版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratory(NREL)at/publications.
ContractNo.DE-AC36-08GO28308
EvaluationofGlobalClimateModelsforUseinEnergyAnalysis
GrantBuster,1SlaterPodgorny,1LauraVimmerstedt,1BrandonBenton,1andNicholasD.Lybarger2
1NationalRenewableEnergyLaboratory
2U.S.NationalScienceFoundationNationalCenterforAtmosphericResearch
NRELisanationallaboratoryoftheU.S.DepartmentofEnergyOfficeofEnergyEfficiency&RenewableEnergy
OperatedbytheAllianceforSustainableEnergy,LLC
TechnicalReport
NREL/TP-6A20-90166August2024
NationalRenewableEnergyLaboratory
15013DenverWestParkwayGolden,CO80401
303-275-3000?
ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratory(NREL)at/publications.
ContractNo.DE-AC36-08GO28308
EvaluationofGlobalClimateModelsforUseinEnergyAnalysis
GrantBuster,1SlaterPodgorny,1LauraVimmerstedt,1BrandonBenton,1andNicholasD.Lybarger2
1NationalRenewableEnergyLaboratory
2U.S.NationalScienceFoundationNationalCenterforAtmosphericResearch
SuggestedCitation
Buster,Grant,SlaterPodgorny,LauraVimmerstedt,BrandonBenton,andNicholasD.
Lybarger.2024.EvaluationofGlobalClimateModelsforUseinEnergyAnalysis.Golden,CO:NationalRenewableEnergyLaboratory.NREL/TP-6A20-90166.
/docs/fy24osti/90166.pdf.
NRELisanationallaboratoryoftheU.S.DepartmentofEnergyOfficeofEnergyEfficiency&RenewableEnergy
OperatedbytheAllianceforSustainableEnergy,LLC
TechnicalReport
NREL/TP-6A20-90166August2024
NOTICE
Thisworkwasauthored[inpart]bytheNationalRenewableEnergyLaboratory,operatedbyAllianceforSustainableEnergy,LLC,fortheU.S.DepartmentofEnergy(DOE)underContractNo.DE-AC36-08GO28308.FundingprovidedbytheDOEOfficeofEnergyEfficiencyandRenewableEnergy(EERE),theDOEOfficeofElectricity(OE),theDOEOfficeofFossilEnergyandCarbonManagement(FECM),andtheDOEOfficeofCybersecurity,EnergySecurity,andEmergencyResponse(CESER).TheviewsexpressedhereindonotnecessarilyrepresenttheviewsoftheDOEortheU.S.Government.
ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratory(NREL)at
/publications.
U.S.DepartmentofEnergy(DOE)reportsproducedafter1991andagrowingnumberofpre-1991documentsareavailable
freevia
www.OSTI.gov.
CoverPhotosbyDennisSchroeder:(clockwise,lefttoright)NREL51934,NREL45897,NREL42160,NREL45891,NREL48097,NREL46526.
NRELprintsonpaperthatcontainsrecycledcontent.
iii
ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratoryat/publications.
TableofContents
TableofContents iii
ListofFigures iii
ListofTables v
1Abstract 1
2Introduction 1
3DataandMethods 2
4ResultsandDiscussion 8
5Conclusion 16
ListofAcronyms 17
CodeandDataAvailability 17
Acknowledgements 18
References 19
ReferencesforGCMs 22
AppendixA.NERCRegion:MidwestReliabilityOrganization(MRO) 27
AppendixB.NERCRegion:NortheastPowerCoordinatingCouncil(NPCC) 33
AppendixC.NERCRegion:ReliabilityFirst(RF) 39
AppendixD.NERCRegion:SoutheasternElectricReliabilityCorporation(SERC) 45
AppendixE.NERCRegion:TexasReliabilityEntity(TexasRE) 51
AppendixF.NERCRegion:WesternElectricityCoordinatingCouncil(WECC) 57
AppendixG.OffshoreWindRegion:Atlantic 63
AppendixH.OffshoreWindRegion:Gulf 66
AppendixI.OffshoreWindRegion:Pacific 69
ListofFigures
Figure1.ComparisonofGCMtrendsinchangestodailyaveragenear-surfaceairtemperaturefor
CONUS 12
Figure2.ComparisonofGCMdailymaximumairtemperatureeventsforCONUS 12
Figure3.ComparisonofGCMdailyminimumairtemperatureeventsforCONUS 13
Figure4.ComparisonofGCMtrendsinchangestodailyaveragenear-surfacerelativehumidityfor
CONUS 13
Figure5.ComparisonofGCMtrendsinchangestodailyaverageprecipitationforCONUS 14
Figure6.ComparisonofGCMminimumannualrainfallsforCONUS 14
Figure7.ComparisonofGCMtrendsinchangestodailyaverage100-meterwindspeedforCONUS 15
Figure8.ComparisonofGCMtrendsinchangestodailyaverageGHIforCONUS 15
Figure9.NERCRegion:MRO(includedstatesshadedingrey) 27
Figure10.ComparisonofGCMtrendsinchangestodailyaveragenear-surfaceairtemperatureforMRO.
