-a<3。-②

解①得x>-3,

解②得爛一,

不等式組的解集是

?..僅有三個整數(shù)解,

A-8<a<-3,

3yQ+12

---7+=1?

y-272^-----y--

3y-a-12=y-2.

Q+10

??y=,

2

Vy#2,

又y=9『有整數(shù)解,

a=-8或4

所有滿足條件的整數(shù)a的值之和是?8?4=12,

故選B.

【點睛】本題考查了分式方程的解,利用不等式的解集及方程的解得出a的值是解題關(guān)鍵.

二、填空題:(本大題6個小題,每小題4分,共24分)請將每小題的答案直接填在答題卡

中對應(yīng)的橫線上

13.計算:卜1|+2。=.

[13題答案】

【答案】2

【解析】

【分析】本題涉及零指數(shù)鼎、絕對值2個考點.在計算時,需要針對每個考點分別進(jìn)行計算,然后根據(jù)實數(shù)

的運算法則求得計算結(jié)果.

【詳解】1-11+2°

=1+1

=2.

故答案為2.

【點睛】本題主要考查了實數(shù)的綜合運算能力,是各地中考題中常見的計算題型.解決此類題目的關(guān)鍵是

熟練掌握零指數(shù)累、絕對值等考點的運算.

14.如圖,在邊長為4的正方形ABCD中,以點B為圓心,以AB為半徑畫弧,交對角線BD于點E,則

圖中陰影部分的面積是(結(jié)果保留兀)

[14題答案】

【答案】8-2Jt

【解析】

【分析】根據(jù)SBFSAABD-SM彩BAE計算即可.

45x^-x42

【詳解】解:SH;=SAABD-Sa?BAE=—x4x4-=8-2n.

360

故答案為8-27t.

【點睛】本題考查扇形的面積的計算,正方形的性質(zhì)等知識,解題的關(guān)鍵是學(xué)會用分割法求陰影部分面

積.

15.某企業(yè)對一工人在五個工作日里生產(chǎn)零件的數(shù)量進(jìn)行調(diào)查,并繪制了如圖所示的折線統(tǒng)計圖,則在這

五天里該工人每天生產(chǎn)零件的平均數(shù)是個.

星星

期啰

【15題答案】

【答案】34

【解析】

【分析】根據(jù)平均數(shù)的計算解答即可.

36+34+31+34+35

[詳解]----------------------=34,

5

故答案34.

【點睛】此題考查折線統(tǒng)計圖,關(guān)鍵是根據(jù)平均數(shù)的計算解答.

16.如圖,在RSABC中,ZACB=90°,BC=6,CD是斜邊AB上中線,將^BCD沿直線CD翻折至

△ECD的位置,連接AE.若DE〃AC,計算AE的長度等于

【16題答案】

【答案】2百

【解析】

【分析】根據(jù)題意、解直角三角形、菱形的性質(zhì)、翻折變化可以求得AE的長.

【詳解】由題意可得,

DE=DB=CD=—AB,

2

??.ZDEC=ZDCE=ZDCB,

?.,DE〃AC,ZDCE=ZDCB,ZACB=90°,

NDEC=/ACE,

ZDCE=ZACE=ZDCB=30°,

AZACD=60°,NCAD=60。,

.?.△ACD是等邊三角形,

;.AC=CD,

;.AC=DE,

VAC/7DE,AC=CD,

四邊形ACDE是菱形,

?.?在RjABC中,NACB=90°,BC=6,NB=30°,

;.AC=2百,

;.AE=2G

故答案為2百.

【點睛】本題考查翻折變化、平行線的性質(zhì)、直角三角形斜邊上的中線,解答本題的關(guān)鍵是明確題意,找

出所求問題需要的條件,利用數(shù)形結(jié)合的思想解答.

