




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratory(NREL)at/publications.
ContractNo.DE-AC36-08GO28308
EvaluationofGlobalClimateModelsforUseinEnergyAnalysis
GrantBuster,1SlaterPodgorny,1LauraVimmerstedt,1BrandonBenton,1andNicholasD.Lybarger2
1NationalRenewableEnergyLaboratory
2U.S.NationalScienceFoundationNationalCenterforAtmosphericResearch
NRELisanationallaboratoryoftheU.S.DepartmentofEnergyOfficeofEnergyEfficiency&RenewableEnergy
OperatedbytheAllianceforSustainableEnergy,LLC
TechnicalReport
NREL/TP-6A20-90166August2024
NationalRenewableEnergyLaboratory
15013DenverWestParkwayGolden,CO80401
303-275-3000?
ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratory(NREL)at/publications.
ContractNo.DE-AC36-08GO28308
EvaluationofGlobalClimateModelsforUseinEnergyAnalysis
GrantBuster,1SlaterPodgorny,1LauraVimmerstedt,1BrandonBenton,1andNicholasD.Lybarger2
1NationalRenewableEnergyLaboratory
2U.S.NationalScienceFoundationNationalCenterforAtmosphericResearch
SuggestedCitation
Buster,Grant,SlaterPodgorny,LauraVimmerstedt,BrandonBenton,andNicholasD.
Lybarger.2024.EvaluationofGlobalClimateModelsforUseinEnergyAnalysis.Golden,CO:NationalRenewableEnergyLaboratory.NREL/TP-6A20-90166.
/docs/fy24osti/90166.pdf.
NRELisanationallaboratoryoftheU.S.DepartmentofEnergyOfficeofEnergyEfficiency&RenewableEnergy
OperatedbytheAllianceforSustainableEnergy,LLC
TechnicalReport
NREL/TP-6A20-90166August2024
NOTICE
Thisworkwasauthored[inpart]bytheNationalRenewableEnergyLaboratory,operatedbyAllianceforSustainableEnergy,LLC,fortheU.S.DepartmentofEnergy(DOE)underContractNo.DE-AC36-08GO28308.FundingprovidedbytheDOEOfficeofEnergyEfficiencyandRenewableEnergy(EERE),theDOEOfficeofElectricity(OE),theDOEOfficeofFossilEnergyandCarbonManagement(FECM),andtheDOEOfficeofCybersecurity,EnergySecurity,andEmergencyResponse(CESER).TheviewsexpressedhereindonotnecessarilyrepresenttheviewsoftheDOEortheU.S.Government.
ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratory(NREL)at
/publications.
U.S.DepartmentofEnergy(DOE)reportsproducedafter1991andagrowingnumberofpre-1991documentsareavailable
freevia
www.OSTI.gov.
CoverPhotosbyDennisSchroeder:(clockwise,lefttoright)NREL51934,NREL45897,NREL42160,NREL45891,NREL48097,NREL46526.
NRELprintsonpaperthatcontainsrecycledcontent.
iii
ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratoryat/publications.
