版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
滁州市重點(diǎn)中學(xué)2023-2024學(xué)年高三教學(xué)質(zhì)量檢測(cè)試題(一模)數(shù)學(xué)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.雙曲線:(),左焦點(diǎn)到漸近線的距離為2,則雙曲線的漸近線方程為()A. B. C. D.2.已知復(fù)數(shù),其中為虛數(shù)單位,則()A. B. C.2 D.3.已知為實(shí)數(shù)集,,,則()A. B. C. D.4.中國(guó)古代中的“禮、樂(lè)、射、御、書、數(shù)”合稱“六藝”.“禮”,主要指德育;“樂(lè)”,主要指美育;“射”和“御”,就是體育和勞動(dòng);“書”,指各種歷史文化知識(shí);“數(shù)”,指數(shù)學(xué).某校國(guó)學(xué)社團(tuán)開(kāi)展“六藝”課程講座活動(dòng),每藝安排一節(jié),連排六節(jié),一天課程講座排課有如下要求:“數(shù)”必須排在第三節(jié),且“射”和“御”兩門課程相鄰排課,則“六藝”課程講座不同的排課順序共有()A.12種 B.24種 C.36種 D.48種5.已知拋物線的焦點(diǎn)為,準(zhǔn)線為,是上一點(diǎn),是直線與拋物線的一個(gè)交點(diǎn),若,則()A. B.3 C. D.26.使得的展開(kāi)式中含有常數(shù)項(xiàng)的最小的n為()A. B. C. D.7.若為過(guò)橢圓中心的弦,為橢圓的焦點(diǎn),則△面積的最大值為()A.20 B.30 C.50 D.608.臺(tái)球是一項(xiàng)國(guó)際上廣泛流行的高雅室內(nèi)體育運(yùn)動(dòng),也叫桌球(中國(guó)粵港澳地區(qū)的叫法)、撞球(中國(guó)地區(qū)的叫法)控制撞球點(diǎn)、球的旋轉(zhuǎn)等控制母球走位是擊球的一項(xiàng)重要技術(shù),一次臺(tái)球技術(shù)表演節(jié)目中,在臺(tái)球桌上,畫出如圖正方形ABCD,在點(diǎn)E,F(xiàn)處各放一個(gè)目標(biāo)球,表演者先將母球放在點(diǎn)A處,通過(guò)擊打母球,使其依次撞擊點(diǎn)E,F(xiàn)處的目標(biāo)球,最后停在點(diǎn)C處,若AE=50cm.EF=40cm.FC=30cm,∠AEF=∠CFE=60°,則該正方形的邊長(zhǎng)為()A.50cm B.40cm C.50cm D.20cm9.設(shè)集合(為實(shí)數(shù)集),,,則()A. B. C. D.10.在的展開(kāi)式中,含的項(xiàng)的系數(shù)是()A.74 B.121 C. D.11.已知的共軛復(fù)數(shù)是,且(為虛數(shù)單位),則復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限12.執(zhí)行如圖所示的程序框圖,如果輸入,則輸出屬于()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如果橢圓的對(duì)稱軸為坐標(biāo)軸,短軸的一個(gè)端點(diǎn)與兩焦點(diǎn)組成一正三角形,焦點(diǎn)在x軸上,且=,那么橢圓的方程是.14.已知實(shí)數(shù)、滿足,且可行域表示的區(qū)域?yàn)槿切危瑒t實(shí)數(shù)的取值范圍為_(kāi)_____,若目標(biāo)函數(shù)的最小值為-1,則實(shí)數(shù)等于______.15.的展開(kāi)式中的常數(shù)項(xiàng)為_(kāi)_____.16.我國(guó)古代數(shù)學(xué)名著《九章算術(shù)》對(duì)立體幾何有深入的研究,從其中一些數(shù)學(xué)用語(yǔ)可見(jiàn),譬如“憋臑”意指四個(gè)面都是直角三角形的三棱錐.