《橢圓及其標(biāo)準(zhǔn)方程》教案兩篇_第1頁(yè)
《橢圓及其標(biāo)準(zhǔn)方程》教案兩篇_第2頁(yè)
《橢圓及其標(biāo)準(zhǔn)方程》教案兩篇_第3頁(yè)
《橢圓及其標(biāo)準(zhǔn)方程》教案兩篇_第4頁(yè)
《橢圓及其標(biāo)準(zhǔn)方程》教案兩篇_第5頁(yè)
已閱讀5頁(yè),還剩8頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

PAGEPAGE4《橢圓及其標(biāo)準(zhǔn)方程》教案教學(xué)目標(biāo):(一)知識(shí)目標(biāo):掌握橢圓的定義及其標(biāo)準(zhǔn)方程,能正確推導(dǎo)橢圓的標(biāo)準(zhǔn)方程.(二)能力目標(biāo):培養(yǎng)學(xué)生的動(dòng)手能力、合作學(xué)習(xí)能力和運(yùn)用所學(xué)知識(shí)解決實(shí)際問題的能力;培養(yǎng)學(xué)生運(yùn)用類比、分類討論、數(shù)形結(jié)合思想解決問題的能力.(三)情感目標(biāo):激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣、提高學(xué)生的審美情趣、培養(yǎng)學(xué)生勇于探索,敢于創(chuàng)新的精神.教學(xué)重點(diǎn):橢圓的定義和橢圓的標(biāo)準(zhǔn)方程.教學(xué)難點(diǎn):橢圓標(biāo)準(zhǔn)方程的推導(dǎo).教學(xué)方法:探究式教學(xué)法,即教師通過問題誘導(dǎo)→啟發(fā)討論→探索結(jié)果,引導(dǎo)學(xué)生直觀觀察→歸納抽象→總結(jié)規(guī)律,使學(xué)生在獲得知識(shí)的同時(shí),能夠掌握方法、提升能力.教具準(zhǔn)備:多媒體課件和自制教具:繪圖板、圖釘、細(xì)繩.教學(xué)過程:(一)設(shè)置情景,引出課題問題:“神州十九號(hào)”于2024年10月30日從酒泉衛(wèi)星發(fā)射中心發(fā)射。并順利升空,實(shí)現(xiàn)多人多天飛行,標(biāo)志著我國(guó)航天事業(yè)又上了一個(gè)新臺(tái)階,請(qǐng)問:“神州十九號(hào)”飛船的運(yùn)行軌道是什么?多媒體展示“神州十九號(hào)”運(yùn)行軌道圖片.(二)啟發(fā)誘導(dǎo),推陳出新復(fù)習(xí)舊知識(shí):圓的定義是什么?圓的標(biāo)準(zhǔn)方程是什么形式?提出新問題:橢圓是怎么畫出來的?橢圓的定義是什么?它的標(biāo)準(zhǔn)方程又是什么形式?引出課題:橢圓及其標(biāo)準(zhǔn)方程(三)小組合作,形成概念動(dòng)畫演示橢圓形成過程.提問:點(diǎn)M運(yùn)動(dòng)時(shí),F(xiàn)1、F2移動(dòng)了嗎?點(diǎn)M按照什么條件運(yùn)動(dòng)形成的軌跡是橢圓?下面請(qǐng)同學(xué)們?cè)诶L圖板上作圖,思考繪圖板上提出的問題:1.在作圖時(shí),視筆尖為動(dòng)點(diǎn),兩個(gè)圖釘為定點(diǎn),動(dòng)點(diǎn)到兩定點(diǎn)距離之和符合什么條件?其軌跡如何?2.改變兩圖釘之間的距離,使其與繩長(zhǎng)相等,畫出的圖形還是橢圓嗎?3.當(dāng)繩長(zhǎng)小于兩圖釘之間的距離時(shí),還能畫出圖形嗎?