TableofContents
TableofContents iii
ListofFigures iii
ListofTables v
1Abstract 1
2Introduction 1
3DataandMethods 2
4ResultsandDiscussion 8
5Conclusion 16
ListofAcronyms 17
CodeandDataAvailability 17
Acknowledgements 18
References 19
ReferencesforGCMs 22
AppendixA.NERCRegion:MidwestReliabilityOrganization(MRO) 27
AppendixB.NERCRegion:NortheastPowerCoordinatingCouncil(NPCC) 33
AppendixC.NERCRegion:ReliabilityFirst(RF) 39
AppendixD.NERCRegion:SoutheasternElectricReliabilityCorporation(SERC) 45
AppendixE.NERCRegion:TexasReliabilityEntity(TexasRE) 51
AppendixF.NERCRegion:WesternElectricityCoordinatingCouncil(WECC) 57
AppendixG.OffshoreWindRegion:Atlantic 63
AppendixH.OffshoreWindRegion:Gulf 66
AppendixI.OffshoreWindRegion:Pacific 69
ListofFigures
Figure1.ComparisonofGCMtrendsinchangestodailyaveragenear-surfaceairtemperaturefor
CONUS 12
Figure2.ComparisonofGCMdailymaximumairtemperatureeventsforCONUS 12
Figure3.ComparisonofGCMdailyminimumairtemperatureeventsforCONUS 13
Figure4.ComparisonofGCMtrendsinchangestodailyaveragenear-surfacerelativehumidityfor
CONUS 13
Figure5.ComparisonofGCMtrendsinchangestodailyaverageprecipitationforCONUS 14
Figure6.ComparisonofGCMminimumannualrainfallsforCONUS 14
Figure7.ComparisonofGCMtrendsinchangestodailyaverage100-meterwindspeedforCONUS 15
Figure8.ComparisonofGCMtrendsinchangestodailyaverageGHIforCONUS 15
Figure9.NERCRegion:MRO(includedstatesshadedingrey) 27
Figure10.ComparisonofGCMtrendsinchangestodailyaveragenear-surfaceairtemperatureforMRO.
29
Figure11.ComparisonofGCMdailymaximumairtemperatureeventsforMRO 29
Figure12.ComparisonofGCMdailyminimumairtemperatureeventsforMRO 30
Figure13.ComparisonofGCMtrendsinchangestodailyaveragenear-surfacerelativehumidityfor
MRO 30
Figure14.ComparisonofGCMtrendsinchangestodailyaverageprecipitationforMRO 31
Figure15.ComparisonofGCMminimumannualrainfallsforMRO 31
Figure16.ComparisonofGCMtrendsinchangestodailyaverage100-meterwindspeedforMRO 32
Figure17.ComparisonofGCMtrendsinchangestodailyaverageGHIforMRO 32
Figure18.NERCRegion:NPCC(includedstatesshadedingrey) 33
Figure19.ComparisonofGCMtrendsinchangestodailyaveragenear-surfaceairtemperaturefor
NPCC 35
iv
ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratoryat/publications.
Figure20.ComparisonofGCMdailymaximumairtemperatureeventsforNPCC 35
Figure21.ComparisonofGCMdailyminimumairtemperatureeventsforNPCC 36
Figure22.ComparisonofGCMtrendsinchangestodailyaveragenear-surfacerelativehumidityfor
NPCC 36
Figure23.ComparisonofGCMtrendsinchangestodailyaverageprecipitationforNPCC 37
Figure24.ComparisonofGCMminimumannualrainfallsforNPCC 37
Figure25.ComparisonofGCMtrendsinchangestodailyaverage100-meterwindspeedforNPCC 38
Figure26.ComparisonofGCMtrendsinchangestodailyaverageGHIforNPCC 38
Figure27.NERCRegion:RF(includedstatesshadedingrey) 39
Figure28.ComparisonofGCMtrendsinchangestodailyaveragenear-surfaceairtemperatureforRF.41
Figure29.ComparisonofGCMdailymaximumairtemperatureeventsforRF 41
Figure30.ComparisonofGCMdailyminimumairtemperatureeventsforRF 42
Figure31.ComparisonofGCMtrendsinchangestodailyaveragenear-surfacerelativehumidityforRF.