某“憋臑”的三視圖(圖中網(wǎng)格紙上每個(gè)小正方形的邊長(zhǎng)為1)如圖所示,已知幾何體高為,則該幾何體外接球的表面積為_(kāi)_________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)的內(nèi)角,,的對(duì)邊分別為,,,其面積記為,滿足.(1)求;(2)若,求的值.18.(12分)如圖,在四棱錐中,四邊形是直角梯形,底面,是的中點(diǎn).(1).求證:平面平面;(2).若二面角的余弦值為,求直線與平面所成角的正弦值.19.(12分)已知數(shù)列和滿足,,,,.(Ⅰ)求與;(Ⅱ)記數(shù)列的前項(xiàng)和為,且,若對(duì),恒成立,求正整數(shù)的值.20.(12分)某商場(chǎng)舉行優(yōu)惠促銷活動(dòng),顧客僅可以從以下兩種優(yōu)惠方案中選擇一種.方案一:每滿100元減20元;方案二:滿100元可抽獎(jiǎng)一次.具體規(guī)則是從裝有2個(gè)紅球、2個(gè)白球的箱子隨機(jī)取出3個(gè)球(逐個(gè)有放回地抽?。?,所得結(jié)果和享受的優(yōu)惠如下表:(注:所有小球僅顏色有區(qū)別)紅球個(gè)數(shù)3210實(shí)際付款7折8折9折原價(jià)(1)該商場(chǎng)某顧客購(gòu)物金額超過(guò)100元,若該顧客選擇方案二,求該顧客獲得7折或8折優(yōu)惠的概率;(2)若某顧客購(gòu)物金額為180元,選擇哪種方案更劃算?21.(12分)如圖,在中,已知,,,為線段的中點(diǎn),是由繞直線旋轉(zhuǎn)而成,記二面角的大小為.(1)當(dāng)平面平面時(shí),求的值;(2)當(dāng)時(shí),求二面角的余弦值.22.(10分)已知非零實(shí)數(shù)滿足.(1)求證:;(2)是否存在實(shí)數(shù),使得恒成立?若存在,求出實(shí)數(shù)的取值范圍;若不存在,請(qǐng)說(shuō)明理由
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
首先求得雙曲線的一條漸近線方程,再利用左焦點(diǎn)到漸近線的距離為2,列方程即可求出,進(jìn)而求出漸近線的方程.【詳解】設(shè)左焦點(diǎn)為,一條漸近線的方程為,由左焦點(diǎn)到漸近線的距離為2,可得,所以漸近線方程為,即為,故選:B【點(diǎn)睛】本題考查雙曲線的漸近線的方程,考查了點(diǎn)到直線的距離公式,屬于中檔題.2、D【解析】
把已知等式變形,然后利用數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn),再由復(fù)數(shù)模的公式計(jì)算得答案.【詳解】解:,則.故選:D.【點(diǎn)睛】本題考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)模的求法,是基礎(chǔ)題.3、C【解析】
求出集合,,,由此能求出.【詳解】為實(shí)數(shù)集,,,或,.故選:.【點(diǎn)睛】本題考查交集、補(bǔ)集的求法,考查交集、補(bǔ)集的性質(zhì)等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是基礎(chǔ)題.4、C【解析】
根據(jù)“數(shù)”排在第三節(jié),則“射”和“御”兩門課程相鄰有3類排法,再考慮兩者的順序,有種,剩余的3門全排列,即可求解.【詳解】由題意,“數(shù)”排在第三節(jié),則“射”和“御”兩門課程相鄰時(shí),可排在第1節(jié)和第2節(jié)或第4節(jié)和第5節(jié)或第5節(jié)和第6節(jié),有3種,再考慮兩者的順序,有種,剩余的3門全排列,安排在剩下的3個(gè)位置,有種,所以“六藝”課程講座不同的排課順序共有種不同的排法.故選:C.【點(diǎn)睛】本題主要考查了排列、組合的應(yīng)用,其中解答中認(rèn)真審題,根據(jù)題設(shè)條件,先排列有限制條件的元素是解答的關(guān)鍵,著重考查了分析問(wèn)題和解答問(wèn)題的能力,屬于基礎(chǔ)題.5、D【解析】
