能源分析使用的全球氣候模型評估-Evaluation of Global Climate Models for Use in Energy Analysis_第1頁
能源分析使用的全球氣候模型評估-Evaluation of Global Climate Models for Use in Energy Analysis_第2頁
能源分析使用的全球氣候模型評估-Evaluation of Global Climate Models for Use in Energy Analysis_第3頁
能源分析使用的全球氣候模型評估-Evaluation of Global Climate Models for Use in Energy Analysis_第4頁
能源分析使用的全球氣候模型評估-Evaluation of Global Climate Models for Use in Energy Analysis_第5頁
已閱讀5頁,還剩114頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratory(NREL)at/publications.

ContractNo.DE-AC36-08GO28308

EvaluationofGlobalClimateModelsforUseinEnergyAnalysis

GrantBuster,1SlaterPodgorny,1LauraVimmerstedt,1BrandonBenton,1andNicholasD.Lybarger2

1NationalRenewableEnergyLaboratory

2U.S.NationalScienceFoundationNationalCenterforAtmosphericResearch

NRELisanationallaboratoryoftheU.S.DepartmentofEnergyOfficeofEnergyEfficiency&RenewableEnergy

OperatedbytheAllianceforSustainableEnergy,LLC

TechnicalReport

NREL/TP-6A20-90166August2024

NationalRenewableEnergyLaboratory

15013DenverWestParkwayGolden,CO80401

303-275-3000?

ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratory(NREL)at/publications.

ContractNo.DE-AC36-08GO28308

EvaluationofGlobalClimateModelsforUseinEnergyAnalysis

GrantBuster,1SlaterPodgorny,1LauraVimmerstedt,1BrandonBenton,1andNicholasD.Lybarger2

1NationalRenewableEnergyLaboratory

2U.S.NationalScienceFoundationNationalCenterforAtmosphericResearch

SuggestedCitation

Buster,Grant,SlaterPodgorny,LauraVimmerstedt,BrandonBenton,andNicholasD.

Lybarger.2024.EvaluationofGlobalClimateModelsforUseinEnergyAnalysis.Golden,CO:NationalRenewableEnergyLaboratory.NREL/TP-6A20-90166.

/docs/fy24osti/90166.pdf.

NRELisanationallaboratoryoftheU.S.DepartmentofEnergyOfficeofEnergyEfficiency&RenewableEnergy

OperatedbytheAllianceforSustainableEnergy,LLC

TechnicalReport

NREL/TP-6A20-90166August2024

NOTICE

Thisworkwasauthored[inpart]bytheNationalRenewableEnergyLaboratory,operatedbyAllianceforSustainableEnergy,LLC,fortheU.S.DepartmentofEnergy(DOE)underContractNo.DE-AC36-08GO28308.FundingprovidedbytheDOEOfficeofEnergyEfficiencyandRenewableEnergy(EERE),theDOEOfficeofElectricity(OE),theDOEOfficeofFossilEnergyandCarbonManagement(FECM),andtheDOEOfficeofCybersecurity,EnergySecurity,andEmergencyResponse(CESER).TheviewsexpressedhereindonotnecessarilyrepresenttheviewsoftheDOEortheU.S.Government.

ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratory(NREL)at

/publications.

U.S.DepartmentofEnergy(DOE)reportsproducedafter1991andagrowingnumberofpre-1991documentsareavailable

freevia

www.OSTI.gov.

CoverPhotosbyDennisSchroeder:(clockwise,lefttoright)NREL51934,NREL45897,NREL42160,NREL45891,NREL48097,NREL46526.

NRELprintsonpaperthatcontainsrecycledcontent.

iii

ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratoryat/publications.