學(xué)生經(jīng)過動(dòng)手操作→獨(dú)立思考→小組討論→共同交流的探究過程,得出這樣三個(gè)結(jié)論:橢圓線段不存在并歸納出橢圓的定義:平面內(nèi)與兩個(gè)定點(diǎn)、的距離的和等于常數(shù)(大于)的點(diǎn)的軌跡叫做橢圓.這兩個(gè)定點(diǎn)叫做橢圓的焦點(diǎn),兩焦點(diǎn)的距離叫做橢圓的焦距.(四)橢圓標(biāo)準(zhǔn)方程的推導(dǎo):1.回顧:求曲線方程的一般步驟:建系、設(shè)點(diǎn)、列式、化簡(jiǎn).2.提問:如何建系,使求出的方程最簡(jiǎn)?由各小組討論,請(qǐng)小組代表匯報(bào)研討結(jié)果.各組分別選定一種方案:(以下過程按照第一種方案)①建系:以所在直線為x軸,以線段的垂直平分線為y軸,建立直角坐標(biāo)系。②設(shè)點(diǎn):設(shè)是橢圓上任意一點(diǎn),為了使的坐標(biāo)簡(jiǎn)單及化簡(jiǎn)過程不那么繁雜,設(shè),則設(shè)與兩定點(diǎn)的距離的和等于③列式:∴④化簡(jiǎn):(這里,教師為突破難點(diǎn),進(jìn)行設(shè)問:我們?cè)趺椿?jiǎn)帶根式的式子?對(duì)于本式是直接平方好還是整理后再平方好呢?)兩邊平方,得:即兩邊平方,得:整理,得:令,則方程可簡(jiǎn)化為:整理成:指出:方程叫做橢圓的標(biāo)準(zhǔn)方程,焦點(diǎn)在軸上,焦點(diǎn)是討論:如果以所在直線為軸,線段的垂直平分線為軸,建立直角坐標(biāo)系,焦點(diǎn)是,橢圓的方程又如何呢?讓按照另外方案推導(dǎo)橢圓標(biāo)準(zhǔn)方程的同學(xué)發(fā)言并演示動(dòng)畫進(jìn)行討論得出:為橢圓的另一標(biāo)準(zhǔn)方程,而其他建系方案得出的橢圓方程沒有標(biāo)準(zhǔn)方程形式簡(jiǎn)單.引導(dǎo)學(xué)生思考:已知橢圓標(biāo)準(zhǔn)方程,如何判斷焦點(diǎn)位置?討論得出:看,的分母大小,哪個(gè)分母大就在哪一條軸上.(五)例題講解例1求適合下列條件的橢圓的標(biāo)準(zhǔn)方程:(1)兩個(gè)焦點(diǎn)的坐標(biāo)分別是(-4,0)、(4,0),橢圓上一點(diǎn)P到兩焦點(diǎn)距離的和等于10;(2)兩個(gè)焦點(diǎn)的坐標(biāo)分別是(0,-2)、(0,2),并且橢圓經(jīng)過點(diǎn)例2已知橢圓的焦距等于8,橢圓上一點(diǎn)P到兩焦點(diǎn)距離的和等于10,求橢圓的標(biāo)準(zhǔn)方程(六)課堂練習(xí)1.已知橢圓方程為,則這個(gè)橢圓的焦距為()(A)6(B)3(C)(D)62.是定點(diǎn),且,動(dòng)點(diǎn)滿足,則點(diǎn)的軌跡是()(A)橢圓(B)直線(C)圓(D)線段3.已知橢圓上一點(diǎn)P到橢圓一個(gè)焦點(diǎn)的距離為3,則P到另一焦點(diǎn)的距離為()(A)2(B)3(C)5(D)7(七)課堂小結(jié)(1)橢圓的定義及其標(biāo)準(zhǔn)方程;(2)標(biāo)準(zhǔn)方程中的關(guān)系;(3)焦點(diǎn)所在的軸與標(biāo)準(zhǔn)方程形式之間的關(guān)系.(八)作業(yè)布置P96習(xí)題8.1的1、2、3思考題1.如果方程表示焦點(diǎn)在軸上的橢圓,那么實(shí)數(shù)的取值范圍是()(A)(0,+∞)(B)(0,2)(C)(1,+∞)(D)(0,1)2.橢圓的焦距是2,則實(shí)數(shù)的值是()(A)5(B)8(C)3或5(D)33.