17.一天早晨,小玲從家出發(fā)勻速步行到學(xué)校,小玲出發(fā)一段時間后,她的媽媽發(fā)現(xiàn)小玲忘帶了一件必需

的學(xué)習(xí)用品,于是立即下樓騎自行車,沿小玲行進(jìn)的路線,勻速去追小玲,媽媽追上小玲將學(xué)習(xí)用品交給

小玲后,立即沿原路線勻速返回家里,但由于路上行人漸多,媽媽返回時騎車的速度只是原來速度的一

半,小玲繼續(xù)以原速度步行前往學(xué)校,媽媽與小玲之間的距離y(米)與小玲從家出發(fā)后步行的時間x

(分)之間的關(guān)系如圖所示(小玲和媽媽上、下樓以及媽媽交學(xué)習(xí)用品給小玲耽擱的時間忽略不計).當(dāng)

媽媽剛回到家時,小玲離學(xué)校的距離為米.

【答案】200

【解析】

【分析】由圖象可知:家到學(xué)??偮烦虨?200米,分別求小玲和媽媽的速度,媽媽返回時,根據(jù)“媽媽返回

時騎車的速度只是原來速度的一半”,得速度為60米/分,可得返回時又用了10分鐘,此時小玲已經(jīng)走了25

分,還剩5分鐘的總程.

【詳解】由圖象得:小玲步行速度:1200+30=40(米/分),

由函數(shù)圖象得出,媽媽在小玲10分后出發(fā),15分時追上小玲,

設(shè)媽媽去時的速度為v米/分,

(15-10)v=15x40,

v=120,

|5x40

則媽媽回家的時間:—~-=10,

60

(30-15-10)x40=200.

故答案為200.

【點睛】本題考查了一次函數(shù)的圖象的性質(zhì)的運用,路程=速度x時間之間的關(guān)系的運用,分別求小玲和媽

媽的速度是關(guān)鍵,解答時熟悉并理解函數(shù)的圖象.

18.為實現(xiàn)營養(yǎng)套餐的合理搭配,某電商推出兩款適合不同人群的甲、乙兩種袋裝的混合粗糧.甲種袋裝

粗糧每袋含有3千克A粗糧,1千克B粗糧,1千克C粗糧;乙種袋裝粗糧每袋含有1千克A粗糧,2千

克B粗糧,2千克C粗糧.甲、乙兩種袋裝粗糧每袋成本分別等于袋中的A、B、C三種粗糧成本之

和.已知每袋甲種粗糧的成本是每千克A種粗糧成本的7.5倍,每袋乙種粗糧售價比每袋甲種粗糧售價高

20%,乙種袋裝粗糧的銷售利潤率是20%.當(dāng)銷售這兩款袋裝粗糧的銷售利潤率為24%時,該電商銷售

m7;1KM代壯士口詢1Vl代新+Uz曰31Vlz住工心'1的商品的售價-商品的成本價,nAft/.

甲、乙兩種袋裝粗糧的袋數(shù)之比是(商品的銷售利潤率=-------an-〃-------X100%)

商品的成本價

【18題答案】

4

【答案】一

7

【解析】

【分析】根據(jù)每袋甲種粗糧的成本是每千克A種粗糧成本的7.5倍,可得甲的成本,乙的成本;根據(jù)乙種袋

裝粗糧的銷售利潤率是20%,可得乙的售價,根據(jù)每袋乙種粗糧售價比每袋甲種粗糧售價高20%,可得甲

的售價,根據(jù)甲的利潤+乙的利潤=(甲的成本+乙的成本)X24%,根據(jù)等式的性質(zhì),可得答案.

【詳解】設(shè)A的單價為x元,B的單價為y元,C的單價為z元,當(dāng)銷售這兩款袋裝粗糧的銷售利潤率為

24%時,該電商銷售甲的銷售量為a袋,乙的銷售量為b袋,由題意,得

A一袋的成本是7.5x=3x+y+z,

化簡,得

y+z=4.5x;

乙一袋的成本是x+2y+2z=x+2(y+z)=x+9x=10x,

乙一袋的售價為10x(1+20%)=12x,

甲一袋的售價為10x.