29
Figure11.ComparisonofGCMdailymaximumairtemperatureeventsforMRO 29
Figure12.ComparisonofGCMdailyminimumairtemperatureeventsforMRO 30
Figure13.ComparisonofGCMtrendsinchangestodailyaveragenear-surfacerelativehumidityfor
MRO 30
Figure14.ComparisonofGCMtrendsinchangestodailyaverageprecipitationforMRO 31
Figure15.ComparisonofGCMminimumannualrainfallsforMRO 31
Figure16.ComparisonofGCMtrendsinchangestodailyaverage100-meterwindspeedforMRO 32
Figure17.ComparisonofGCMtrendsinchangestodailyaverageGHIforMRO 32
Figure18.NERCRegion:NPCC(includedstatesshadedingrey) 33
Figure19.ComparisonofGCMtrendsinchangestodailyaveragenear-surfaceairtemperaturefor
NPCC 35
iv
ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratoryat/publications.
Figure20.ComparisonofGCMdailymaximumairtemperatureeventsforNPCC 35
Figure21.ComparisonofGCMdailyminimumairtemperatureeventsforNPCC 36
Figure22.ComparisonofGCMtrendsinchangestodailyaveragenear-surfacerelativehumidityfor
NPCC 36
Figure23.ComparisonofGCMtrendsinchangestodailyaverageprecipitationforNPCC 37
Figure24.ComparisonofGCMminimumannualrainfallsforNPCC 37
Figure25.ComparisonofGCMtrendsinchangestodailyaverage100-meterwindspeedforNPCC 38
Figure26.ComparisonofGCMtrendsinchangestodailyaverageGHIforNPCC 38
Figure27.NERCRegion:RF(includedstatesshadedingrey) 39
Figure28.ComparisonofGCMtrendsinchangestodailyaveragenear-surfaceairtemperatureforRF.41
Figure29.ComparisonofGCMdailymaximumairtemperatureeventsforRF 41
Figure30.ComparisonofGCMdailyminimumairtemperatureeventsforRF 42
Figure31.ComparisonofGCMtrendsinchangestodailyaveragenear-surfacerelativehumidityforRF.
42
Figure32.ComparisonofGCMtrendsinchangestodailyaverageprecipitationforRF 43
Figure33.ComparisonofGCMminimumannualrainfallsforRF 43
Figure34.ComparisonofGCMtrendsinchangestodailyaverage100-meterwindspeedforRF 44
Figure35.ComparisonofGCMtrendsinchangestodailyaverageGHIforRF 44
Figure36.NERCRegion:SERC(includedstatesshadedingrey) 45
Figure37.ComparisonofGCMtrendsinchangestodailyaveragenear-surfaceairtemperaturefor
SERC 47
Figure38.ComparisonofGCMdailymaximumairtemperatureeventsforSERC 47
Figure39.ComparisonofGCMdailyminimumairtemperatureeventsforSERC 48
Figure40.ComparisonofGCMtrendsinchangestodailyaveragenear-surfacerelativehumidityfor
SERC 48
Figure41.ComparisonofGCMtrendsinchangestodailyaverageprecipitationforSERC 49
Figure42.ComparisonofGCMminimumannualrainfallsforSERC 49
Figure43.ComparisonofGCMtrendsinchangestodailyaverage100-meterwindspeedforSERC 50
Figure44.ComparisonofGCMtrendsinchangestodailyaverageGHIforSERC 50
Figure45.NERCRegion:TexasRE(includedstatesshadedingrey) 51
Figure46.ComparisonofGCMtrendsinchangestodailyaveragenear-surfaceairtemperatureforTexas
RE 53
Figure47.ComparisonofGCMdailymaximumairtemperatureeventsforTexasRE 53
Figure48.ComparisonofGCMdailyminimumairtemperatureeventsforTexasRE 54
Figure49.ComparisonofGCMtrendsinchangestodailyaveragenear-surfacerelativehumidityfor
TexasRE 54
Figure50.ComparisonofGCMtrendsinchangestodailyaverageprecipitationforTexasRE 55
Figure51.ComparisonofGCMminimumannualrainfallsforTexasRE 55
Figure52.ComparisonofGCMtrendsinchangestodailyaverage100-meterwindspeedforTexasRE.56
Figure53.ComparisonofGCMtrendsinchangestodailyaverageGHIforTexasRE 56