根據(jù)拋物線的定義求得,由此求得的長(zhǎng).【詳解】過(guò)作,垂足為,設(shè)與軸的交點(diǎn)為.根據(jù)拋物線的定義可知.由于,所以,所以,所以,所以.故選:D【點(diǎn)睛】本小題主要考查拋物線的定義,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于基礎(chǔ)題.6、B【解析】二項(xiàng)式展開(kāi)式的通項(xiàng)公式為,若展開(kāi)式中有常數(shù)項(xiàng),則,解得,當(dāng)r取2時(shí),n的最小值為5,故選B【考點(diǎn)定位】本題考查二項(xiàng)式定理的應(yīng)用.7、D【解析】
先設(shè)A點(diǎn)的坐標(biāo)為,根據(jù)對(duì)稱性可得,在表示出面積,由圖象遏制,當(dāng)點(diǎn)A在橢圓的頂點(diǎn)時(shí),此時(shí)面積最大,再結(jié)合橢圓的標(biāo)準(zhǔn)方程,即可求解.【詳解】由題意,設(shè)A點(diǎn)的坐標(biāo)為,根據(jù)對(duì)稱性可得,則的面積為,當(dāng)最大時(shí),的面積最大,由圖象可知,當(dāng)點(diǎn)A在橢圓的上下頂點(diǎn)時(shí),此時(shí)的面積最大,又由,可得橢圓的上下頂點(diǎn)坐標(biāo)為,所以的面積的最大值為.故選:D.【點(diǎn)睛】本題主要考查了橢圓的標(biāo)準(zhǔn)方程及簡(jiǎn)單的幾何性質(zhì),以及三角形面積公式的應(yīng)用,著重考查了數(shù)形結(jié)合思想,以及化歸與轉(zhuǎn)化思想的應(yīng)用.8、D【解析】
過(guò)點(diǎn)做正方形邊的垂線,如圖,設(shè),利用直線三角形中的邊角關(guān)系,將用表示出來(lái),根據(jù),列方程求出,進(jìn)而可得正方形的邊長(zhǎng).【詳解】過(guò)點(diǎn)做正方形邊的垂線,如圖,設(shè),則,,則,因?yàn)?,則,整理化簡(jiǎn)得,又,得,.即該正方形的邊長(zhǎng)為.故選:D.【點(diǎn)睛】本題考查直角三角形中的邊角關(guān)系,關(guān)鍵是要構(gòu)造直角三角形,是中檔題.9、A【解析】
根據(jù)集合交集與補(bǔ)集運(yùn)算,即可求得.【詳解】集合,,所以所以故選:A【點(diǎn)睛】本題考查了集合交集與補(bǔ)集的混合運(yùn)算,屬于基礎(chǔ)題.10、D【解析】
根據(jù),利用通項(xiàng)公式得到含的項(xiàng)為:,進(jìn)而得到其系數(shù),【詳解】因?yàn)樵冢院捻?xiàng)為:,所以含的項(xiàng)的系數(shù)是的系數(shù)是,,故選:D【點(diǎn)睛】本題主要考查二項(xiàng)展開(kāi)式及通項(xiàng)公式和項(xiàng)的系數(shù),還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題,11、D【解析】
設(shè),整理得到方程組,解方程組即可解決問(wèn)題.【詳解】設(shè),因?yàn)?,所以,所以,解得:,所以?fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)為,此點(diǎn)位于第四象限.故選D【點(diǎn)睛】本題主要考查了復(fù)數(shù)相等、復(fù)數(shù)表示的點(diǎn)知識(shí),考查了方程思想,屬于基礎(chǔ)題.12、B【解析】