42
Figure32.ComparisonofGCMtrendsinchangestodailyaverageprecipitationforRF 43
Figure33.ComparisonofGCMminimumannualrainfallsforRF 43
Figure34.ComparisonofGCMtrendsinchangestodailyaverage100-meterwindspeedforRF 44
Figure35.ComparisonofGCMtrendsinchangestodailyaverageGHIforRF 44
Figure36.NERCRegion:SERC(includedstatesshadedingrey) 45
Figure37.ComparisonofGCMtrendsinchangestodailyaveragenear-surfaceairtemperaturefor
SERC 47
Figure38.ComparisonofGCMdailymaximumairtemperatureeventsforSERC 47
Figure39.ComparisonofGCMdailyminimumairtemperatureeventsforSERC 48
Figure40.ComparisonofGCMtrendsinchangestodailyaveragenear-surfacerelativehumidityfor
SERC 48
Figure41.ComparisonofGCMtrendsinchangestodailyaverageprecipitationforSERC 49
Figure42.ComparisonofGCMminimumannualrainfallsforSERC 49
Figure43.ComparisonofGCMtrendsinchangestodailyaverage100-meterwindspeedforSERC 50
Figure44.ComparisonofGCMtrendsinchangestodailyaverageGHIforSERC 50
Figure45.NERCRegion:TexasRE(includedstatesshadedingrey) 51
Figure46.ComparisonofGCMtrendsinchangestodailyaveragenear-surfaceairtemperatureforTexas
RE 53
Figure47.ComparisonofGCMdailymaximumairtemperatureeventsforTexasRE 53
Figure48.ComparisonofGCMdailyminimumairtemperatureeventsforTexasRE 54
Figure49.ComparisonofGCMtrendsinchangestodailyaveragenear-surfacerelativehumidityfor
TexasRE 54
Figure50.ComparisonofGCMtrendsinchangestodailyaverageprecipitationforTexasRE 55
Figure51.ComparisonofGCMminimumannualrainfallsforTexasRE 55
Figure52.ComparisonofGCMtrendsinchangestodailyaverage100-meterwindspeedforTexasRE.56
Figure53.ComparisonofGCMtrendsinchangestodailyaverageGHIforTexasRE 56
Figure54.NERCRegion:WECC(includedstatesshadedingrey) 57
Figure55.ComparisonofGCMtrendsinchangestodailyaveragenear-surfaceairtemperaturefor
WECC 59
Figure56.ComparisonofGCMdailymaximumairtemperatureeventsforWECC 59
Figure57.ComparisonofGCMdailyminimumairtemperatureeventsforWECC 60
Figure58.ComparisonofGCMtrendsinchangestodailyaveragenear-surfacerelativehumidityfor
WECC 60
Figure59.ComparisonofGCMtrendsinchangestodailyaverageprecipitationforWECC 61
Figure60.ComparisonofGCMminimumannualrainfallsforWECC 61
Figure61.ComparisonofGCMtrendsinchangestodailyaverage100-meterwindspeedforWECC 62
Figure62.ComparisonofGCMtrendsinchangestodailyaverageGHIforWECC 62
v
ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratoryat/publications.
Figure63.OffshoreWindRegion:Atlantic(includedareashadedingrey) 63
Figure64.ComparisonofGCMtrendsinchangestodailyaverage100-meterwindspeedfortheAtlantic
OffshoreRegion 65
Figure65.OffshoreWindRegion:Gulf(includedareashadedingrey) 66
Figure66.ComparisonofGCMtrendsinchangestodailyaverage100-meterwindspeedfortheGulf
OffshoreRegion 68
Figure67.OffshoreWindRegion:Pacific(includedareashadedingrey) 69
Figure68.ComparisonofGCMtrendsinchangestodailyaverage100-meterwindspeedforthePacific
OffshoreRegion 71
ListofTables
Table1.SummaryofGCMssurveyedandusedinthisreport 3
Table2.Summaryofvariablesanalyzedalongwithhistoricalbaselinedatasets 5
Table3.SummaryofhistoricalGCMskillusingKSstatisticandbiasmetricsforCONUS.Valuesfora
givenmetricineachrowarerankedfrombesttoworsthistoricalskill(darkbluetodark
red) 11