Figure54.NERCRegion:WECC(includedstatesshadedingrey) 57
Figure55.ComparisonofGCMtrendsinchangestodailyaveragenear-surfaceairtemperaturefor
WECC 59
Figure56.ComparisonofGCMdailymaximumairtemperatureeventsforWECC 59
Figure57.ComparisonofGCMdailyminimumairtemperatureeventsforWECC 60
Figure58.ComparisonofGCMtrendsinchangestodailyaveragenear-surfacerelativehumidityfor
WECC 60
Figure59.ComparisonofGCMtrendsinchangestodailyaverageprecipitationforWECC 61
Figure60.ComparisonofGCMminimumannualrainfallsforWECC 61
Figure61.ComparisonofGCMtrendsinchangestodailyaverage100-meterwindspeedforWECC 62
Figure62.ComparisonofGCMtrendsinchangestodailyaverageGHIforWECC 62
v
ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratoryat/publications.
Figure63.OffshoreWindRegion:Atlantic(includedareashadedingrey) 63
Figure64.ComparisonofGCMtrendsinchangestodailyaverage100-meterwindspeedfortheAtlantic
OffshoreRegion 65
Figure65.OffshoreWindRegion:Gulf(includedareashadedingrey) 66
Figure66.ComparisonofGCMtrendsinchangestodailyaverage100-meterwindspeedfortheGulf
OffshoreRegion 68
Figure67.OffshoreWindRegion:Pacific(includedareashadedingrey) 69
Figure68.ComparisonofGCMtrendsinchangestodailyaverage100-meterwindspeedforthePacific
OffshoreRegion 71
ListofTables
Table1.SummaryofGCMssurveyedandusedinthisreport 3
Table2.Summaryofvariablesanalyzedalongwithhistoricalbaselinedatasets 5
Table3.SummaryofhistoricalGCMskillusingKSstatisticandbiasmetricsforCONUS.Valuesfora
givenmetricineachrowarerankedfrombesttoworsthistoricalskill(darkbluetodark
red) 11
Table4.SummaryofhistoricalGCMskillusingKSstatisticandbiasmetricsforMRO.Valuesfora
givenmetricineachrowarerankedfrombesttoworsthistoricalskill(darkbluetodark
red) 28
Table5.SummaryofhistoricalGCMskillusingKSstatisticandbiasmetricsforNPCC.Valuesfora
givenmetricineachrowarerankedfrombesttoworsthistoricalskill(darkbluetodark
red) 34
Table6.SummaryofhistoricalGCMskillusingKSstatisticandbiasmetricsforRF.Valuesforagiven
metricineachrowarerankedfrombesttoworsthistoricalskill(darkbluetodarkred) 40
Table7.SummaryofhistoricalGCMskillusingKSstatisticandbiasmetricsforSERC.Valuesfora
givenmetricineachrowarerankedfrombesttoworsthistoricalskill(darkbluetodark
red) 46
Table8.SummaryofhistoricalGCMskillusingKSstatisticandbiasmetricsforTexasRE.Valuesfora
givenmetricineachrowarerankedfrombesttoworsthistoricalskill(darkbluetodark
red) 52
Table9.SummaryofhistoricalGCMskillusingKSstatisticandbiasmetricsforWECC.Valuesfora
givenmetricineachrowarerankedfrombesttoworsthistoricalskill(darkbluetodark
red) 58
Table10.SummaryofhistoricalGCMskillusingKSstatisticandbiasmetricsfortheAtlanticOffshore
Region.Valuesforagivenmetricineachrowarerankedfrombesttoworsthistoricalskill
(darkbluetodarkred) 64
Table11.SummaryofhistoricalGCMskillusingKSstatisticandbiasmetricsfortheGulfOffshore
Region.Valuesforagivenmetricineachrowarerankedfrombesttoworsthistoricalskill
(darkbluetodarkred) 67
Table12.SummaryofhistoricalGCMskillusingKSstatisticandbiasmetricsforthePacificOffshore
Region.Valuesforagivenmetricineachrowarerankedfrombesttoworsthistoricalskill
(darkbluetodarkred) 70
1
ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratoryat/publications.