TableofContents

TableofContents iii

ListofFigures iii

ListofTables v

1Abstract 1

2Introduction 1

3DataandMethods 2

4ResultsandDiscussion 8

5Conclusion 16

ListofAcronyms 17

CodeandDataAvailability 17

Acknowledgements 18

References 19

ReferencesforGCMs 22

AppendixA.NERCRegion:MidwestReliabilityOrganization(MRO) 27

AppendixB.NERCRegion:NortheastPowerCoordinatingCouncil(NPCC) 33

AppendixC.NERCRegion:ReliabilityFirst(RF) 39

AppendixD.NERCRegion:SoutheasternElectricReliabilityCorporation(SERC) 45

AppendixE.NERCRegion:TexasReliabilityEntity(TexasRE) 51

AppendixF.NERCRegion:WesternElectricityCoordinatingCouncil(WECC) 57

AppendixG.OffshoreWindRegion:Atlantic 63

AppendixH.OffshoreWindRegion:Gulf 66

AppendixI.OffshoreWindRegion:Pacific 69

ListofFigures

Figure1.ComparisonofGCMtrendsinchangestodailyaveragenear-surfaceairtemperaturefor

CONUS 12

Figure2.ComparisonofGCMdailymaximumairtemperatureeventsforCONUS 12

Figure3.ComparisonofGCMdailyminimumairtemperatureeventsforCONUS 13

Figure4.ComparisonofGCMtrendsinchangestodailyaveragenear-surfacerelativehumidityfor

CONUS 13

Figure5.ComparisonofGCMtrendsinchangestodailyaverageprecipitationforCONUS 14

Figure6.ComparisonofGCMminimumannualrainfallsforCONUS 14

Figure7.ComparisonofGCMtrendsinchangestodailyaverage100-meterwindspeedforCONUS 15

Figure8.ComparisonofGCMtrendsinchangestodailyaverageGHIforCONUS 15

Figure9.NERCRegion:MRO(includedstatesshadedingrey) 27

Figure10.ComparisonofGCMtrendsinchangestodailyaveragenear-surfaceairtemperatureforMRO.

29

Figure11.ComparisonofGCMdailymaximumairtemperatureeventsforMRO 29

Figure12.ComparisonofGCMdailyminimumairtemperatureeventsforMRO 30

Figure13.ComparisonofGCMtrendsinchangestodailyaveragenear-surfacerelativehumidityfor

MRO 30

Figure14.ComparisonofGCMtrendsinchangestodailyaverageprecipitationforMRO 31

Figure15.ComparisonofGCMminimumannualrainfallsforMRO 31

Figure16.ComparisonofGCMtrendsinchangestodailyaverage100-meterwindspeedforMRO 32

Figure17.ComparisonofGCMtrendsinchangestodailyaverageGHIforMRO 32

Figure18.NERCRegion:NPCC(includedstatesshadedingrey) 33

Figure19.ComparisonofGCMtrendsinchangestodailyaveragenear-surfaceairtemperaturefor

NPCC 35

iv

ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratoryat/publications.

Figure20.ComparisonofGCMdailymaximumairtemperatureeventsforNPCC 35

Figure21.ComparisonofGCMdailyminimumairtemperatureeventsforNPCC 36

Figure22.ComparisonofGCMtrendsinchangestodailyaveragenear-surfacerelativehumidityfor

NPCC 36

Figure23.ComparisonofGCMtrendsinchangestodailyaverageprecipitationforNPCC 37

Figure24.ComparisonofGCMminimumannualrainfallsforNPCC 37

Figure25.ComparisonofGCMtrendsinchangestodailyaverage100-meterwindspeedforNPCC 38

Figure26.ComparisonofGCMtrendsinchangestodailyaverageGHIforNPCC 38

Figure27.NERCRegion:RF(includedstatesshadedingrey) 39

Figure28.ComparisonofGCMtrendsinchangestodailyaveragenear-surfaceairtemperatureforRF.41

Figure29.ComparisonofGCMdailymaximumairtemperatureeventsforRF 41

Figure30.ComparisonofGCMdailyminimumairtemperatureeventsforRF 42

Figure31.ComparisonofGCMtrendsinchangestodailyaveragenear-surfacerelativehumidityforRF.

42

Figure32.ComparisonofGCMtrendsinchangestodailyaverageprecipitationforRF 43

Figure33.ComparisonofGCMminimumannualrainfallsforRF 43

Figure34.ComparisonofGCMtrendsinchangestodailyaverage100-meterwindspeedforRF 44

Figure35.ComparisonofGCMtrendsinchangestodailyaverageGHIforRF 44

Figure36.NERCRegion:SERC(includedstatesshadedingrey) 45

Figure37.ComparisonofGCMtrendsinchangestodailyaveragenear-surfaceairtemperaturefor

