版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2023屆安徽池州市高三年級寒假驗收考試數(shù)學(xué)試題試卷注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知平面,,直線滿足,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.即不充分也不必要條件2.已知定義在上的奇函數(shù)和偶函數(shù)滿足(且),若,則函數(shù)的單調(diào)遞增區(qū)間為()A. B. C. D.3.已知雙曲線的焦距是虛軸長的2倍,則雙曲線的漸近線方程為()A. B. C. D.4.如圖所示,網(wǎng)絡(luò)紙上小正方形的邊長為1,粗線畫出的是某四棱錐的三視圖,則該幾何體的體積為()A.2 B. C.6 D.85.已知定義在上的奇函數(shù)滿足:(其中),且在區(qū)間上是減函數(shù),令,,,則,,的大小關(guān)系(用不等號連接)為()A. B.C. D.6.在三棱錐中,,,,,點(diǎn)到底面的距離為2,則三棱錐外接球的表面積為()A. B. C. D.7.已知集合,,則等于()A. B. C. D.8.已知向量,,且與的夾角為,則()A. B.1 C.或1 D.或99.設(shè),是非零向量,若對于任意的,都有成立,則A. B. C. D.10.設(shè),,,則,,三數(shù)的大小關(guān)系是A. B.C. D.11.已知函數(shù),給出下列四個結(jié)論:①函數(shù)的值域是;②函數(shù)為奇函數(shù);③函數(shù)在區(qū)間單調(diào)遞減;④若對任意,都有成立,則的最小值為;其中正確結(jié)論的個數(shù)是()A. B. C. D.12.函數(shù)的部分圖像如圖所示,若,點(diǎn)的坐標(biāo)為,若將函數(shù)向右平移個單位后函數(shù)圖像關(guān)于軸對稱,則的最小值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若雙曲線的兩條漸近線斜率分別為,,若,則該雙曲線的離心率為________.14.已知數(shù)列為正項等比數(shù)列,,則的最小值為________.15.已知圓,直線與圓交于兩點(diǎn),,若,則弦的長度的最大值為___________.16.若冪函數(shù)的圖象經(jīng)過點(diǎn),則其單調(diào)遞減區(qū)間為_______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)選修4-5:不等式選講已知函數(shù).(1)設(shè),求不等式的解集;(2)已知,且的最小值等于,求實數(shù)的值.18.(12分)若數(shù)列滿足:對于任意,均為數(shù)列中的項,則稱數(shù)列為“數(shù)列”.(1)若數(shù)列的前項和,,試判斷數(shù)列是否為“數(shù)列”?說明理由;(2)若公差為的等差數(shù)列為“數(shù)列”,求的取值范圍;(3)若數(shù)列為“數(shù)列”,,且對于任意,均有,求數(shù)列的通項公式.19.(12分)平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸,取相同的單位長度建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,直線的極坐標(biāo)方程為,點(diǎn).(1)求曲線的極坐標(biāo)方程與直線的直角坐標(biāo)方程;(2)若直線與曲線交于點(diǎn),曲線與曲線交于點(diǎn),求的面積.20.