根據(jù)甲乙的利潤,得

(10x-7.5x)a+20%xl0xb=(7.5xa+10xb)x24%

化簡,得

2.5a+2b=1.8a+2.4b

0.7a=0.4b

a=4

4

故答案為一.

7

【點睛】本題考查了二元一次方程的應(yīng)用,利潤、成本價與利潤率之間的關(guān)系的應(yīng)用,理解題意得出等量

關(guān)系是解題的關(guān)鍵.

三、解答題:(本大題2個小題,每小題8分,共16分)解答時每小題必須給出必要的演算

過程或推理步驟,畫出必要的圖形,請將解答過程書寫在答題卡中對應(yīng)的位置上

19.如圖,AB〃CD,4EFG的頂點F,G分別落在直線AB,CD上,GE交AB于點H,GE平分

ZFGD,若NEFG=90。,/E=35。,求NEFB的度數(shù).

【答案】20°

【解析】

【分析】依據(jù)三角形內(nèi)角和定理可得NFGH=55。,再根據(jù)GE平分NFGD,AB〃CD,即可得到

NFHG=NHGD=NFGH=55°,再根據(jù)NFHG是AEFH的外角,即可得出NEFB=55°-35°=20°.

【詳解】:NEFG=90。,NE=35。,

;.NFGH=55°,

:GE平分/FGD,AB〃CD,

ZFHG=ZHGD=ZFGH=55°,

:/FHG是4EFH的外角,

/.ZEFB=55°-35°=20°.

【點睛】本題考查了三角形的內(nèi)角和定理,三角形的外角性質(zhì),平行線的性質(zhì),兩直線平行時,應(yīng)該想到

它們的性質(zhì),由兩直線平行的關(guān)系得到角之間的數(shù)量關(guān)系,從而達(dá)到解決問題的目的.

20.某學(xué)校開展以素質(zhì)提升為主題的研學(xué)活動,推出了以下四個項目供學(xué)生選擇:A.模擬駕駛;B.軍事

競技;C.家鄉(xiāng)導(dǎo)游;D.植物識別.學(xué)校規(guī)定:每個學(xué)生都必須報名且只能選擇其中一個項目.八年級

(3)班班主任劉老師對全班學(xué)生選擇的項目情況進(jìn)行了統(tǒng)計,并繪制了如下兩幅不完整的統(tǒng)計圖.請結(jié)

合統(tǒng)計圖中的信息,解決下列問題:

(1)八年級(3)班學(xué)生總?cè)藬?shù)是,并將條形統(tǒng)計圖補(bǔ)充完整;

(2)劉老師發(fā)現(xiàn)報名參加“植物識別”的學(xué)生中恰好有兩名男生,現(xiàn)準(zhǔn)備從這些學(xué)生中任意挑選兩名擔(dān)任活

動記錄員,請用列表或畫樹狀圖的方法,求恰好選中1名男生和1名女生擔(dān)任活動記錄員的概率.

八年級(3)班研學(xué)項目選擇情況的

條形統(tǒng)計圖扇形統(tǒng)計圖

【20題答案】

2

【答案】(1)40人,補(bǔ)圖見解析;(2)—

【解析】

【分析】(1)利用A項目的頻數(shù)除以它所占的百分比得到調(diào)查的總?cè)藬?shù),然后計算出C項目的人數(shù)后補(bǔ)全

條形統(tǒng)計圖;

(2)畫樹狀圖展示所有12種等可能的結(jié)果數(shù),再找出恰好選中1名男生和1名女生擔(dān)任活動記錄員的結(jié)

果數(shù),然后利用概率公式求解.

【詳解】(1)調(diào)查的總?cè)藬?shù)為12+30%=40(人),

所以C項目的人數(shù)為40-12-14-4=10(人)

條形統(tǒng)計圖補(bǔ)充為:

八年級(3)班研學(xué)項目兄的

條形細(xì)+圖

故答案為40人;

(2)畫樹狀圖為:

男男女女

勇女女男/N女女男/N男女男/男N女

共有12種等可能的結(jié)果數(shù),其中恰好選中1名男生和1名女生擔(dān)任活動記錄員的結(jié)果數(shù)為8,

所以恰好選中1名男生和1名女生擔(dān)任活動記錄員的概率=展=(.