Table4.SummaryofhistoricalGCMskillusingKSstatisticandbiasmetricsforMRO.Valuesfora
givenmetricineachrowarerankedfrombesttoworsthistoricalskill(darkbluetodark
red) 28
Table5.SummaryofhistoricalGCMskillusingKSstatisticandbiasmetricsforNPCC.Valuesfora
givenmetricineachrowarerankedfrombesttoworsthistoricalskill(darkbluetodark
red) 34
Table6.SummaryofhistoricalGCMskillusingKSstatisticandbiasmetricsforRF.Valuesforagiven
metricineachrowarerankedfrombesttoworsthistoricalskill(darkbluetodarkred) 40
Table7.SummaryofhistoricalGCMskillusingKSstatisticandbiasmetricsforSERC.Valuesfora
givenmetricineachrowarerankedfrombesttoworsthistoricalskill(darkbluetodark
red) 46
Table8.SummaryofhistoricalGCMskillusingKSstatisticandbiasmetricsforTexasRE.Valuesfora
givenmetricineachrowarerankedfrombesttoworsthistoricalskill(darkbluetodark
red) 52
Table9.SummaryofhistoricalGCMskillusingKSstatisticandbiasmetricsforWECC.Valuesfora
givenmetricineachrowarerankedfrombesttoworsthistoricalskill(darkbluetodark
red) 58
Table10.SummaryofhistoricalGCMskillusingKSstatisticandbiasmetricsfortheAtlanticOffshore
Region.Valuesforagivenmetricineachrowarerankedfrombesttoworsthistoricalskill
(darkbluetodarkred) 64
Table11.SummaryofhistoricalGCMskillusingKSstatisticandbiasmetricsfortheGulfOffshore
Region.Valuesforagivenmetricineachrowarerankedfrombesttoworsthistoricalskill
(darkbluetodarkred) 67
Table12.SummaryofhistoricalGCMskillusingKSstatisticandbiasmetricsforthePacificOffshore
Region.Valuesforagivenmetricineachrowarerankedfrombesttoworsthistoricalskill
(darkbluetodarkred) 70
1
ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratoryat/publications.
1Abstract
Theinterplaybetweenenergy,climate,andweatherisbecomingmorecomplexduetoincreasing
contributionsofrenewableenergygeneration,energystorage,electrifiedenduses,andthe
increasingfrequencyofextremeweatherevents.Energysystemanalysescommonlyrelyon
meteorologicalinputstoestimaterenewableenergygenerationandenergydemand;however,
theseinputsrarelyrepresenttheestimatedimpactsoffutureclimatechange.Climatemodelsandpubliclyavailableclimatechangedatasetscanbeusedforthispurpose,buttheselectionof
inputsfromthemyriadofavailablemodelsanddatasetsisanuancedandsubjectiveprocess.Inthiswork,weassessdatasetsfromvariousglobalclimatemodels(GCMs)fromtheCoupled
ModelIntercomparisonProjectPhase6(CMIP6).Wepresentevaluationsoftheirskillswith
respecttothehistoricalclimateandcomparisonsoftheirfutureprojectionsofclimatechangefortwoclimatechangescenarios.Wepresenttheresultsfordifferentclimaticandenergysystem
regionsandincludeinteractivefiguresintheaccompanyingsoftwarerepository.PreviousworkhaspresentedsimilarGCMevaluations,butnonehavepresentedvariablesandmetrics
specificallyintendedforcomprehensiveenergysystemsanalysisincludingimpactsonenergydemand,thermalcooling,hydropower,wateravailability,solarenergygeneration,andwind
energygeneration.WefocusonGCMoutputmeteorologicalvariablesthatdirectlyaffecttheseenergysystemcomponentsincludingtherepresentationofextremevaluesthatcandrivegrid
resilienceevents.Theobjectiveofthisworkisnottorecommendthebestclimatemodelanddatasetforagivenanalysis,butinsteadtoprovideareferencetofacilitatetheselectionof
climatemodelsandscenariosinsubsequentwork.