SERC 47

Figure38.ComparisonofGCMdailymaximumairtemperatureeventsforSERC 47

Figure39.ComparisonofGCMdailyminimumairtemperatureeventsforSERC 48

Figure40.ComparisonofGCMtrendsinchangestodailyaveragenear-surfacerelativehumidityfor

SERC 48

Figure41.ComparisonofGCMtrendsinchangestodailyaverageprecipitationforSERC 49

Figure42.ComparisonofGCMminimumannualrainfallsforSERC 49

Figure43.ComparisonofGCMtrendsinchangestodailyaverage100-meterwindspeedforSERC 50

Figure44.ComparisonofGCMtrendsinchangestodailyaverageGHIforSERC 50

Figure45.NERCRegion:TexasRE(includedstatesshadedingrey) 51

Figure46.ComparisonofGCMtrendsinchangestodailyaveragenear-surfaceairtemperatureforTexas

RE 53

Figure47.ComparisonofGCMdailymaximumairtemperatureeventsforTexasRE 53

Figure48.ComparisonofGCMdailyminimumairtemperatureeventsforTexasRE 54

Figure49.ComparisonofGCMtrendsinchangestodailyaveragenear-surfacerelativehumidityfor

TexasRE 54

Figure50.ComparisonofGCMtrendsinchangestodailyaverageprecipitationforTexasRE 55

Figure51.ComparisonofGCMminimumannualrainfallsforTexasRE 55

Figure52.ComparisonofGCMtrendsinchangestodailyaverage100-meterwindspeedforTexasRE.56

Figure53.ComparisonofGCMtrendsinchangestodailyaverageGHIforTexasRE 56

Figure54.NERCRegion:WECC(includedstatesshadedingrey) 57

Figure55.ComparisonofGCMtrendsinchangestodailyaveragenear-surfaceairtemperaturefor

WECC 59

Figure56.ComparisonofGCMdailymaximumairtemperatureeventsforWECC 59

Figure57.ComparisonofGCMdailyminimumairtemperatureeventsforWECC 60

Figure58.ComparisonofGCMtrendsinchangestodailyaveragenear-surfacerelativehumidityfor

WECC 60

Figure59.ComparisonofGCMtrendsinchangestodailyaverageprecipitationforWECC 61

Figure60.ComparisonofGCMminimumannualrainfallsforWECC 61

Figure61.ComparisonofGCMtrendsinchangestodailyaverage100-meterwindspeedforWECC 62

Figure62.ComparisonofGCMtrendsinchangestodailyaverageGHIforWECC 62

v

ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratoryat/publications.

Figure63.OffshoreWindRegion:Atlantic(includedareashadedingrey) 63

Figure64.ComparisonofGCMtrendsinchangestodailyaverage100-meterwindspeedfortheAtlantic

OffshoreRegion 65

Figure65.OffshoreWindRegion:Gulf(includedareashadedingrey) 66

Figure66.ComparisonofGCMtrendsinchangestodailyaverage100-meterwindspeedfortheGulf

OffshoreRegion 68

Figure67.OffshoreWindRegion:Pacific(includedareashadedingrey) 69

Figure68.ComparisonofGCMtrendsinchangestodailyaverage100-meterwindspeedforthePacific

OffshoreRegion 71

ListofTables

Table1.SummaryofGCMssurveyedandusedinthisreport 3

Table2.Summaryofvariablesanalyzedalongwithhistoricalbaselinedatasets 5

Table3.SummaryofhistoricalGCMskillusingKSstatisticandbiasmetricsforCONUS.Valuesfora

givenmetricineachrowarerankedfrombesttoworsthistoricalskill(darkbluetodark

red) 11

Table4.SummaryofhistoricalGCMskillusingKSstatisticandbiasmetricsforMRO.Valuesfora

givenmetricineachrowarerankedfrombesttoworsthistoricalskill(darkbluetodark

red) 28

Table5.SummaryofhistoricalGCMskillusingKSstatisticandbiasmetricsforNPCC.Valuesfora

givenmetricineachrowarerankedfrombesttoworsthistoricalskill(darkbluetodark

red) 34

Table6.SummaryofhistoricalGCMskillusingKSstatisticandbiasmetricsforRF.Valuesforagiven

metricineachrowarerankedfrombesttoworsthistoricalskill(darkbluetodarkred) 40

Table7.SummaryofhistoricalGCMskillusingKSstatisticandbiasmetricsforSERC.Valuesfora