(12分)已知函數(shù),函數(shù)在點(diǎn)處的切線斜率為0.(1)試用含有的式子表示,并討論的單調(diào)性;(2)對于函數(shù)圖象上的不同兩點(diǎn),,如果在函數(shù)圖象上存在點(diǎn),使得在點(diǎn)處的切線,則稱存在“跟隨切線”.特別地,當(dāng)時,又稱存在“中值跟隨切線”.試問:函數(shù)上是否存在兩點(diǎn)使得它存在“中值跟隨切線”,若存在,求出的坐標(biāo),若不存在,說明理由.21.(12分)已知橢圓的短軸的兩個端點(diǎn)分別為、,焦距為.(1)求橢圓的方程;(2)已知直線與橢圓有兩個不同的交點(diǎn)、,設(shè)為直線上一點(diǎn),且直線、的斜率的積為.證明:點(diǎn)在軸上.22.(10分)如圖1,四邊形為直角梯形,,,,,,為線段上一點(diǎn),滿足,為的中點(diǎn),現(xiàn)將梯形沿折疊(如圖2),使平面平面.(1)求證:平面平面;(2)能否在線段上找到一點(diǎn)(端點(diǎn)除外)使得直線與平面所成角的正弦值為?若存在,試確定點(diǎn)的位置;若不存在,請說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】
,是相交平面,直線平面,則“”“”,反之,直線滿足,則或//或平面,即可判斷出結(jié)論.【詳解】解:已知直線平面,則“”“”,反之,直線滿足,則或//或平面,“”是“”的充分不必要條件.故選:A.【點(diǎn)睛】本題考查了線面和面面垂直的判定與性質(zhì)定理、簡易邏輯的判定方法,考查了推理能力與計算能力.2.D【解析】
根據(jù)函數(shù)的奇偶性用方程法求出的解析式,進(jìn)而求出,再根據(jù)復(fù)合函數(shù)的單調(diào)性,即可求出結(jié)論.【詳解】依題意有,①,②①②得,又因為,所以,在上單調(diào)遞增,所以函數(shù)的單調(diào)遞增區(qū)間為.故選:D.【點(diǎn)睛】本題考查求函數(shù)的解析式、函數(shù)的性質(zhì),要熟記復(fù)合函數(shù)單調(diào)性判斷方法,屬于中檔題.3.A【解析】
根據(jù)雙曲線的焦距是虛軸長的2倍,可得出,結(jié)合,得出,即可求出雙曲線的漸近線方程.【詳解】解:由雙曲線可知,焦點(diǎn)在軸上,則雙曲線的漸近線方程為:,由于焦距是虛軸長的2倍,可得:,∴,即:,,所以雙曲線的漸近線方程為:.故選:A.【點(diǎn)睛】本題考查雙曲線的簡單幾何性質(zhì),以及雙曲線的漸近線方程.4.A【解析】
先由三視圖確定該四棱錐的底面形狀,以及四棱錐的高,再由體積公式即可求出結(jié)果.【詳解】由三視圖可知,該四棱錐為斜著放置的四棱錐,四棱錐的底面為直角梯形,上底為1,下底為2,高為2,四棱錐的高為2,所以該四棱錐的體積為.故選A【點(diǎn)睛】本題主要考查幾何的三視圖,由幾何體的三視圖先還原幾何體,再由體積公式即可求解,屬于常考題型.5.A【解析】因為,所以,即周期為4,因為為奇函數(shù),所以可作一個周期[-2e,2e]示意圖,如圖在(0,1)單調(diào)遞增,因為,因此,選A.點(diǎn)睛:函數(shù)對稱性代數(shù)表示(1)函數(shù)為奇函數(shù),函數(shù)為偶函數(shù)(定義域關(guān)于原點(diǎn)對稱);(2)函數(shù)關(guān)于點(diǎn)對稱,函數(shù)關(guān)于直線對稱,(3)函數(shù)周期為T,則6.C【解析】