2Introduction
Energysystemanalysescommonlyusehistoricalweatherdatasetsasinputtoenergygenerationanddemandmodels(Brinkmanetal.2021;Carvalloetal.2023;Stencliketal.2021;Sharpetal.2023).Recently,moreworkhasstartedtoincorporatetheimpactsofclimatechangeonthese
inputs(Bloomfieldetal.2016;Yalewetal.2020;Craigetal.2018).GCMsandtheirassociatedpublicly-availabledatasetsfromCMIP6areavaluableresourceforestimatingtheimpactsof
climatechange(Eyringetal.,2016).However,thereareamyriadofuniqueGCMsdevelopedby
climateresearchinstitutionsaroundtheworld.EachGCMisuniqueinitsphysicaland
parametricformulations,itsskillinrepresentinghistoricalclimateindifferentgeographies,anditssensitivitytoanthropogenicgreenhousegasemissions(Flatoetal.,2013).Forexample,a
givenGCMmayrepresentavariableinthehistoricalclimatewithgreatprecisionbutmaybe
greatlybiasedinseveralothervariables(furtherdiscussedinSection
4)
.Tofurthercomplicatethetopic,CMIP6includesseveralpossibleclimatechangescenariosthatattempttocharacterizedeeplyuncertainhumanfactorsrelatedtothedevelopmentalprogressofcivilizationandour
continuedemissions.Scenarioshavebeendevelopedthatprojectdecreasesinemissionsbymid-century,andothersthatprojectemissionsdecreasingonlyneartheendofthecentury(Riahietal.,2017).Expertsandquantitativemodelsalikehaveperspectivesonwhichscenariosaremorelikely(Hausfather&Peters2020),butwecannotknowwithcertaintywhichfuturewewill
experience.
Priorworkstudyingclimatechangeinappliedimpactstudieshashandledthesenuancesthroughthefollowingprocess:1)comparedatafromvariousGCMswithhistoricalreferencedatasetstoidentifythosethatbestrepresenthistoricalclimate2)selectoneormoreGCMswithgood
2
ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratoryat/publications.
historicalskillandclimatechangescenariosthatencompassarangeofpossibleclimatefutures,3)downscalethelow-resolutionGCMdataforappliedstudies(whenrequiredbyhigh-resolutionapplications),and4)performthesubsequentappliedanalysisusingdomain-specificmodels(Kaoetal.,2022;RalstonFonsecaetal.,2021).ThecomparisonandselectionofinputsfromGCMs
andclimatescenarios(steps#1and#2)isanuancedprocessthatcommonlyincludesthe
quantitativecomparisonofGCMdatasetsusingafewselectedmetricsoverafocusedregionofinterest(Pardingetal.,2020;Ashfaqetal.,2022;Chhinetal.,2018).However,theselectionofGCMs,climatescenarios,andcomparativemetricsareultimatelysubjectivedecisionsand
representvaluejudgementsinachallenginganalyticalprocesswithnoobjectivelybest
methodology.Further,theimpactsofclimatechangearebeingstudiedinanincreasinglywiderangeofapplicationsandthiscomparisonandselectionprocessisoftenveryspecifictoagivenapplication.
ThisreportfocusesonsupportingtheGCMcomparisonandselectionprocessspecificallyforenergyapplicationsintheContiguousUnitedStates(CONUS).PreviousworkhaspresentedsimilarGCMevaluations,butnonehavepresentedvariablesandmetricsspecificallyintendedforcomprehensiveenergysystemsanalysisincludingimpactsonenergydemand,thermal
cooling,hydropower,wateravailability,solarenergygeneration,andwindenergygeneration
(Pardingetal.,2020;Ashfaqetal.,2022;Martinez&Iglesias,2022).Thosethathavefocusedonsomeaspectofenergyimpactshavetypicallyfocusedononevariableoranothersuchasclimateimpactstohydropowerorwindenergy(Martinez&Iglesias,2022),butnonehavepresented
metricsforvariablesthatrepresentthefullenergygenerationanddemandsystem.Thisreportisintendedtofillthatgapandfacilitatemoreinformedselectionsofclimatechangeinputsfor
comprehensiveenergyanalyses.