givenmetricineachrowarerankedfrombesttoworsthistoricalskill(darkbluetodark

red) 46

Table8.SummaryofhistoricalGCMskillusingKSstatisticandbiasmetricsforTexasRE.Valuesfora

givenmetricineachrowarerankedfrombesttoworsthistoricalskill(darkbluetodark

red) 52

Table9.SummaryofhistoricalGCMskillusingKSstatisticandbiasmetricsforWECC.Valuesfora

givenmetricineachrowarerankedfrombesttoworsthistoricalskill(darkbluetodark

red) 58

Table10.SummaryofhistoricalGCMskillusingKSstatisticandbiasmetricsfortheAtlanticOffshore

Region.Valuesforagivenmetricineachrowarerankedfrombesttoworsthistoricalskill

(darkbluetodarkred) 64

Table11.SummaryofhistoricalGCMskillusingKSstatisticandbiasmetricsfortheGulfOffshore

Region.Valuesforagivenmetricineachrowarerankedfrombesttoworsthistoricalskill

(darkbluetodarkred) 67

Table12.SummaryofhistoricalGCMskillusingKSstatisticandbiasmetricsforthePacificOffshore

Region.Valuesforagivenmetricineachrowarerankedfrombesttoworsthistoricalskill

(darkbluetodarkred) 70

1

ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratoryat/publications.

1Abstract

Theinterplaybetweenenergy,climate,andweatherisbecomingmorecomplexduetoincreasing

contributionsofrenewableenergygeneration,energystorage,electrifiedenduses,andthe

increasingfrequencyofextremeweatherevents.Energysystemanalysescommonlyrelyon

meteorologicalinputstoestimaterenewableenergygenerationandenergydemand;however,

theseinputsrarelyrepresenttheestimatedimpactsoffutureclimatechange.Climatemodelsandpubliclyavailableclimatechangedatasetscanbeusedforthispurpose,buttheselectionof

inputsfromthemyriadofavailablemodelsanddatasetsisanuancedandsubjectiveprocess.Inthiswork,weassessdatasetsfromvariousglobalclimatemodels(GCMs)fromtheCoupled

ModelIntercomparisonProjectPhase6(CMIP6).Wepresentevaluationsoftheirskillswith

respecttothehistoricalclimateandcomparisonsoftheirfutureprojectionsofclimatechangefortwoclimatechangescenarios.Wepresenttheresultsfordifferentclimaticandenergysystem

regionsandincludeinteractivefiguresintheaccompanyingsoftwarerepository.PreviousworkhaspresentedsimilarGCMevaluations,butnonehavepresentedvariablesandmetrics

specificallyintendedforcomprehensiveenergysystemsanalysisincludingimpactsonenergydemand,thermalcooling,hydropower,wateravailability,solarenergygeneration,andwind

energygeneration.WefocusonGCMoutputmeteorologicalvariablesthatdirectlyaffecttheseenergysystemcomponentsincludingtherepresentationofextremevaluesthatcandrivegrid

resilienceevents.Theobjectiveofthisworkisnottorecommendthebestclimatemodelanddatasetforagivenanalysis,butinsteadtoprovideareferencetofacilitatetheselectionof

climatemodelsandscenariosinsubsequentwork.

2Introduction

Energysystemanalysescommonlyusehistoricalweatherdatasetsasinputtoenergygenerationanddemandmodels(Brinkmanetal.2021;Carvalloetal.2023;Stencliketal.2021;Sharpetal.2023).Recently,moreworkhasstartedtoincorporatetheimpactsofclimatechangeonthese

inputs(Bloomfieldetal.2016;Yalewetal.2020;Craigetal.2018).GCMsandtheirassociatedpublicly-availabledatasetsfromCMIP6areavaluableresourceforestimatingtheimpactsof

climatechange(Eyringetal.,2016).However,thereareamyriadofuniqueGCMsdevelopedby

climateresearchinstitutionsaroundtheworld.EachGCMisuniqueinitsphysicaland

parametricformulations,itsskillinrepresentinghistoricalclimateindifferentgeographies,anditssensitivitytoanthropogenicgreenhousegasemissions(Flatoetal.,2013).Forexample,a

givenGCMmayrepresentavariableinthehistoricalclimatewithgreatprecisionbutmaybe

greatlybiasedinseveralothervariables(furtherdiscussedinSection

4)