首先根據(jù)垂直關(guān)系可確定,由此可知為三棱錐外接球的球心,在中,可以算出的一個表達(dá)式,在中,可以計算出的一個表達(dá)式,根據(jù)長度關(guān)系可構(gòu)造等式求得半徑,進(jìn)而求出球的表面積.【詳解】取中點(diǎn),由,可知:,為三棱錐外接球球心,過作平面,交平面于,連接交于,連接,,,,,,為的中點(diǎn)由球的性質(zhì)可知:平面,,且.設(shè),,,,在中,,即,解得:,三棱錐的外接球的半徑為:,三棱錐外接球的表面積為.故選:.【點(diǎn)睛】本題考查三棱錐外接球的表面積的求解問題,求解幾何體外接球相關(guān)問題的關(guān)鍵是能夠利用球的性質(zhì)確定外接球球心的位置.7.B【解析】
解不等式確定集合,然后由補(bǔ)集、并集定義求解.【詳解】由題意或,∴,.故選:B.【點(diǎn)睛】本題考查集合的綜合運(yùn)算,以及一元二次不等式的解法,屬于基礎(chǔ)題型.8.C【解析】
由題意利用兩個向量的數(shù)量積的定義和公式,求的值.【詳解】解:由題意可得,求得,或,故選:C.【點(diǎn)睛】本題主要考查兩個向量的數(shù)量積的定義和公式,屬于基礎(chǔ)題.9.D【解析】
畫出,,根據(jù)向量的加減法,分別畫出的幾種情況,由數(shù)形結(jié)合可得結(jié)果.【詳解】由題意,得向量是所有向量中模長最小的向量,如圖,當(dāng),即時,最小,滿足,對于任意的,所以本題答案為D.【點(diǎn)睛】本題主要考查了空間向量的加減法,以及點(diǎn)到直線的距離最短問題,解題的關(guān)鍵在于用有向線段正確表示向量,屬于基礎(chǔ)題.10.C【解析】
利用對數(shù)函數(shù),指數(shù)函數(shù)以及正弦函數(shù)的性質(zhì)和計算公式,將a,b,c與,比較即可.【詳解】由,,,所以有.選C.【點(diǎn)睛】本題考查對數(shù)值,指數(shù)值和正弦值大小的比較,是基礎(chǔ)題,解題時選擇合適的中間值比較是關(guān)鍵,注意合理地進(jìn)行等價轉(zhuǎn)化.11.C【解析】
化的解析式為可判斷①,求出的解析式可判斷②,由得,結(jié)合正弦函數(shù)得圖象即可判斷③,由得可判斷④.【詳解】由題意,,所以,故①正確;為偶函數(shù),故②錯誤;當(dāng)時,,單調(diào)遞減,故③正確;若對任意,都有成立,則為最小值點(diǎn),為最大值點(diǎn),則的最小值為,故④正確.故選:C.【點(diǎn)睛】本題考查三角函數(shù)的綜合運(yùn)用,涉及到函數(shù)的值域、函數(shù)單調(diào)性、函數(shù)奇偶性及函數(shù)最值等內(nèi)容,是一道較為綜合的問題.12.B【解析】
根據(jù)圖象以及題中所給的條件,求出和,即可求得的解析式,再通過平移變換函數(shù)圖象關(guān)于軸對稱,求得的最小值.【詳解】由于,函數(shù)最高點(diǎn)與最低點(diǎn)的高度差為,所以函數(shù)的半個周期,所以,又,,則有,可得,所以,將函數(shù)向右平移個單位后函數(shù)圖像關(guān)于軸對稱,即平移后為偶函數(shù),所以的最小值為1,故選:B.【點(diǎn)睛】該題主要考查三角函數(shù)的圖象和性質(zhì),根據(jù)圖象求出函數(shù)的解析式是解決該題的關(guān)鍵,要求熟練掌握函數(shù)圖象之間的變換關(guān)系,屬于簡單題目.二、填空題:本題共4小題,每小題5分,共20分。13.2【解析】
由題得,再根據(jù)求解即可.【詳解】雙曲線的兩條漸近線為,可令,,則,所以,解得.故答案為:2.【點(diǎn)睛】本題考查雙曲線漸近線求離心率的問題.屬于基礎(chǔ)題.14.27【解析】
利用等比數(shù)列的性質(zhì)求得,結(jié)合其下標(biāo)和性質(zhì)和均值不等式即可容易求得.【詳解】由等比數(shù)列的性質(zhì)可知,則,.當(dāng)且僅當(dāng)時取得最小值.故答案為:.【點(diǎn)睛】本題考查等比數(shù)列的下標(biāo)和性質(zhì),涉及均值不等式求和的最小值,屬綜合基礎(chǔ)題.15.【解析】