Thisreportisstructuredasfollows.Section
3
detailsthedatasetsusedinthisreportandthe
methodsusedforGCMevaluation;Section
4
presentsanddiscussestheresultsoftheGCMskillevaluationandthecomparisonoftheirprojectionsfortheContiguousUnitedStates(CONUS);Section
5
concludesthereport;TheappendicespresentsimilarresultstoSection
4
butfor
specificsubregionswithinthelargerCONUSdomain.
3DataandMethods
ThisreportleveragespubliclyavailableclimatechangeprojectionsfromGCMsintheCMIP6
archiveandhistoricaldatafromreferenceandreanalysisdatasets.First,weexploretheavailabledatasetsassociatedwitheachGCMintheCMIP6archiveanddeterminewhichdatasetsare
viableforenergysystemsanalysis.
Forthepurposesofthiswork,welookforGCMdatasetsthatareofcurrentstate-of-the-art
spatiotemporalresolution(e.g.,100kmdaily),thatcontainallvariablesnecessarytomodel
energygenerationanddemand(e.g.,temperature,humidity,precipitation,windspeed,andsolarirradiance),andthathavepublicrecordsintheCMIP6archiveforseveralkeysimulations.Notethatdifferentdownscalingmethodologies(e.g.,dynamicaldownscalingwithregionalclimate
models,RCMs)mayrequirevariablesotherthanthosepresentedhere.However,westillfocusonthissubsetbecausetheyhavedirectimpactsontheenergysystem.
3
ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratoryat/publications.
Forthiswork,weselectedtheCMIP6historicalsimulationthatisintendedtorepresentthe
historicalandcurrentclimate,andtwoSharedSocioeconomicPathways(SSPs):SSP24.5,andSSP58.5.NotethattheseSSPshavecorrespondingRelativeConcentrationPathway(RCP)
scenariosfromCMIP5.WeselectedthefirstvariantfromeachGCMexceptforCESM2andCESM2-WACCMwhichhadothervariantswithmorecompletedataavailability.Forthe
comparisonoffutureprojections,weselectdatafromSSP24.5andSSP58.5.Weselectthesetwoscenariosbecauseoftheextensiveuseofthesescenariosinpriorclimateimpactsanalysis(Craigetal.,2020;Kaoetal.,2022;RalstonFonsecaetal.,2021;Martinez&Iglesias2022).
SSP24.5istypicallydescribedasa“middle-of-the-road”emissionsscenariowheretrends
generallyfollowadynamics-as-usualscenario,whileSSP58.5isanaggressivehigh-growthandhighfossilfuelfuturewiththemostoverallemissionsofanyscenario(Riahietal.,2017).
Toinformenergysystemanalysesinwhichdecisionsonenergyinfrastructurearebeingmade
todayandinthecomingseveraldecades,wefocusonprojectionsfromthehistoricalclimate
throughmid-century(e.g.,through2059).DespitethesignificantlydifferentemissiontrajectoriesinSSP24.5andSSP58.5,thetwoscenariosvaryonlyslightlybymid-century(asshownin
Section
4)
withamoredramaticbifurcationoccurringinthelatterhalfofthecentury.
Aftersurveying33GCMswithdatainCMIP6,weselect13GCMsthathavepubliclyavailabledatathatmeettheabovecriteria.Asummaryofthisprocess,theGCMsevaluated,andthe
GCMsselectedispresentedin
Table1
below.
GCMsthatdidnotmeetthecriteriaforthisworkmayhaveadditionalvariablesandscenariosavailablefromdifferentdataarchives.TheseGCMsmaybeusefulforclimateimpactstudies,butbasedontheirdatasetsavailableintheCMIP6archivetheywerenotusedinthiswork.
Table1.SummaryofGCMssurveyedandusedinthisreport.
GCMName
Used
NotesandReference
AWI-CM-1-1-MR
No
Historicalsimulationdoesnotincludeirradiance,precipitation,orhumidity(Semmleretal.,2019).