.Tofurthercomplicatethetopic,CMIP6includesseveralpossibleclimatechangescenariosthatattempttocharacterizedeeplyuncertainhumanfactorsrelatedtothedevelopmentalprogressofcivilizationandour

continuedemissions.Scenarioshavebeendevelopedthatprojectdecreasesinemissionsbymid-century,andothersthatprojectemissionsdecreasingonlyneartheendofthecentury(Riahietal.,2017).Expertsandquantitativemodelsalikehaveperspectivesonwhichscenariosaremorelikely(Hausfather&Peters2020),butwecannotknowwithcertaintywhichfuturewewill

experience.

Priorworkstudyingclimatechangeinappliedimpactstudieshashandledthesenuancesthroughthefollowingprocess:1)comparedatafromvariousGCMswithhistoricalreferencedatasetstoidentifythosethatbestrepresenthistoricalclimate2)selectoneormoreGCMswithgood

2

ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratoryat/publications.

historicalskillandclimatechangescenariosthatencompassarangeofpossibleclimatefutures,3)downscalethelow-resolutionGCMdataforappliedstudies(whenrequiredbyhigh-resolutionapplications),and4)performthesubsequentappliedanalysisusingdomain-specificmodels(Kaoetal.,2022;RalstonFonsecaetal.,2021).ThecomparisonandselectionofinputsfromGCMs

andclimatescenarios(steps#1and#2)isanuancedprocessthatcommonlyincludesthe

quantitativecomparisonofGCMdatasetsusingafewselectedmetricsoverafocusedregionofinterest(Pardingetal.,2020;Ashfaqetal.,2022;Chhinetal.,2018).However,theselectionofGCMs,climatescenarios,andcomparativemetricsareultimatelysubjectivedecisionsand

representvaluejudgementsinachallenginganalyticalprocesswithnoobjectivelybest

methodology.Further,theimpactsofclimatechangearebeingstudiedinanincreasinglywiderangeofapplicationsandthiscomparisonandselectionprocessisoftenveryspecifictoagivenapplication.

ThisreportfocusesonsupportingtheGCMcomparisonandselectionprocessspecificallyforenergyapplicationsintheContiguousUnitedStates(CONUS).PreviousworkhaspresentedsimilarGCMevaluations,butnonehavepresentedvariablesandmetricsspecificallyintendedforcomprehensiveenergysystemsanalysisincludingimpactsonenergydemand,thermal

cooling,hydropower,wateravailability,solarenergygeneration,andwindenergygeneration

(Pardingetal.,2020;Ashfaqetal.,2022;Martinez&Iglesias,2022).Thosethathavefocusedonsomeaspectofenergyimpactshavetypicallyfocusedononevariableoranothersuchasclimateimpactstohydropowerorwindenergy(Martinez&Iglesias,2022),butnonehavepresented

metricsforvariablesthatrepresentthefullenergygenerationanddemandsystem.Thisreportisintendedtofillthatgapandfacilitatemoreinformedselectionsofclimatechangeinputsfor

comprehensiveenergyanalyses.

Thisreportisstructuredasfollows.Section

3

detailsthedatasetsusedinthisreportandthe

methodsusedforGCMevaluation;Section

4

presentsanddiscussestheresultsoftheGCMskillevaluationandthecomparisonoftheirprojectionsfortheContiguousUnitedStates(CONUS);Section

5

concludesthereport;TheappendicespresentsimilarresultstoSection

4

butfor

specificsubregionswithinthelargerCONUSdomain.

3DataandMethods

ThisreportleveragespubliclyavailableclimatechangeprojectionsfromGCMsintheCMIP6

archiveandhistoricaldatafromreferenceandreanalysisdatasets.First,weexploretheavailabledatasetsassociatedwitheachGCMintheCMIP6archiveanddeterminewhichdatasetsare

viableforenergysystemsanalysis.