由題意,框圖的作用是求分段函數(shù)的值域,求解即得解.【詳解】由題意可知,框圖的作用是求分段函數(shù)的值域,當(dāng);當(dāng)綜上:.故選:B【點(diǎn)睛】本題考查了條件分支的程序框圖,考查了學(xué)生邏輯推理,分類討論,數(shù)學(xué)運(yùn)算的能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由題意可設(shè)橢圓方程為:∵短軸的一個(gè)端點(diǎn)與兩焦點(diǎn)組成一正三角形,焦點(diǎn)在軸上∴又,∴,∴橢圓的方程為,故答案為.考點(diǎn):橢圓的標(biāo)準(zhǔn)方程,解三角形以及解方程組的相關(guān)知識(shí).14、【解析】
作出不等式組對(duì)應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,結(jié)合目標(biāo)函數(shù)的最小值,利用數(shù)形結(jié)合即可得到結(jié)論.【詳解】作出可行域如圖,則要為三角形需滿足在直線下方,即,;目標(biāo)函數(shù)可視為,則為斜率為1的直線縱截距的相反數(shù),該直線截距最大在過(guò)點(diǎn)時(shí),此時(shí),直線:,與:的交點(diǎn)為,該點(diǎn)也在直線:上,故,故答案為:;.【點(diǎn)睛】本題主要考查線性規(guī)劃的應(yīng)用,利用目標(biāo)函數(shù)的幾何意義,結(jié)合數(shù)形結(jié)合的數(shù)學(xué)思想是解決此類問(wèn)題的基本方法,屬于基礎(chǔ)題.15、160【解析】
先求的展開(kāi)式中通項(xiàng),令的指數(shù)為3即可求解結(jié)論.【詳解】解:因?yàn)榈恼归_(kāi)式的通項(xiàng)公式為:;令,可得;的展開(kāi)式中的常數(shù)項(xiàng)為:.故答案為:160.【點(diǎn)睛】本題考查二項(xiàng)式系數(shù)的性質(zhì),關(guān)鍵是熟記二項(xiàng)展開(kāi)式的通項(xiàng),屬于基礎(chǔ)題.16、【解析】三視圖還原如下圖:,由于每個(gè)面是直角,顯然外接球球心O在AC的中點(diǎn).所以,,填。【點(diǎn)睛】三視圖還原,當(dāng)出現(xiàn)三個(gè)尖點(diǎn)在一個(gè)位置時(shí),我們常用“揪尖法”。外接球球心到各個(gè)頂點(diǎn)的距離相等,而直角三角形斜邊上的中點(diǎn)到各頂點(diǎn)的距離相等,所以本題的球心為AC中點(diǎn)。三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)【解析】
(1)根據(jù)三角形面積公式及平面向量數(shù)量積定義代入公式,即可求得,進(jìn)而求得的值;(2)根據(jù)正弦定理將邊化為角,結(jié)合(1)中的值,即可將表達(dá)式化為的三角函數(shù)式;結(jié)合正弦和角公式與輔助角公式化簡(jiǎn),即可求得和,進(jìn)而由正弦定理確定,代入整式即可求解.【詳解】(1)因?yàn)椋杂扇切蚊娣e公式及平面向量數(shù)量積運(yùn)算可得,所以.因?yàn)?,所?(2)因?yàn)?,所以由正弦定理代入化?jiǎn)可得,由(1),代入可得,展開(kāi)化簡(jiǎn)可得,根據(jù)輔助角公式化簡(jiǎn)可得.因?yàn)椋?,所以,所以為等腰三角形,且,所?【點(diǎn)睛】本題考查了正弦定理在解三角形中的應(yīng)用,三角形面積公式的應(yīng)用,平面向量數(shù)量積的運(yùn)算,正弦和角公式及輔助角公式的簡(jiǎn)單應(yīng)用,屬于基礎(chǔ)題.18、(1)見(jiàn)解析;(2).【解析】試題分析:(1)根據(jù)平面有,利用勾股定理可證明,故平面,再由面面垂直的判定定理可證得結(jié)論;(2)在點(diǎn)建立空間直角坐標(biāo)系,利用二面角的余弦值為建立方程求得,在利用法向量求得和平面所成角的正弦值.試題解析:(Ⅰ)平面平面因?yàn)?所以,所以,所以,又,所以平面.因?yàn)槠矫?,所以平面平面.(Ⅱ)如圖,以點(diǎn)為原點(diǎn),分別為軸、軸、軸正方向,建立空間直角坐標(biāo)系,則.設(shè),則取,則為面法向量.設(shè)為面的法向量,則,即,取,則依題意,則.于是.設(shè)直線與平面所成角為,則即直線與平面所成角的正弦值為.19、(Ⅰ),;(Ⅱ)1【解析】
