北京東城55中2024屆高三協(xié)作體第一次聯(lián)考數(shù)學(xué)試題試卷_第1頁(yè)
北京東城55中2024屆高三協(xié)作體第一次聯(lián)考數(shù)學(xué)試題試卷_第2頁(yè)
北京東城55中2024屆高三協(xié)作體第一次聯(lián)考數(shù)學(xué)試題試卷_第3頁(yè)
北京東城55中2024屆高三協(xié)作體第一次聯(lián)考數(shù)學(xué)試題試卷_第4頁(yè)
北京東城55中2024屆高三協(xié)作體第一次聯(lián)考數(shù)學(xué)試題試卷_第5頁(yè)
已閱讀5頁(yè),還剩14頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

北京東城55中2024屆高三協(xié)作體第一次聯(lián)考數(shù)學(xué)試題試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫(huà)出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知集合,定義集合,則等于()A. B.C. D.2.設(shè)是兩條不同的直線(xiàn),是兩個(gè)不同的平面,下列命題中正確的是()A.若,,則 B.若,,則C.若,,則 D.若,,則3.已知集合,,若,則實(shí)數(shù)的值可以為()A. B. C. D.4.已知定義在上的奇函數(shù)滿(mǎn)足:(其中),且在區(qū)間上是減函數(shù),令,,,則,,的大小關(guān)系(用不等號(hào)連接)為()A. B.C. D.5.已知集合.為自然數(shù)集,則下列表示不正確的是()A. B. C. D.6.為了得到函數(shù)的圖象,只需把函數(shù)的圖象上所有的點(diǎn)()A.向左平移個(gè)單位長(zhǎng)度 B.向右平移個(gè)單位長(zhǎng)度C.向左平移個(gè)單位長(zhǎng)度 D.向右平移個(gè)單位長(zhǎng)度7.半正多面體(semiregularsolid)亦稱(chēng)“阿基米德多面體”,是由邊數(shù)不全相同的正多邊形為面的多面體,體現(xiàn)了數(shù)學(xué)的對(duì)稱(chēng)美.二十四等邊體就是一種半正多面體,是由正方體切截而成的,它由八個(gè)正三角形和六個(gè)正方形為面的半正多面體.如圖所示,圖中網(wǎng)格是邊長(zhǎng)為1的正方形,粗線(xiàn)部分是某二十四等邊體的三視圖,則該幾何體的體積為()A. B. C. D.8.已知函數(shù)滿(mǎn)足,設(shè),則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件9.若直線(xiàn)y=kx+1與圓x2+y2=1相交于P、Q兩點(diǎn),且∠POQ=120°(其中O為坐標(biāo)原點(diǎn)),則k的值為()A. B. C.或- D.和-10.函數(shù)在上的最大值和最小值分別為()A.,-2 B.,-9 C.-2,-9 D.2,-211.已知定義在上的函數(shù)滿(mǎn)足,且當(dāng)時(shí),.設(shè)在上的最大值為(),且數(shù)列的前項(xiàng)的和為.若對(duì)于任意正整數(shù)不等式恒成立,則實(shí)數(shù)的取值范圍為()A. B. C. D.12.已知數(shù)列{an}滿(mǎn)足a1=3,且aA.22n-1+1 B.22n-1-1二、填空題:本題共4小題,每小題5分,共20分。13.已知拋物線(xiàn),點(diǎn)為拋物線(xiàn)上一動(dòng)點(diǎn),過(guò)點(diǎn)作圓的切線(xiàn),切點(diǎn)分別為,則線(xiàn)段長(zhǎng)度的取值范圍為_(kāi)_________.14.已知實(shí)數(shù)x,y滿(mǎn)足,則的最大值為_(kāi)___________.15.已知向量,且,則___________.16.已知雙曲線(xiàn)的右準(zhǔn)線(xiàn)與漸近線(xiàn)的交點(diǎn)在拋物線(xiàn)上,則實(shí)數(shù)的值為_(kāi)__________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)年,山東省高考將全面實(shí)行“選”的模式(即:語(yǔ)文、數(shù)學(xué)、外語(yǔ)為必考科目,剩下的物理、化學(xué)、歷史、地理、生物、政治六科任選三科進(jìn)行考試).為了了解學(xué)生對(duì)物理學(xué)科的喜好程度,某高中從高一年級(jí)學(xué)生中隨機(jī)抽取人做調(diào)查.統(tǒng)計(jì)顯示,男生喜歡物理的有人,不喜歡物理的有人;女生喜歡物理的有人,不喜歡物理的有人.(1)據(jù)此資料判斷是否有的把握認(rèn)為“喜歡物理與性別有關(guān)”;(2)為了了解學(xué)生對(duì)選科的認(rèn)識(shí),年級(jí)決定召開(kāi)學(xué)生座談會(huì).現(xiàn)從名男同學(xué)和名女同學(xué)(其中男女喜歡物理)中,選取名男同學(xué)和名女同學(xué)參加座談會(huì),記參加座談會(huì)的人中喜歡物理的人數(shù)為,求的分布列及期望.,其中.18.(12分)已知直線(xiàn)的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程為.(1)求直線(xiàn)的普通方程和曲線(xiàn)的直角坐標(biāo)方程;(2)設(shè)點(diǎn),直線(xiàn)與曲線(xiàn)交于,兩點(diǎn),求的值.19.(12分)已知橢圓的離心率為,且過(guò)點(diǎn).(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)點(diǎn)P是橢圓上異于短軸端點(diǎn)A,B的任意一點(diǎn),過(guò)點(diǎn)P作軸于Q,線(xiàn)段PQ的中點(diǎn)為M.直線(xiàn)AM與直線(xiàn)交于點(diǎn)N,D為線(xiàn)段BN的中點(diǎn),設(shè)O為坐標(biāo)原點(diǎn),試判斷以O(shè)D為直徑的圓與點(diǎn)M的位置關(guān)系.20.(12分)已知橢圓:()的左、右頂點(diǎn)分別為、,焦距為2,點(diǎn)為橢圓上異于、的點(diǎn),且直線(xiàn)和的斜率之積為.(1)求的方程;(2)設(shè)直線(xiàn)與軸的交點(diǎn)為,過(guò)坐標(biāo)原點(diǎn)作交橢圓于點(diǎn),試探究是否為定值,若是,求出該定值;若不是,請(qǐng)說(shuō)明理由.21.(12分)(本小題滿(mǎn)分12分)已知橢圓C:x2a2+y(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)過(guò)點(diǎn)A(1,0)的直線(xiàn)與橢圓C交于點(diǎn)M,N,設(shè)P為橢圓上一點(diǎn),且OM+ON=t22.(10分)在直角坐標(biāo)系中,直線(xiàn)的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,圓的極坐標(biāo)方程為.(1)求直線(xiàn)和圓的普通方程;(2)已知直線(xiàn)上一點(diǎn),若直線(xiàn)與圓交于不同兩點(diǎn),求的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】