已知是橢圓的兩個(gè)焦點(diǎn),過的直線與橢圓交于A、B兩點(diǎn),則的周長(zhǎng)為()(A)8(B)20(C)24(D)284.方程什么時(shí)候表示橢圓?什么時(shí)候表示焦點(diǎn)在軸上的橢圓?什么時(shí)候表示焦點(diǎn)在軸上的橢圓?最后在播放彗星圖片時(shí),提出課外延伸問題,讓學(xué)生通過上網(wǎng)或到圖書館查閱有關(guān)彗星的資料并試著回答:為什么有的彗星經(jīng)過若干年后能夠再次光臨地球,而有的彗星卻和地球只有一面之緣呢?[板書設(shè)計(jì)]橢圓及其標(biāo)準(zhǔn)方程一橢圓的定義二橢圓的標(biāo)準(zhǔn)方程橢圓標(biāo)準(zhǔn)方程的推導(dǎo)例一例二說明學(xué)習(xí)的過程是一個(gè)將外界的新信息不斷搭建在已有知識(shí)上的過程,是認(rèn)知結(jié)構(gòu)發(fā)生重組和改造的過程。本課在設(shè)計(jì)中充分考慮到了學(xué)生的這一實(shí)際情況及學(xué)生的認(rèn)知規(guī)律。為了突破重點(diǎn),在教學(xué)設(shè)計(jì)中采用了循序漸進(jìn)、逐層推進(jìn)的方法:先用多媒體演示神州六號(hào)飛船繞地球運(yùn)行的軌道圖片形象地給出橢圓,使學(xué)生對(duì)橢圓有一個(gè)直觀的了解;再讓學(xué)生自己舉例、動(dòng)手操作“定性”地畫出橢圓和探究歸納定義;最后通過坐標(biāo)法“定量”地描述橢圓。這種從感性到理性地抽象概括,從而形成概念,推出方程的過程符合學(xué)生的認(rèn)知規(guī)律。為使學(xué)生更好地掌握橢圓的標(biāo)準(zhǔn)方程。為突破難點(diǎn),在設(shè)計(jì)中通過課堂精心設(shè)問:①教師問:化簡(jiǎn)含有根號(hào)的式子時(shí),我們通常有什么方法?②教師問:對(duì)于本式是直接平方好呢還是恰當(dāng)整理后再平方?這樣,橢圓方程的化簡(jiǎn)這一難點(diǎn)也就迎刃而解了。愛因斯坦說過:“單純的專業(yè)知識(shí)灌輸只能產(chǎn)生機(jī)器,而不可能造就一個(gè)和諧發(fā)展的人才”,因此數(shù)學(xué)學(xué)習(xí)的核心是思考,離開思考就沒有真正的數(shù)學(xué)。針對(duì)這節(jié)課的問題,教師邊演示,邊提問,讓學(xué)生邊觀察,邊思考,邊討論,最大限度地調(diào)動(dòng)學(xué)生積極參與教學(xué)活動(dòng),在教學(xué)難點(diǎn)處適當(dāng)放慢節(jié)奏,給學(xué)生充分的時(shí)間進(jìn)行思考與討論,教師適時(shí)給予適當(dāng)?shù)乃季S點(diǎn)撥,必要的可進(jìn)行大面積提問,讓學(xué)生做課堂的主人,充分發(fā)表自己的意見。這樣既有利于化解難點(diǎn)、突出重點(diǎn),也有利于充分發(fā)揮學(xué)生的主體作用,使課堂氣氛更加活躍,讓學(xué)生在生生互動(dòng)、師生互動(dòng)中掌握知識(shí),提高解決問題的能力。《橢圓及其標(biāo)準(zhǔn)方程》教案一、教學(xué)目標(biāo)(一)知識(shí)教學(xué)點(diǎn)使學(xué)生理解橢圓的定義,掌握橢圓的標(biāo)準(zhǔn)方程的推導(dǎo)及標(biāo)準(zhǔn)方程.(二)能力訓(xùn)練點(diǎn)通過對(duì)橢圓概念的引入與標(biāo)準(zhǔn)方程的推導(dǎo),培養(yǎng)學(xué)生分析探索能力,增強(qiáng)運(yùn)用坐標(biāo)法解決幾何問題的能力.