1Abstract
Theinterplaybetweenenergy,climate,andweatherisbecomingmorecomplexduetoincreasing
contributionsofrenewableenergygeneration,energystorage,electrifiedenduses,andthe
increasingfrequencyofextremeweatherevents.Energysystemanalysescommonlyrelyon
meteorologicalinputstoestimaterenewableenergygenerationandenergydemand;however,
theseinputsrarelyrepresenttheestimatedimpactsoffutureclimatechange.Climatemodelsandpubliclyavailableclimatechangedatasetscanbeusedforthispurpose,buttheselectionof
inputsfromthemyriadofavailablemodelsanddatasetsisanuancedandsubjectiveprocess.Inthiswork,weassessdatasetsfromvariousglobalclimatemodels(GCMs)fromtheCoupled
ModelIntercomparisonProjectPhase6(CMIP6).Wepresentevaluationsoftheirskillswith
respecttothehistoricalclimateandcomparisonsoftheirfutureprojectionsofclimatechangefortwoclimatechangescenarios.Wepresenttheresultsfordifferentclimaticandenergysystem
regionsandincludeinteractivefiguresintheaccompanyingsoftwarerepository.PreviousworkhaspresentedsimilarGCMevaluations,butnonehavepresentedvariablesandmetrics
specificallyintendedforcomprehensiveenergysystemsanalysisincludingimpactsonenergydemand,thermalcooling,hydropower,wateravailability,solarenergygeneration,andwind
energygeneration.WefocusonGCMoutputmeteorologicalvariablesthatdirectlyaffecttheseenergysystemcomponentsincludingtherepresentationofextremevaluesthatcandrivegrid
resilienceevents.Theobjectiveofthisworkisnottorecommendthebestclimatemodelanddatasetforagivenanalysis,butinsteadtoprovideareferencetofacilitatetheselectionof
climatemodelsandscenariosinsubsequentwork.
2Introduction
Energysystemanalysescommonlyusehistoricalweatherdatasetsasinputtoenergygenerationanddemandmodels(Brinkmanetal.2021;Carvalloetal.2023;Stencliketal.2021;Sharpetal.2023).Recently,moreworkhasstartedtoincorporatetheimpactsofclimatechangeonthese
inputs(Bloomfieldetal.2016;Yalewetal.2020;Craigetal.2018).GCMsandtheirassociatedpublicly-availabledatasetsfromCMIP6areavaluableresourceforestimatingtheimpactsof
climatechange(Eyringetal.,2016).However,thereareamyriadofuniqueGCMsdevelopedby
climateresearchinstitutionsaroundtheworld.EachGCMisuniqueinitsphysicaland
parametricformulations,itsskillinrepresentinghistoricalclimateindifferentgeographies,anditssensitivitytoanthropogenicgreenhousegasemissions(Flatoetal.,2013).Forexample,a
givenGCMmayrepresentavariableinthehistoricalclimatewithgreatprecisionbutmaybe
greatlybiasedinseveralothervariables(furtherdiscussedinSection
4)
.Tofurthercomplicatethetopic,CMIP6includesseveralpossibleclimatechangescenariosthatattempttocharacterizedeeplyuncertainhumanfactorsrelatedtothedevelopmentalprogressofcivilizationandour
continuedemissions.Scenarioshavebeendevelopedthatprojectdecreasesinemissionsbymid-century,andothersthatprojectemissionsdecreasingonlyneartheendofthecentury(Riahietal.,2017).Expertsandquantitativemodelsalikehaveperspectivesonwhichscenariosaremorelikely(Hausfather&Peters2020),butwecannotknowwithcertaintywhichfuturewewill
experience.