取的中點(diǎn)為M,由可得,可得M在上,當(dāng)最小時,弦的長才最大.【詳解】設(shè)為的中點(diǎn),,即,即,,.設(shè),則,得.所以,.故答案為:【點(diǎn)睛】本題考查直線與圓的位置關(guān)系的綜合應(yīng)用,考查學(xué)生的邏輯推理、數(shù)形結(jié)合的思想,是一道有一定難度的題.16.【解析】
利用待定系數(shù)法求出冪函數(shù)的解析式,再求出的單調(diào)遞減區(qū)間.【詳解】解:冪函數(shù)的圖象經(jīng)過點(diǎn),則,解得;所以,其中;所以的單調(diào)遞減區(qū)間為.故答案為:.【點(diǎn)睛】本題考查了冪函數(shù)的圖象與性質(zhì)的應(yīng)用問題,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)(2)【解析】
(1)把f(x)去絕對值寫成分段函數(shù)的形式,分類討論,分別求得解集,綜合可得結(jié)論.(2)把f(x)去絕對值寫成分段函數(shù),畫出f(x)的圖像,找出利用條件求得a的值.【詳解】(1)時,.當(dāng)時,即為,解得.當(dāng)時,,解得.當(dāng)時,,解得.綜上,的解集為.(2).,由的圖象知,,.【點(diǎn)睛】本題主要考查含絕對值不等式的解法及含絕對值的函數(shù)的最值問題,體現(xiàn)了分類討論的數(shù)學(xué)思想,屬于中檔題18.(1)不是,見解析(2)(3)【解析】
(1)利用遞推關(guān)系求出數(shù)列的通項公式,進(jìn)一步驗證時,是否為數(shù)列中的項,即可得答案;(2)由題意得,再對公差進(jìn)行分類討論,即可得答案;(3)由題意得數(shù)列為等差數(shù)列,設(shè)數(shù)列的公差為,再根據(jù)不等式得到公差的值,即可得答案;【詳解】(1)當(dāng)時,又,所以.所以當(dāng)時,,而,所以時,不是數(shù)列中的項,故數(shù)列不是為“數(shù)列”(2)因為數(shù)列是公差為的等差數(shù)列,所以.因為數(shù)列為“數(shù)列”所以任意,存在,使得,即有.①若,則只需,使得,從而得是數(shù)列中的項.②若,則.此時,當(dāng)時,不為正整數(shù),所以不符合題意.綜上,.(3)由題意,所以,又因為,且數(shù)列為“數(shù)列”,所以,即,所以數(shù)列為等差數(shù)列.設(shè)數(shù)列的公差為,則有,由,得,整理得,①.②若,取正整數(shù),則當(dāng)時,,與①式對應(yīng)任意恒成立相矛盾,因此.同樣根據(jù)②式可得,所以.又,所以.經(jīng)檢驗當(dāng)時,①②兩式對應(yīng)任意恒成立,所以數(shù)列的通項公式為.【點(diǎn)睛】本題考查數(shù)列新定義題、等差數(shù)列的通項公式,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想、分類討論思想,考查邏輯推理能力、運(yùn)算求解能力,難度較大.19.(1).(2)【解析】
(1)根據(jù)題意代入公式化簡即可得到.(2)聯(lián)立極坐標(biāo)方程通過極坐標(biāo)的幾何意義求解,再求點(diǎn)到直線的距離即可算出三角形面積.【詳解】解:(1)曲線,即.∴.曲線的極坐標(biāo)方程為.直線的極坐標(biāo)方程為,即,∴直線的直角坐標(biāo)方程為.(2)設(shè),,∴,解得.又,∴(舍去).∴.點(diǎn)到直線的距離為,∴的面積為.【點(diǎn)睛】此題考查參數(shù)方程,極坐標(biāo),直角坐標(biāo)之間相互轉(zhuǎn)化,注意參數(shù)方程只能先轉(zhuǎn)化為直角坐標(biāo)再轉(zhuǎn)化為極坐標(biāo),屬于較易題目.20.(1),單調(diào)性見解析;(2)不存在,理由見解析【解析】