(三)學(xué)科滲透點(diǎn)通過對(duì)橢圓標(biāo)準(zhǔn)方程的推導(dǎo)的教學(xué),可以提高對(duì)各種知識(shí)的綜合運(yùn)用能力.二、教材分析1.重點(diǎn):橢圓的定義和橢圓的標(biāo)準(zhǔn)方程.(解決辦法:用模型演示橢圓,再給出橢圓的定義,最后加以強(qiáng)調(diào);對(duì)橢圓的標(biāo)準(zhǔn)方程單獨(dú)列出加以比較.)2.難點(diǎn):橢圓的標(biāo)準(zhǔn)方程的推導(dǎo).(解決辦法:推導(dǎo)分4步完成,每步重點(diǎn)講解,關(guān)鍵步驟加以補(bǔ)充說明.)3.疑點(diǎn):橢圓的定義中常數(shù)加以限制的原因.(解決辦法:分三種情況說明動(dòng)點(diǎn)的軌跡.)三、活動(dòng)設(shè)計(jì)提問、演示、講授、詳細(xì)講授、演板、分析講解、學(xué)生口答.四、教學(xué)過程(一)橢圓概念的引入前面,大家學(xué)習(xí)了曲線的方程等概念,哪一位同學(xué)回答:?jiǎn)栴}1:什么叫做曲線的方程?求曲線方程的一般步驟是什么?其中哪幾個(gè)步驟必不可少?對(duì)上述問題學(xué)生的回答基本正確,否則,教師給予糾正.這樣便于學(xué)生溫故而知新,在已有知識(shí)基礎(chǔ)上去探求新知識(shí).提出這一問題以便說明標(biāo)準(zhǔn)方程推導(dǎo)中一個(gè)同解變形.問題3:圓的幾何特征是什么?你能否可類似地提出一些軌跡命題作廣泛的探索?一般學(xué)生能回答:“平面內(nèi)到一定點(diǎn)的距離為常數(shù)的點(diǎn)的軌跡是圓”.對(duì)同學(xué)提出的軌跡命題如:“到兩定點(diǎn)距離之和等于常數(shù)的點(diǎn)的軌跡.”“到兩定點(diǎn)距離平方差等于常數(shù)的點(diǎn)的軌跡.”“到兩定點(diǎn)距離之差等于常數(shù)的點(diǎn)的軌跡.”教師要加以肯定,以鼓勵(lì)同學(xué)們的探索精神.比如說,若同學(xué)們提出了“到兩定點(diǎn)距離之和等于常數(shù)的點(diǎn)的軌跡”,那么動(dòng)點(diǎn)軌跡是什么呢?這時(shí)教師示范引導(dǎo)學(xué)生繪圖:取一條一定長(zhǎng)的細(xì)繩,把它的兩端固定在畫圖板上的F1和F2兩點(diǎn)(如圖2-13),當(dāng)繩長(zhǎng)大于F1和F2的距離時(shí),用鉛筆尖把繩子拉緊,使筆尖在圖板上慢慢移動(dòng),就可以畫出一個(gè)橢圓.教師進(jìn)一步追問:“橢圓,在哪些地方見過?”有的同學(xué)說:“立體幾何中圓的直觀圖.”有的同學(xué)說:“人造衛(wèi)星運(yùn)行軌道”等……在此基礎(chǔ)上,引導(dǎo)學(xué)生概括橢圓的定義:平面內(nèi)到兩定點(diǎn)F1、F2的距離之和等于常數(shù)(大于|F1F2|)的點(diǎn)的軌跡叫做橢圓.這兩個(gè)定點(diǎn)叫做橢圓的焦點(diǎn),兩焦點(diǎn)的距離叫做焦距.學(xué)生開始只強(qiáng)調(diào)主要幾何特征——到兩定點(diǎn)F1、F2的距離之和等于常數(shù)、教師在演示中要從兩個(gè)方面加以強(qiáng)調(diào):(1)將穿有鉛筆的細(xì)線拉到圖板平面外,得到的不是橢圓,而是橢球形,使學(xué)生認(rèn)識(shí)到需加限制條件:“在平面內(nèi)”.(2)這里的常數(shù)有什么限制嗎?教師邊演示邊提示學(xué)生注意:若常數(shù)=|F1F2|,則是線段F1F2;若常數(shù)<|F1F2|,則軌跡不存在;若要軌跡是橢圓,還必須加上限制條件:“此常數(shù)大于|F1F2|”.