ACCESS-CM2
No
SSPdataislowspatialresolution(Dixetal.,2019).
BCC-CSM2-MR
No
Doesnotincludehumidity(Xinetal.,2019).
CAMS-CSM1-0
No
Doesnotincludehumidity(Rongetal.,2019).
CanESM5
No
Nodataatdesiredspatiotemporalresolution(Swartetal.,2019)
CESM2
Yes
Usedvariantr4i1p1f1.Othervariants(r1i1p1f1,r2i1p1f1,andr3i1p1f1)donotincludedailymin/maxtemperatures(Danabasoglu,2019a).
CESM2-WACCM
Yes
Usedvariantr3i1p1f1.Othervariants(r1i1p1f1andr2i1p1f1)donotincludedailymin/maxtemperatures(Danabasoglu,
2019b).
CMCC-CM2-SR5
No
Doesnotincludedailymin/maxtemperatures(Lovatoetal.,2020).
CMCC-ESM2
No
Doesnotincludegeopotentialheight(Lovatoetal.,2021)
CNRM-ESM2-1
No
Doesnotincludeanyrelevantvariablesatdesiredspatiotemporalresolution(Voldoire,2019).
4
ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratoryat/publications.
GCMName
Used
NotesandReference
E3SM-1-0
No
SSPdataatdesiredspatiotemporalresolutiondoesnot
includeirradiance,windspeeds,andhumidity(Baderetal.,2022a).
E3SM-1-1
No
SSPdataisatamonthlyfrequency(Baderetal.,2020).
E3SM-1-1-ECA
No
SSPdataatdesiredspatiotemporalresolutiondoesnot
includeirradiance,windspeeds,andhumidity(Baderetal.,2022b).
E3SM-2-0
No
NodataforSSP58.5(E3SMProject,DOE,2022)
E3SM-2-0-NAARRM
No
NodataforSSP58.5(Tangetal.,2023)
EC-Earth3
Yes
(EC-EarthConsortium,2019a)
EC-Earth3-CC
Yes
(EC-EarthConsortium,2021b)
EC-Earth3-Veg
Yes
(EC-EarthConsortium,2019b)
EC-Earth3-Veg-LR
No
Nodataatdesiredspatiotemporalresolution(EC-EarthConsortium,2020)
FGOALS-f3-L
No
SSPdataisatmonthlyfrequency(Yu,2019).
GFDL-CM4
Yes
(Guoetal.,2018)
GFDL-ESM4
Yes
(Johnetal.,2018)
HadGEM3-GC31-MM
No
NodataforSSP24.5andincompletetimeserieswithlessthan365daysperyear(Jackson,2020)
INM-CM4-8
Yes
(Volodinetal.,2019a)
INM-CM5-0
Yes
(Volodinetal.,2019b)
IPSL-CM6A-LR
No
Nodataatdesiredspatiotemporalresolution(Boucheretal.,2019).
KACE-1-0-G
No
SSPdataisatlowspatialresolution(Byunetal.,2019).
MIROC6
No
Nodataatdesiredspatiotemporalresolution(Shiogamaetal.,2019).
MPI-ESM1-2-HR
Yes
(Schupfneretal.,2019)
MPI-ESM1-2-LR
No
SSPdataisatlowspatialresolution(Wienersetal.,2019).
MRI-ESM2-0
Yes
(Yukimotoetal.,2019)
NorESM2-MM
Yes
(Bentsenetal.,2019)
TaiESM1
Yes
(Leeetal.,2020)
Foreachvariable,weselectahistoricalreferencedatasetthatcanbeusedtoevaluatethe
historicalskilloftheGCMs.Wechoosedatasetsthatarepubliclyavailable,haveatleasta20-yearhistoricalrecord,andhavebeenusedextensivelyinpreviousenergysystemstudies.WeleveragetheEuropeanCentreforMedium-RangeWeatherForecastsReanalysisv5(ERA5),
Daymet,andtheNationalSolarRadiationDatabase(NSRDB)(CopernicusClimateChangeService,2017;Thorntonetal.,2021;Senguptaetal.,2018).Thevariablesanalyzedandtheircorrespondinghistoricalreferencedatasetsaredetailedin
Table2
below.