Forthepurposesofthiswork,welookforGCMdatasetsthatareofcurrentstate-of-the-art

spatiotemporalresolution(e.g.,100kmdaily),thatcontainallvariablesnecessarytomodel

energygenerationanddemand(e.g.,temperature,humidity,precipitation,windspeed,andsolarirradiance),andthathavepublicrecordsintheCMIP6archiveforseveralkeysimulations.Notethatdifferentdownscalingmethodologies(e.g.,dynamicaldownscalingwithregionalclimate

models,RCMs)mayrequirevariablesotherthanthosepresentedhere.However,westillfocusonthissubsetbecausetheyhavedirectimpactsontheenergysystem.

3

ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratoryat/publications.

Forthiswork,weselectedtheCMIP6historicalsimulationthatisintendedtorepresentthe

historicalandcurrentclimate,andtwoSharedSocioeconomicPathways(SSPs):SSP24.5,andSSP58.5.NotethattheseSSPshavecorrespondingRelativeConcentrationPathway(RCP)

scenariosfromCMIP5.WeselectedthefirstvariantfromeachGCMexceptforCESM2andCESM2-WACCMwhichhadothervariantswithmorecompletedataavailability.Forthe

comparisonoffutureprojections,weselectdatafromSSP24.5andSSP58.5.Weselectthesetwoscenariosbecauseoftheextensiveuseofthesescenariosinpriorclimateimpactsanalysis(Craigetal.,2020;Kaoetal.,2022;RalstonFonsecaetal.,2021;Martinez&Iglesias2022).

SSP24.5istypicallydescribedasa“middle-of-the-road”emissionsscenariowheretrends

generallyfollowadynamics-as-usualscenario,whileSSP58.5isanaggressivehigh-growthandhighfossilfuelfuturewiththemostoverallemissionsofanyscenario(Riahietal.,2017).

Toinformenergysystemanalysesinwhichdecisionsonenergyinfrastructurearebeingmade

todayandinthecomingseveraldecades,wefocusonprojectionsfromthehistoricalclimate

throughmid-century(e.g.,through2059).DespitethesignificantlydifferentemissiontrajectoriesinSSP24.5andSSP58.5,thetwoscenariosvaryonlyslightlybymid-century(asshownin

Section

4)

withamoredramaticbifurcationoccurringinthelatterhalfofthecentury.

Aftersurveying33GCMswithdatainCMIP6,weselect13GCMsthathavepubliclyavailabledatathatmeettheabovecriteria.Asummaryofthisprocess,theGCMsevaluated,andthe

GCMsselectedispresentedin

Table1

below.

GCMsthatdidnotmeetthecriteriaforthisworkmayhaveadditionalvariablesandscenariosavailablefromdifferentdataarchives.TheseGCMsmaybeusefulforclimateimpactstudies,butbasedontheirdatasetsavailableintheCMIP6archivetheywerenotusedinthiswork.

Table1.SummaryofGCMssurveyedandusedinthisreport.

GCMName

Used

NotesandReference

AWI-CM-1-1-MR

No

Historicalsimulationdoesnotincludeirradiance,precipitation,orhumidity(Semmleretal.,2019).

ACCESS-CM2

No

SSPdataislowspatialresolution(Dixetal.,2019).

BCC-CSM2-MR

No

Doesnotincludehumidity(Xinetal.,2019).

CAMS-CSM1-0

No

Doesnotincludehumidity(Rongetal.,2019).

CanESM5

No

Nodataatdesiredspatiotemporalresolution(Swartetal.,2019)

CESM2

Yes

Usedvariantr4i1p1f1.Othervariants(r1i1p1f1,r2i1p1f1,andr3i1p1f1)donotincludedailymin/maxtemperatures(Danabasoglu,2019a).

CESM2-WACCM

Yes

Usedvariantr3i1p1f1.Othervariants(r1i1p1f1andr2i1p1f1)donotincludedailymin/maxtemperatures(Danabasoglu,

2019b).

CMCC-CM2-SR5

No

Doesnotincludedailymin/maxtemperatures(Lovatoetal.,2020).

CMCC-ESM2

No

Doesnotincludegeopotentialheight(Lovatoetal.,2021)

CNRM-ESM2-1

No

Doesnotincludeanyrelevantvariablesatdesiredspatiotemporalresolution(Voldoire,2019).

4

ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratoryat/publications.

GCMName

Used

NotesandReference

E3SM-1-0

No

SSPdataatdesiredspatiotemporalresolutiondoesnot

includeirradiance,windspeeds,andhumidity(Baderetal.,2022a).