(二)橢圓標(biāo)準(zhǔn)方程的推導(dǎo)1.標(biāo)準(zhǔn)方程的推導(dǎo)由橢圓的定義,可以知道它的基本幾何特征,但對(duì)橢圓還具有哪些性質(zhì),我們還一無所知,所以需要用坐標(biāo)法先建立橢圓的方程.如何建立橢圓的方程?根據(jù)求曲線方程的一般步驟,可分:(1)建系設(shè)點(diǎn);(2)點(diǎn)的集合;(3)代數(shù)方程;(4)化簡(jiǎn)方程等步驟.(1)建系設(shè)點(diǎn)建立坐標(biāo)系應(yīng)遵循簡(jiǎn)單和優(yōu)化的原則,如使關(guān)鍵點(diǎn)的坐標(biāo)、關(guān)鍵幾何量(距離、直線斜率等)的表達(dá)式簡(jiǎn)單化,注意充分利用圖形的對(duì)稱性,使學(xué)生認(rèn)識(shí)到下列選取方法是恰當(dāng)?shù)模詢啥c(diǎn)F1、F2的直線為x軸,線段F1F2的垂直平分線為y軸,建立直角坐標(biāo)系(如圖2-14).設(shè)|F1F2|=2c(c>0),M(x,y)為橢圓上任意一點(diǎn),則有F1(-1,0),F(xiàn)2(c,0).(2)點(diǎn)的集合由定義不難得出橢圓集合為:P={M||MF1|+|MF2|=2a}.(3)代數(shù)方程(4)化簡(jiǎn)方程化簡(jiǎn)方程可請(qǐng)一個(gè)反映比較快、書寫比較規(guī)范的同學(xué)板演,其余同學(xué)在下面完成,教師巡視,適當(dāng)給予提示:①原方程要移項(xiàng)平方,否則化簡(jiǎn)相當(dāng)復(fù)雜;注意兩次平方的理由詳見問題3說明.整理后,再平方得(a2-c2)x2+a2y2=a2(a2-c2)②為使方程對(duì)稱和諧而引入b,同時(shí)b還有幾何意義,下節(jié)課還要(a>b>0).關(guān)于證明所得的方程是橢圓方程,因教材中對(duì)此要求不高,可從略.示的橢圓的焦點(diǎn)在x軸上,焦點(diǎn)是F1(-c,0)、F2(c,0).這里c2=a2-b2.2.兩種標(biāo)準(zhǔn)方程的比較(引導(dǎo)學(xué)生歸納)0)、F2(c,0),這里c2=a2-b2;-c)、F2(0,c),這里c2=a2+b2,只須將(1)方程的x、y互換即可得到.教師指出:在兩種標(biāo)準(zhǔn)方程中,∵a2>b2,∴可以根據(jù)分母的大小來判定焦點(diǎn)在哪一個(gè)坐標(biāo)軸上.(三)例題與練習(xí)例題平面內(nèi)兩定點(diǎn)的距離是8,寫出到這兩定點(diǎn)的距離的和是10的點(diǎn)的軌跡的方程.分析:先根據(jù)題意判斷軌跡,再建立直角坐標(biāo)系,采用待定系數(shù)法得出軌跡方程.解:這個(gè)軌跡是一個(gè)橢圓,兩個(gè)定點(diǎn)是焦點(diǎn),用F1、F2表示.取過點(diǎn)F1和F2的直線為x軸,線段F1F2的垂直平分線為y軸,建立直角坐標(biāo)系.∵2a=10,2c=8.∴a=5,c=4,b2=a2-c2=52-45=9.∴b=3因此,這個(gè)橢圓的標(biāo)準(zhǔn)方程是請(qǐng)大家再想一想,焦點(diǎn)F1、F2放在y軸上,線段F1F2的垂直平分練習(xí)1寫出適合下列條件的橢圓的標(biāo)準(zhǔn)方程:練習(xí)2下列各組兩個(gè)橢圓中,其焦點(diǎn)相同的是[]由學(xué)生口答,答案

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論