Thethreehistoricalreferencedatasetsusedinthisworkareallatfinerspatialandtemporal
resolutionsthantheGCMdatabeingevaluated.Weperformageospatialmappingtoaggregatehigh-resolutionhistoricalpixelstotheirnearestlow-resolutionGCMpixel.Thiscreatesasub-
5
ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratoryat/publications.
gridmapping(e.g.,similartoasudokugrid)withoutoverlaporduplicationofthehigh-
resolutionpixels.Asimpleaveragingormin/maxoperationisperformedonthetemporalaxistoaggregatesub-dailydatatotheGCMdailyvalues.
Table2.Summaryofvariablesanalyzedalongwithhistoricalbaselinedatasets.
Variable
Abbreviation
Historical
ReferenceDataset
Resolution
TemporalExtent
Reference
Air
T2M
ERA5
31-kmhourly
1980-2019
Copernicus
Temperature
ClimateChange
(2-meter)
Service,2017
RelativeHumidity(2-meter)
RH2M
ERA5
31-kmhourly
1980-2019
Copernicus
ClimateChangeService,2017
Precipitation
PR
Daymet
4-kmdaily
1980-2019
Thorntonetal.,2021
Global
HorizontalIrradiance
GHI
NSRDB
4-km30-minute
2000-2019
Senguptaetal.,2018
Windspeed(100-meter)
WS100m
ERA5
31-kmhourly
1980-2019
Copernicus
ClimateChangeService,2017
Forthehistoricalskillevaluation,weuse40-yearrecordsfo
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 腦出血合并肺栓塞個(gè)案護(hù)理
- 河南省內(nèi)黃一中2024屆高三下學(xué)期模擬考試數(shù)學(xué)試題
- 鋼筋和預(yù)應(yīng)力筋加工、安裝及張拉工程現(xiàn)場(chǎng)質(zhì)量檢驗(yàn)報(bào)告單(二)
- 2024年中國(guó)顯微手術(shù)機(jī)器人行業(yè)市場(chǎng)集中度、市場(chǎng)規(guī)模及未來(lái)前景分析報(bào)告
- 2025年光電電視測(cè)斜儀項(xiàng)目建議書(shū)
- 酒精肝飲食護(hù)理
- 營(yíng)銷策略規(guī)劃與落地培訓(xùn)課件:打造高效營(yíng)銷體系
- 保溫容器企業(yè)縣域市場(chǎng)拓展與下沉戰(zhàn)略研究報(bào)告
- 煙絲專門(mén)零售企業(yè)數(shù)字化轉(zhuǎn)型與智慧升級(jí)戰(zhàn)略研究報(bào)告
- 文件裝訂用品批發(fā)企業(yè)ESG實(shí)踐與創(chuàng)新戰(zhàn)略研究報(bào)告
- 2022年河北公務(wù)員考試《申論》真題及參考答案
- 汽車涂裝工藝完整版ppt課件全套教程
- 十年來(lái)北京蓋了多少住宅
- 25項(xiàng)品質(zhì)保證展開(kāi)計(jì)劃PPT課件
- 畢業(yè)設(shè)計(jì)(論文)-白菜收獲機(jī)的設(shè)計(jì)與研究
- 初中歷史興趣小組活動(dòng)方案
- 【班會(huì)課件】時(shí)代先鋒雷鋒精神 高中主題班會(huì)課件
- 西南交通大學(xué)工程測(cè)量
- 南寧市存量房買(mǎi)賣合同范本
- 電梯基本結(jié)構(gòu)
- 壓力容器涂敷工藝規(guī)程指導(dǎo)書(shū)
評(píng)論
0/150
提交評(píng)論