(Ⅰ)易得為等比數(shù)列,再利用前項(xiàng)和與通項(xiàng)的關(guān)系求解的通項(xiàng)公式即可.(Ⅱ)由題可知要求的最小值,再分析的正負(fù)即可得隨的增大而增大再判定可知即可.【詳解】(Ⅰ)因?yàn)?故是以為首項(xiàng),2為公比的等比數(shù)列,故.又當(dāng)時(shí),,解得.當(dāng)時(shí),…①…②①-②有,即.當(dāng)時(shí)也滿足.故為常數(shù)列,所以.即.故,(Ⅱ)因?yàn)閷?duì),恒成立.故只需求的最小值即可.設(shè),則,又,又當(dāng)時(shí),時(shí).當(dāng)時(shí),因?yàn)?故.綜上可知.故隨著的增大而增大,故,故【點(diǎn)睛】本題主要考查了根據(jù)數(shù)列的遞推公式求解通項(xiàng)公式的方法,同時(shí)也考查了根據(jù)數(shù)列的增減性判斷最值的問(wèn)題,需要根據(jù)題意求解的通項(xiàng),并根據(jù)二項(xiàng)式定理分析其正負(fù),從而得到最小項(xiàng).屬于難題.20、(1)(2)選擇方案二更為劃算【解析】
(1)計(jì)算顧客獲得7折優(yōu)惠的概率,獲得8折優(yōu)惠的概率,相加得到答案.(2)選擇方案二,記付款金額為元,則可取的值為126,144,162,180.,計(jì)算概率得到數(shù)學(xué)期望,比較大小得到答案.【詳解】(1)該顧客獲得7折優(yōu)惠的概率,該顧客獲得8折優(yōu)惠的概率,故該顧客獲得7折或8折優(yōu)惠的概率.(2)若選擇方案一,則付款金額為.若選擇方案二,記付款金額為元,則可取的值為126,144,162,180.,,則.因?yàn)?,所以選擇方案二更為劃算.【點(diǎn)睛】本題考查了概率的計(jì)算,數(shù)學(xué)期望,意在考查學(xué)生的計(jì)算能力和應(yīng)用能力.21、(1);(2).【解析】
(1)平面平面,建立坐標(biāo)系,根據(jù)法向量互相垂直求得;(2)求兩個(gè)平面的法向量的夾角.【詳解】(1)如圖,以為原點(diǎn),在平面內(nèi)垂直于的直線為軸所在的直線分別為軸,軸,建立
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年個(gè)人專屬司機(jī)包車服務(wù)協(xié)議
- 2024年度分公司商業(yè)合作協(xié)議
- 2024指定工程承攬施工協(xié)議范本
- 2024年專業(yè)設(shè)計(jì)師勞動(dòng)協(xié)議樣本
- 2024年度服裝業(yè)實(shí)習(xí)生勞動(dòng)協(xié)議
- 2024年預(yù)租賃場(chǎng)地協(xié)議格式樣本
- 3.3 牛頓第三定律(含答案)2024-2025學(xué)年高一物理同步精講義(人教版2019必修第一冊(cè))
- 錘煉語(yǔ)言課件教學(xué)課件
- 課件獲取網(wǎng)站教學(xué)課件
- 籃球社團(tuán)教案
- GB/T 21633-2020摻混肥料(BB肥)
- GB/T 21435-2008相變加熱爐
- 河南省洛陽(yáng)市《綜合能力測(cè)試》事業(yè)單位國(guó)考真題
- 智慧消防整體解決方案消防大數(shù)據(jù)一體化管理平臺(tái)解課件
- 《推窗風(fēng)來(lái)》中考語(yǔ)文作文優(yōu)秀6篇
- 腹部血管疾病的超聲診斷課件整理
- 《客源國(guó)概論》期末考試題
- 公司吸煙管理規(guī)定范文
- 《江蘇省建筑業(yè)10項(xiàng)新技術(shù)(2021)》
- 建立高效護(hù)理團(tuán)隊(duì)課件
- DBJ51 014-2021 四川省建筑地基基礎(chǔ)檢測(cè)技術(shù)規(guī)程
評(píng)論
0/150
提交評(píng)論