Priorworkstudyingclimatechangeinappliedimpactstudieshashandledthesenuancesthroughthefollowingprocess:1)comparedatafromvariousGCMswithhistoricalreferencedatasetstoidentifythosethatbestrepresenthistoricalclimate2)selectoneormoreGCMswithgood
2
ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratoryat/publications.
historicalskillandclimatechangescenariosthatencompassarangeofpossibleclimatefutures,3)downscalethelow-resolutionGCMdataforappliedstudies(whenrequiredbyhigh-resolutionapplications),and4)performthesubsequentappliedanalysisusingdomain-specificmodels(Kaoetal.,2022;RalstonFonsecaetal.,2021).ThecomparisonandselectionofinputsfromGCMs
andclimatescenarios(steps#1and#2)isanuancedprocessthatcommonlyincludesthe
quantitativecomparisonofGCMdatasetsusingafewselectedmetricsoverafocusedregionofinterest(Pardingetal.,2020;Ashfaqetal.,2022;Chhinetal.,2018).However,theselectionofGCMs,climatescenarios,andcomparativemetricsareultimatelysubjectivedecisionsand
representvaluejudgementsinachallenginganalyticalprocesswithnoobjectivelybest
methodology.Further,theimpactsofclimatechangearebeingstudiedinanincreasinglywiderangeofapplicationsandthiscomparisonandselectionprocessisoftenveryspecifictoagivenapplication.
ThisreportfocusesonsupportingtheGCMcomparisonandselectionprocessspecificallyforenergyapplicationsintheContiguousUnitedStates(CONUS).PreviousworkhaspresentedsimilarGCMevaluations,butnonehavepresentedvariablesandmetricsspecificallyintendedforcomprehensiveenergysystemsanalysisincludingimpactsonenergydemand,thermal
cooling,hydropower,wateravailability,solarenergygeneration,andwindenergygeneration
(Pardingetal.,2020;Ashfaqetal.,2022;Martinez&Iglesias,2022).Thosethathavefocusedonsomeaspectofenergyimpactshavetypicallyfocusedononevariableoranothersuchasclimateimpactstohydropowerorwindenergy(Martinez&Iglesias,2022),butnonehavepresented
metricsforvariablesthatrepresentthefullenergygenerationanddemandsystem.Thisreportisintendedtofillthatgapandfacilitatemoreinformedselectionsofclimatechangeinputsfor
comprehensiveenergyanalyses.
Thisreportisstructuredasfollows.Section
3
detailsthedatasetsusedinthisreportandthe
methodsusedforGCMevaluation;Section
4
presentsanddiscussestheresultsoftheGCMskillevaluationandthecomparisonoftheirprojectionsfortheContiguousUnitedStates(CONUS);Section
5
concludesthereport;TheappendicespresentsimilarresultstoSection
4
butfor
specificsubregionswithinthelargerCONUSdomain.
3DataandMethods
ThisreportleveragespubliclyavailableclimatechangeprojectionsfromGCMsintheCMIP6
archiveandhistoricaldatafromreferenceandreanalysisdatasets.First,weexploretheavailabledatasetsassociatedwitheachGCMintheCMIP6archiveanddeterminewhichdatasetsare
viableforenergysystemsanalysis.
Forthepurposesofthiswork,welookforGCMdatasetsthatareofcurrentstate-of-the-art
spatiotemporalresolution(e.g.,100kmdaily),thatcontainallvariablesnecessarytomodel
energygenerationanddemand(e.g.,temperature,humidity,precipitation,windspeed,andsolarirradiance),andthathavepublicrecordsintheCMIP6archiveforseveralkeysimulations.Notethatdifferentdownscalingmethodologies(e.g.,dynamicaldownscalingwithregionalclimate
models,RCMs)mayrequirevariablesotherthanthosepresentedhere.However,westillfocusonthissubsetbecausetheyhavedirectimpactsontheenergysystem.
3
ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratoryat/publications.
Forthiswork,weselectedtheCMIP6historicalsimulationthatisintendedtorepresentthe
historicalandcurrentclimate,andtwoSharedSocioeconomicPathways(SSPs):SSP24.5,andSSP58.5.NotethattheseSSPshavecorrespondingRelativeConcentrationPathway(RCP)
scenariosfromCMIP5.WeselectedthefirstvariantfromeachGCMexceptforCESM2andCESM2-WACCMwhichhadothervariantswithmorecompletedataavailability.Forthe
comparisonoffutureprojections,weselectdatafromSSP24.5andSSP58.5.Weselectthesetwoscenariosbecauseoftheextensiveuseofthesescenariosinpriorclimateimpactsanalysis(Craigetal.,2020;Kaoetal.,2022;RalstonFonsecaetal.,2021;Martinez&Iglesias2022).