E3SM-1-1

No

SSPdataisatamonthlyfrequency(Baderetal.,2020).

E3SM-1-1-ECA

No

SSPdataatdesiredspatiotemporalresolutiondoesnot

includeirradiance,windspeeds,andhumidity(Baderetal.,2022b).

E3SM-2-0

No

NodataforSSP58.5(E3SMProject,DOE,2022)

E3SM-2-0-NAARRM

No

NodataforSSP58.5(Tangetal.,2023)

EC-Earth3

Yes

(EC-EarthConsortium,2019a)

EC-Earth3-CC

Yes

(EC-EarthConsortium,2021b)

EC-Earth3-Veg

Yes

(EC-EarthConsortium,2019b)

EC-Earth3-Veg-LR

No

Nodataatdesiredspatiotemporalresolution(EC-EarthConsortium,2020)

FGOALS-f3-L

No

SSPdataisatmonthlyfrequency(Yu,2019).

GFDL-CM4

Yes

(Guoetal.,2018)

GFDL-ESM4

Yes

(Johnetal.,2018)

HadGEM3-GC31-MM

No

NodataforSSP24.5andincompletetimeserieswithlessthan365daysperyear(Jackson,2020)

INM-CM4-8

Yes

(Volodinetal.,2019a)

INM-CM5-0

Yes

(Volodinetal.,2019b)

IPSL-CM6A-LR

No

Nodataatdesiredspatiotemporalresolution(Boucheretal.,2019).

KACE-1-0-G

No

SSPdataisatlowspatialresolution(Byunetal.,2019).

MIROC6

No

Nodataatdesiredspatiotemporalresolution(Shiogamaetal.,2019).

MPI-ESM1-2-HR

Yes

(Schupfneretal.,2019)

MPI-ESM1-2-LR

No

SSPdataisatlowspatialresolution(Wienersetal.,2019).

MRI-ESM2-0

Yes

(Yukimotoetal.,2019)

NorESM2-MM

Yes

(Bentsenetal.,2019)

TaiESM1

Yes

(Leeetal.,2020)

Foreachvariable,weselectahistoricalreferencedatasetthatcanbeusedtoevaluatethe

historicalskilloftheGCMs.Wechoosedatasetsthatarepubliclyavailable,haveatleasta20-yearhistoricalrecord,andhavebeenusedextensivelyinpreviousenergysystemstudies.WeleveragetheEuropeanCentreforMedium-RangeWeatherForecastsReanalysisv5(ERA5),

Daymet,andtheNationalSolarRadiationDatabase(NSRDB)(CopernicusClimateChangeService,2017;Thorntonetal.,2021;Senguptaetal.,2018).Thevariablesanalyzedandtheircorrespondinghistoricalreferencedatasetsaredetailedin

Table2

below.

Thethreehistoricalreferencedatasetsusedinthisworkareallatfinerspatialandtemporal

resolutionsthantheGCMdatabeingevaluated.Weperformageospatialmappingtoaggregatehigh-resolutionhistoricalpixelstotheirnearestlow-resolutionGCMpixel.Thiscreatesasub-

5

ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratoryat/publications.

gridmapping(e.g.,similartoasudokugrid)withoutoverlaporduplicationofthehigh-

resolutionpixels.Asimpleaveragingormin/maxoperationisperformedonthetemporalaxistoaggregatesub-dailydatatotheGCMdailyvalues.

Table2.Summaryofvariablesanalyzedalongwithhistoricalbaselinedatasets.

Variable

Abbreviation

Historical

ReferenceDataset

Resolution

TemporalExtent

Reference

Air

T2M

ERA5

31-kmhourly

1980-2019

Copernicus

Temperature

ClimateChange

(2-meter)

Service,2017

RelativeHumidity(2-meter)

RH2M

ERA5

31-kmhourly

1980-2019

Copernicus

ClimateChangeService,2017

Precipitation

PR

Daymet

4-kmdaily

1980-2019

Thorntonetal.,2021

Global

HorizontalIrradiance

GHI

NSRDB

4-km30-minute

2000-2019

Senguptaetal.,2018

Windspeed(100-meter)

WS100m

ERA5

31-kmhourly

1980-2019

Copernicus

ClimateChangeService,2017

Forthehistoricalskillevaluation,weuse40-yearrecordsfo

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論