【點睛】本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結(jié)果n,再從中選出符

合事件A或B的結(jié)果數(shù)目m,然后利用概率公式求事件A或B的概率.也考查了統(tǒng)計圖.

四、解答題:(本大題5個小題,每小題10分,共50分)解答時每小題必須給出必要的演算

過程或推理步驟,畫出必要的圖形,請將解答過程書寫在答題卡中對應(yīng)的位置上

21.計算:

(1)(x+2y)2-(x+y)(x-y);

,.,4o—1ci~—Sa+16

(2)(a-1-------)4-------------

a+1a+1

【21題答案】

【答案】(1)4xy+5y2;(2)」一

a—4

【解析】

【分析】(1)原式利用完全平方公式,平方差公式化簡,去括號合并即可得到結(jié)果;

(2)原式括號中兩項通分并利用同分母分式的減法法則計算,同時利用除法法則變形,約分即可得到結(jié)

果.

【詳解】(1)原式=x?+4xy+4y2-x2+y2=4xy+5y2;

G~—1—Act+1a+1—4)a+1a

(2)原式=-------:-----------1=-----------1=---

a+1(a—4)-a+\(a—4)a-4

【點睛】此題考查了分式的混合運算,熟練掌握運算法則是解本題的關(guān)鍵.

22.如圖,在平面直角坐標(biāo)系中,直線h:y=;x與直線L交點A的橫坐標(biāo)為2,將直線h沿y軸向下平移

4個單位長度,得到直線13,直線13與y軸交于點B,與直線12交于點C,點C的縱坐標(biāo)為-2.直線12與

y軸交于點D.

(1)求直線12的解析式;

(2)求aBDC的面積.

【22題答案】

3

【答案】直線12的解析式為y=--x+4;(2)16.

【解析】

【分析】(1)把x=2代入y=gx,得y=l,求出A(2,1).根據(jù)平移規(guī)律得出直線b的解析式為y=gx-

4,求出B(0,-4)、C(4,-2).設(shè)直線L的解析式為y=kx+b,將A、C兩點的坐標(biāo)代入,利用待定系數(shù)

法即可求出直線b的解析式;

(2)根據(jù)直線12的解析式求出D(0,4),得出BD=8,再利用三角形的面積公式即可求出ABDC的面

積.

【詳解】(1)把x=2代入y=gx,得y=l,

;.A的坐標(biāo)為(2,1).

?.?將直線li沿y軸向下平移4個單位長度,得到直線h,

直線b的解析式為y=;x-4,

.??x=0時,,y=-4,

AB(0,-4).

將y=-2代入y=gx-4,得x=4,

???點C的坐標(biāo)為(4,-2).

設(shè)直線12的解析式為y=kx+b,

???直線上過A(2,1)、C(4,-2),

[2Z+Q1k=->

7c,解得《2,

4k+Q—2b=4

3

*,?直線h的解析式為y=--x+4;

3

(2)Vy=-—x+4,

2

.?.x=0時,y=4,

AD(0,4).

VB(0,-4),

???BD=8,

...ABDC的面積=—x8x4=16.

2

【點睛】本題考查了一次函數(shù)圖象與幾何變換,待定系數(shù)法求直線的解析式,一次函數(shù)圖象上點的坐標(biāo)特

征,三角形的面積,正確求出求出直線12的解析式是解題的關(guān)鍵.

23.在美麗鄉(xiāng)村建設(shè)中,某縣政府投入專項資金,用于鄉(xiāng)村沼氣池和垃圾集中處理點建設(shè).該縣政府計

劃:2018年前5個月,新建沼氣池和垃圾集中處理點共計50個,且沼氣池的個數(shù)不低于垃圾集中處理點

個數(shù)的4倍.