SSP24.5istypicallydescribedasa“middle-of-the-road”emissionsscenariowheretrends
generallyfollowadynamics-as-usualscenario,whileSSP58.5isanaggressivehigh-growthandhighfossilfuelfuturewiththemostoverallemissionsofanyscenario(Riahietal.,2017).
Toinformenergysystemanalysesinwhichdecisionsonenergyinfrastructurearebeingmade
todayandinthecomingseveraldecades,wefocusonprojectionsfromthehistoricalclimate
throughmid-century(e.g.,through2059).DespitethesignificantlydifferentemissiontrajectoriesinSSP24.5andSSP58.5,thetwoscenariosvaryonlyslightlybymid-century(asshownin
Section
4)
withamoredramaticbifurcationoccurringinthelatterhalfofthecentury.
Aftersurveying33GCMswithdatainCMIP6,weselect13GCMsthathavepubliclyavailabledatathatmeettheabovecriteria.Asummaryofthisprocess,theGCMsevaluated,andthe
GCMsselectedispresentedin
Table1
below.
GCMsthatdidnotmeetthecriteriaforthisworkmayhaveadditionalvariablesandscenariosavailablefromdifferentdataarchives.TheseGCMsmaybeusefulforclimateimpactstudies,butbasedontheirdatasetsavailableintheCMIP6archivetheywerenotusedinthiswork.
Table1.SummaryofGCMssurveyedandusedinthisreport.
GCMName
Used
NotesandReference
AWI-CM-1-1-MR
No
Historicalsimulationdoesnotincludeirradiance,precipitation,orhumidity(Semmleretal.,2019).
ACCESS-CM2
No
SSPdataislowspatialresolution(Dixetal.,2019).
BCC-CSM2-MR
No
Doesnotincludehumidity(Xinetal.,2019).
CAMS-CSM1-0
No
Doesnotincludehumidity(Rongetal.,2019).
CanESM5
No
Nodataatdesiredspatiotemporalresolution(Swartetal.,2019)
CESM2
Yes
Usedvariantr4i1p1f1.Othervariants(r1i1p1f1,r2i1p1f1,andr3i1p1f1)donotincludedailymin/maxtemperatures(Danabasoglu,2019a).
CESM2-WACCM
Yes
Usedvariantr3i1p1f1.Othervariants(r1i1p1f1andr2i1p1f1)donotincludedailymin/maxtemperatures(Danabasoglu,
2019b).
CMCC-CM2-SR5
No
Doesnotincludedailymin/maxtemperatures(Lovatoetal.,2020).
CMCC-ESM2
No
Doesnotincludegeopotentialheight(Lovatoetal.,2021)
CNRM-ESM2-1
No
Doesnotincludeanyrelevantvariablesatdesiredspatiotemporalresolution(Voldoire,2019).
4
ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratoryat/publications.
GCMName
Used
NotesandReference
E3SM-1-0
No
SSPdataatdesiredspatiotemporalresolutiondoesnot
includeirradiance,windspeeds,andhumidity(Baderetal.,2022a).
E3SM-1-1
No
SSPdataisatamonthlyfrequency(Baderetal.,2020).
E3SM-1-1-ECA
No
SSPdataatdesiredspatiotemporalresolutiondoesnot
includeirradiance,windspeeds,andhumidity(Baderetal.,2022b).
E3SM-2-0
No
NodataforSSP58.5(E3SMProject,DOE,2022)
E3SM-2-0-NAARRM
No
NodataforSSP58.5(Tangetal.,2023)
EC-Earth3
Yes
(EC-EarthConsortium,2019a)
EC-Earth3-CC
Yes
(EC-EarthConsortium,2021b)
EC-Earth3-Veg
Yes
(EC-EarthConsortium,2019b)
EC-Earth3-Veg-LR
No
Nodataatdesiredspatiotemporalresolution(EC-EarthConsortium,2020)
FGOALS-f3-L
No
SSPdataisatmonthlyfrequency(Yu,2019).