(1)由題意得,即可得;求出函數(shù)的導(dǎo)數(shù),再根據(jù)、、、分類討論,分別求出、的解集即可得解;(2)假設(shè)滿足條件的、存在,不妨設(shè),且,由題意得可得,令(),構(gòu)造函數(shù)(),求導(dǎo)后證明即可得解.【詳解】(1)由題可得函數(shù)的定義域為且,由,整理得..(?。┊?dāng)時,易知,,時.故在上單調(diào)遞增,在上單調(diào)遞減.(ⅱ)當(dāng)時,令,解得或,則①當(dāng),即時,在上恒成立,則在上遞增.②當(dāng),即時,當(dāng)時,;當(dāng)時,.所以在上單調(diào)遞增,單調(diào)遞減,單調(diào)遞增.③當(dāng),即時,當(dāng)時,;當(dāng)時,.所以在上單調(diào)遞增,單調(diào)遞減,單調(diào)遞增.綜上,當(dāng)時,在上單調(diào)遞增,在單調(diào)遞減.當(dāng)時,在及上單調(diào)遞增;在上單調(diào)遞減.當(dāng)時,在上遞增.當(dāng)時,在及上單調(diào)遞增;在上遞減.(2)滿足條件的、不存在,理由如下:假設(shè)滿足條件的、存在,不妨設(shè),且,則,又,由題可知,整理可得:,令(),構(gòu)造函數(shù)().則,所以在上單調(diào)遞增,從而,所以方程無解,即無解.綜上,滿足條件的A、B不存在.【點(diǎn)睛】本題考查了導(dǎo)數(shù)的應(yīng)用,考查了計算能力和轉(zhuǎn)化化歸思想,屬于中檔題.21.(1);(2)見解析.【解析】
(1)由已知條件得出、的值,進(jìn)而可得出的值,由此可求得橢圓的方程;(2)設(shè)點(diǎn),可得,且,,求出直線的斜率,進(jìn)而可求得直線與的方程,將直線直線與的方程聯(lián)立,求出點(diǎn)的坐標(biāo),即可證得結(jié)論.【詳解】(1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年飯店業(yè)主權(quán)轉(zhuǎn)讓協(xié)議
- 2024年重慶股權(quán)轉(zhuǎn)讓協(xié)議精簡
- 2024年冬季道路掃雪服務(wù)承包協(xié)議
- 2023-2024學(xué)年浙江省效實中學(xué)高三下期末教學(xué)檢測試題數(shù)學(xué)試題試卷
- 化服務(wù)交易結(jié)算協(xié)議模板2024
- 2024年度裝修項目協(xié)議樣本
- 2024蝦池養(yǎng)殖權(quán)承包協(xié)議示例
- 2024掛靠項目管理協(xié)議樣本集萃
- 2024年天然氣服務(wù)協(xié)議范例
- 文書模板-合同會簽申請書的審批流程
- 最新病歷書寫規(guī)范課件
- 一年級上冊語文全冊課件
- 《節(jié)能監(jiān)察的概念及其作用》
- 蔬菜會員卡策劃營銷推廣方案多篇
- KUKA機(jī)器人編程手冊
- DBJ53T-19-2007加芯攪拌樁技術(shù)規(guī)程
- 《樂理》課程標(biāo)準(zhǔn)(中職)
- #1機(jī)組整套啟動前質(zhì)量監(jiān)督檢查匯報材料
- 新人教版部編版二年級上冊語文期中復(fù)習(xí)課件
- 配電室綜合監(jiān)控系統(tǒng)完整方案
- 2022校園運(yùn)動會主題課件
評論
0/150
提交評論