(1)按計劃,2018年前5個月至少要修建多少個沼氣池?

(2)到2018年5月底,該縣按原計劃剛好完成了任務(wù),共花費資金78萬元,且修建的沼氣池個數(shù)恰好是

原計劃的最小值.據(jù)核算,前5個月,修建每個沼氣池與垃圾集中處理點的平均費用之比為1:2.為加大

美麗鄉(xiāng)村建設(shè)的力度,政府計劃加大投入,今年后7個月,在前5個月花費資金的基礎(chǔ)上增加投入

10a%,全部用于沼氣池和垃圾集中處理點建設(shè).經(jīng)測算:從今年6月起,修建每個沼氣池與垃圾集中處理

點的平均費用在2018年前5個月的基礎(chǔ)上分別增加a%,5a%,新建沼氣池與垃圾集中處理點的個數(shù)將會

在2018年前5個月的基礎(chǔ)上分別增加5a%,8a%,求a的值.

【23題答案】

【答案】(1)按計劃,2018年前5個月至少要修建40個沼氣池.(2)10.

【解析】

【分析】(1)設(shè)2018年前5個月要修建x個沼氣池,則2018年前5個月要修建(50-x)個垃圾集中處理

點,根據(jù)沼氣池的個數(shù)不低于垃圾集中處理點個數(shù)的4倍,即可得出關(guān)于x的一元一次不等式,解之取其最

小值即可得出結(jié)論;

(2)根據(jù)單價=總價+數(shù)量可求出修建每個沼氣池的平均費用,進(jìn)而可求出修建每個垃圾集中點的平均費

用,設(shè)丫=2%結(jié)合總價=單價x數(shù)量即可得出關(guān)于y的一元二次方程,解之即可得出y值,進(jìn)而可得出a的

值.

【詳解】解:(1)設(shè)2018年前5個月要修建x個沼氣池,則2018年前5個月要修建(50-x)個垃圾集中

處理點,

根據(jù)題意得:x>4(50-x),

解得:x>40.

答:按計劃,2018年前5個月至少要修建40個沼氣池.

(2)修建每個沼氣池的平均費用為78引40+(50-40)x2]=1.3(萬元),

修建每個垃圾處理點的平均費用為13x2=2.6(萬元).

根據(jù)題意得:1.3x(1+a%)x40x(l+5a%)+2.6x(l+5a%)xlOx(l+8a%)=7據(jù)(l+10a%),

設(shè)y=a%,整理得:50y2-5y=0,

解得:yi=O(不合題意,舍去),y2=0.1,

,a的值為10.

【點睛】本題考查了一元二次方程的應(yīng)用以及一元一次不等式的應(yīng)用,解題的關(guān)鍵是:(1)根據(jù)沼氣池的

個數(shù)不低于垃圾集中處理點個數(shù)的4倍,列出關(guān)于x的一元一次不等式:(2)找準(zhǔn)等量關(guān)系,正確列出一

元二次方程.

24.如圖,在口ABCD中,NACB=45。,點E在對角線AC上,BE=BA,BFLAC于點F,BF的延長線交

AD于點G.點H在BC的延長線上,且CH=AG,連接EH.

(1)若BC=120,AB=13,求AF的長;

(2)求證:EB=EH.

[24題答案】

【答案】(1)5;(2)證明見解析.

【解析】

【分析】(1)依據(jù)BF_LAC,ZACB=45°,BC=128,可得等腰RtZkBCF中,BF=sin45°xBC=12,再根據(jù)

勾股定理,即可得至I]RSABF中,AF=,132—122=5;

(2)連接GE,過A作AFLAG,交BG于P,連接PE,判定四邊形APEG是正方形,即可得到

PF=EF,AP=AG=CH,進(jìn)而得出AAPB絲Z^HCE,依據(jù)AB=EH,AB=BE,即可得到BE=EH.