GFDL-CM4
Yes
(Guoetal.,2018)
GFDL-ESM4
Yes
(Johnetal.,2018)
HadGEM3-GC31-MM
No
NodataforSSP24.5andincompletetimeserieswithlessthan365daysperyear(Jackson,2020)
INM-CM4-8
Yes
(Volodinetal.,2019a)
INM-CM5-0
Yes
(Volodinetal.,2019b)
IPSL-CM6A-LR
No
Nodataatdesiredspatiotemporalresolution(Boucheretal.,2019).
KACE-1-0-G
No
SSPdataisatlowspatialresolution(Byunetal.,2019).
MIROC6
No
Nodataatdesiredspatiotemporalresolution(Shiogamaetal.,2019).
MPI-ESM1-2-HR
Yes
(Schupfneretal.,2019)
MPI-ESM1-2-LR
No
SSPdataisatlowspatialresolution(Wienersetal.,2019).
MRI-ESM2-0
Yes
(Yukimotoetal.,2019)
NorESM2-MM
Yes
(Bentsenetal.,2019)
TaiESM1
Yes
(Leeetal.,2020)
Foreachvariable,weselectahistoricalreferencedatasetthatcanbeusedtoevaluatethe
historicalskilloftheGCMs.Wechoosedatasetsthatarepubliclyavailable,haveatleasta20-yearhistoricalrecord,andhavebeenusedextensivelyinpreviousenergysystemstudies.WeleveragetheEuropeanCentreforMedium-RangeWeatherForecastsReanalysisv5(ERA5),
Daymet,andtheNationalSolarRadiationDatabase(NSRDB)(CopernicusClimateChangeService,2017;Thorntonetal.,2021;Senguptaetal.,2018).Thevariablesanalyzedandtheircorrespondinghistoricalreferencedatasetsaredetailedin
Table2
below.
Thethreehistoricalreferencedatasetsusedinthisworkareallatfinerspatialandtemporal
resolutionsthantheGCMdatabeingevaluated.Weperformageospatialmappingtoaggregatehigh-resolutionhistoricalpixelstotheirnearestlow-resolutionGCMpixel.Thiscreatesasub-
5
ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratoryat/publications.
gridmapping(e.g.,similartoasudokugrid)withoutoverlaporduplicationofthehigh-
resolutionpixels.Asimpleaveragingormin/maxoperationisperformedonthetemporalaxistoaggregatesub-dailydatatotheGCMdailyvalues.
Table2.Summaryofvariablesanalyzedalongwithhistoricalbaselinedatasets.
Variable
Abbreviation
Historical
ReferenceDataset
Resolution
TemporalExtent
Reference
Air
T2M
ERA5
31-kmhourly
1980-2019
Copernicus
Temperature
ClimateChange
(2-meter)
Service,2017
RelativeHumidity(2-meter)
RH2M
ERA5
31-kmhourly
1980-2019
Copernicus
ClimateChangeService,2017
Precipitation
PR
Daymet
4-kmdaily
1980-2019
Thorntonetal.,2021
Global
HorizontalIrradiance
GHI
NSRDB
4-km30-minute
2000-2019
Senguptaetal.,2018
Windspeed(100-meter)
WS100m
ERA5
31-kmhourly
1980-2019
Copernicus
ClimateChangeService,2017
Forthehistoricalskillevaluation,weuse40-yearrecordsfo
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 保護耳朵教案及反思
- 配件風險管理策略
- 服裝行業(yè)招投標違規(guī)責任追究
- 游戲廳裝修施工合同
- 商業(yè)綜合體砌體施工協(xié)議
- 公共安全管理辦法釋義
- 大型電力變電站施工合同
- 勞動爭議處理策略研究
- 北京環(huán)保項目采購規(guī)定
- 污水處理工程招投標合同
- 最新小學科學教師實驗操作技能大賽
- 控制三高健康生活遠離心腦血管疾病課件(模板)
- 光學相干斷層成像(OCT)在冠狀動脈介入診斷與治療中的應用課件
- 模擬法庭案例腳本:校園欺凌侵權(quán)案 社會法治
- 四年級上冊美術(shù)教案-14漂亮的房間 |蘇少版
- 05 03 第五章第三節(jié) 投身崇德向善的道德實踐
- 安徽省合肥市第四十五中學2022-2023學年九年級上學期數(shù)學期中考試卷
- 樁基礎(chǔ)工程施工組織方案
- 供水運營管理實施方案(4篇)
- 水土保持工程質(zhì)量評定表
- 水電站基本構(gòu)造原理與類型ppt版(共67)
評論
0/150
提交評論