【詳解】解:(1)如圖,:BFLAC,ZACB=45°,BC=12及,

等腰R3BCF中,BF=sin45°xBC=12,

又:AB=13,

.?.「△ABF中,AF=7132-122=5;

(2)如圖,連接GE,過A作AFJ_AG,交BG于P,連接PE,

VBE=BA,BF±AC,

;.AF=FE,

;.BG是AE的垂直平分線,

;.AG=EG,AP=EP,

VZGAE=ZACB=45°,

.?.△AGE是等腰直角三角形,即NAGE=90。,

△APE是等腰直角三角形,即/APE=90。,

ZAPE=ZPAG=ZAGE=90°,

又?.?AG=EG,

...四邊形APEG是正方形,

;.PF=EF,AP=AG=CH,

又:BF=CF,

;.BP=CE,

NAPG95°=/BCF,

;./APB=NHCE=135。,

.,.△APB^AHCE(SAS),

;.AB=EH,

又:AB=BE,

;.BE=EH.

【點睛】本題考查了平行四邊形的性質(zhì),正方形的判定以及全等三角形的判定與性質(zhì)的運用,解題時注

意:平行四邊形的對邊相等;平行四邊形的對角相等;平行四邊形的對角線互相平分.

25.對任意一個四位數(shù)n,如果千位與十位上的數(shù)字之和為9,百位與個位上的數(shù)字之和也為9,則稱n為

“極數(shù)”.

(1)請任意寫出三個“極數(shù)”;并猜想任意一個“極數(shù)”是否是99的倍數(shù),請說明理由;

(2)如果一個正整數(shù)a是另一個正整數(shù)b平方,則稱正整數(shù)a是完全平方數(shù).若四位數(shù)m為“極數(shù)”,記

D(m)=一,求滿足D(m)是完全平方數(shù)的所有m.

33

[25題答案】

【答案】(1)是;(2)是完全平方數(shù)的所有m值為1188或2673或4752或7425.

【解析】

【詳解X分析】(1)根據(jù)“極數(shù)”的概念寫出即可,設(shè)任意一個“極數(shù)”為多(9—x)(9—y)(其中1<X<9,0<y<9,

且x、y為整數(shù)),整理可得由孫(9—x)(9—y)=99(9x+y+l),由此即可證明;

(2)設(shè)mR(9—x)(9_y)(其中l(wèi)Wx59,0<y<9,且x、y為整數(shù)),由題意則有

D(m)=3(10x+y+l),根據(jù)1WXW9,0<y<9,以及D(m)為完全平方數(shù)且為3的倍數(shù),可確定

出D(m)可取36、81、144、225,然后逐一進(jìn)行討論求解即可得.

【詳解】(1)如:1188,2475,9900(答案不唯一,符合題意即可);

猜想任意一個“極數(shù)”是99的倍數(shù),理由如下:

設(shè)任意一個極數(shù)”為孫(9-x)(9-y)(其中1WXW9,0<y<9,且x、y為整數(shù)),

孫(9-x)(9-y)

=1000x+100y+10(9-x)+(9-y)

=1000x+100y+90-lOx+9-y

=990x+99y+99

=99(10x+y+l),

:x、y為整數(shù),則10x+y+l為整數(shù),

...任意一個“極數(shù)”是99點倍數(shù);

(2)設(shè)m=_xy(9-x)(9-y)(其中1WXW9,0<y<9,且x、y為整數(shù)),

10A+V+1

由題意則有D(m)="()=3(iOx+y+1),

33

Vl<x<9,0<y<9,

?.33<3(10x+y+l)<300,

又???D(m)為完全平方數(shù)且為3的倍數(shù),

,D(m)可取36、81、144、225,

①D(m)=36時,3(10x+y+l)=36,

10x+y+l=12,

x=1,y=l,m=l188;

②D(m)=81時,3(10x+y+l)=81,

10x+y+l=27,

x=2,y=6,m=2673;

③D(m)=144時,3(10x+y+l)=144,

10x+y+l=48,

x=4,y=7,m=4752;

④D(m)=225時,3(10x+y+l)=225,

10x+y+l=75,

x=7,y=4,m=7425;

綜上所述,滿足D(m)為完全平方數(shù)的m的值為1188,2673,4752,7425.

【點睛】本題考查數(shù)值問題,包括:題目翻譯,數(shù)位設(shè)法,數(shù)位整除,完全平方數(shù)特征,分類討

論等,易錯點是容易忽略數(shù)值上取值范圍及所得關(guān)系式自身特征.

五、解答題:(本大題1個小題,共12分)解答時每小題必須給出必要的演算過程或推理步

驟請將解答書寫在答題卡中對應(yīng)的位置上

26.拋物線丫=-逅x2-2叵x+痛與x軸交于點A,B(點A在點B的左邊),與y軸交于點C,點D

63

是該拋物線的頂點.

(1)如圖1,連接CD,求線段CD的長;

(2)如圖2,點P是直線AC上方拋物線上一點,PFLx軸于點F,PF與線段AC交于點E;將線段OB

沿x軸左右平移,線段OB的對應(yīng)線段是。山當(dāng)PE+^EC的值最大時,求四邊形POiBC周長的最小

2

值,并求出對應(yīng)的點Oi的坐標(biāo);

(3)如圖3,點H是線段AB的中點,連接CH,將aOBC沿直線CH翻折至2c的位置,再將

△ChB2c繞點B?旋轉(zhuǎn)一周在旋轉(zhuǎn)過程中,點。2,C的對應(yīng)點分別是點C”直線03G分別與直線

AC,x軸交于點M,N.那么,在AOzB2c的整個旋轉(zhuǎn)過程中,是否存在恰當(dāng)?shù)奈恢?,使AAMN是以MN

為腰的等腰三角形?若存在,請直接寫出所有符合條件的線段02M的長;若不存在,請說明理由.

V

【26題答案】

【答案】(1)2匹;(2)病+36;01的坐標(biāo)為(-逆,0);(3)存在,ChM的長如或#或2亞+Jd

323

或20-6

【解析】

【分析】(1)分別表示C和D的坐標(biāo),利用勾股定理可得CD的長:

(2)令y=0,可求得A(-372-0),B(V2-0),利用待定系數(shù)法可計算直線AC的解析式為:y=

Bx+瓜,設(shè)E(x,是x+娓),P(x,-旦x2_空訃娓),表示PE的長,利用勾股定理計算

3363

AC的長,發(fā)現(xiàn)NCAO=30°,得AE=2EF=2?x+2遙,計算PE+’EC,利用配方法可得當(dāng)PE+上EC

322

的值最大時,x=-2近,此時P(-20,底),確定要使四邊形POiBiC周長的最小,即POi+BiC的值

最小,將點P向右平移五個單位長度得點Pi(-、歷,、俑),連接PiBi,則POi=PiB”再作點Pi關(guān)于x

軸的對稱點P2(-、Q,-#),可得結(jié)論;

(3)先確定對折后02c落在AC上,4AMN是以MN為腰的等腰三角形存在四種情況:

①如圖4,AN=MN,證明△GEC絲△B2O2M,可計算02M的長;

②如圖5,AM=MN,此時M與C重合,02M=0?C=6;

③如圖6,AM=MN,N和H、Ci重合,可得結(jié)論;

④如圖7,AN=MN,過Ci作CiE_LAC于E證明四邊形C1EO2B2是矩形,根據(jù)O2M=ECh+EM可得結(jié)論.

【詳解】⑴如圖1,過點D作DK_Ly軸于K,

當(dāng)x=0時,y=V6?

AC(0,瓜),

"*2-迎x+6=逅(X+&)2+還,

6363

AD(-V2.垃),

3

;.DK=正,CK=^!E-76=-,

33

ACD=y/DK2+CK2=

(2)在y=-^^x2-而中,令y=0,貝

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論