根據(jù)定義,求出,即可求出結(jié)論.【詳解】因?yàn)榧?,所以,則,所以.故選:C.【點(diǎn)睛】本題考查集合的新定義運(yùn)算,理解新定義是解題的關(guān)鍵,屬于基礎(chǔ)題.2、C【解析】

在A(yíng)中,與相交或平行;在B中,或;在C中,由線(xiàn)面垂直的判定定理得;在D中,與平行或.【詳解】設(shè)是兩條不同的直線(xiàn),是兩個(gè)不同的平面,則:在A(yíng)中,若,,則與相交或平行,故A錯(cuò)誤;在B中,若,,則或,故B錯(cuò)誤;在C中,若,,則由線(xiàn)面垂直的判定定理得,故C正確;在D中,若,,則與平行或,故D錯(cuò)誤.故選C.【點(diǎn)睛】本題考查命題真假的判斷,考查空間中線(xiàn)線(xiàn)、線(xiàn)面、面面間的位置關(guān)系等基礎(chǔ)知識(shí),是中檔題.3、D【解析】

由題意可得,根據(jù),即可得出,從而求出結(jié)果.【詳解】,且,,∴的值可以為.故選:D.【點(diǎn)睛】考查描述法表示集合的定義,以及并集的定義及運(yùn)算.4、A【解析】因?yàn)?,所以,即周期為4,因?yàn)闉槠婧瘮?shù),所以可作一個(gè)周期[-2e,2e]示意圖,如圖在(0,1)單調(diào)遞增,因?yàn)?,因此,選A.點(diǎn)睛:函數(shù)對(duì)稱(chēng)性代數(shù)表示(1)函數(shù)為奇函數(shù),函數(shù)為偶函數(shù)(定義域關(guān)于原點(diǎn)對(duì)稱(chēng));(2)函數(shù)關(guān)于點(diǎn)對(duì)稱(chēng),函數(shù)關(guān)于直線(xiàn)對(duì)稱(chēng),(3)函數(shù)周期為T(mén),則5、D【解析】

集合.為自然數(shù)集,由此能求出結(jié)果.【詳解】解:集合.為自然數(shù)集,在A(yíng)中,,正確;在B中,,正確;在C中,,正確;在D中,不是的子集,故D錯(cuò)誤.故選:D.【點(diǎn)睛】本題考查命題真假的判斷、元素與集合的關(guān)系、集合與集合的關(guān)系等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是基礎(chǔ)題.6、D【解析】

通過(guò)變形,通過(guò)“左加右減”即可得到答案.【詳解】根據(jù)題意,故只需把函數(shù)的圖象上所有的點(diǎn)向右平移個(gè)單位長(zhǎng)度可得到函數(shù)的圖象,故答案為D.【點(diǎn)睛】本題主要考查三角函數(shù)的平移變換,難度不大.7、D【解析】

根據(jù)三視圖作出該二十四等邊體如下圖所示,求出該幾何體的棱長(zhǎng),可以將該幾何體看作是相應(yīng)的正方體沿各棱的中點(diǎn)截去8個(gè)三棱錐所得到的,可求出其體積.【詳解】如下圖所示,將該二十四等邊體的直觀(guān)圖置于棱長(zhǎng)為2的正方體中,由三視圖可知,該幾何體的棱長(zhǎng)為,它是由棱長(zhǎng)為2的正方體沿各棱中點(diǎn)截去8個(gè)三棱錐所得到的,該幾何體的體積為,故選:D.【點(diǎn)睛】本題考查三視圖,幾何體的體積,對(duì)于二十四等邊體比較好的處理方式是由正方體各棱的中點(diǎn)得到,屬于中檔題.8、B【解析】

結(jié)合函數(shù)的對(duì)應(yīng)性,利用充分條件和必要條件的定義進(jìn)行判斷即可.【詳解】解:若,則,即成立,若,則由,得,則“”是“”的必要不充分條件,故選:B.【點(diǎn)睛】本題主要考查充分條件和必要條件的判斷,結(jié)合函數(shù)的對(duì)應(yīng)性是解決本題的關(guān)鍵,屬于基礎(chǔ)題.9、C【解析】

直線(xiàn)過(guò)定點(diǎn),直線(xiàn)y=kx+1與圓x2+y2=1相交于P、Q兩點(diǎn),且∠POQ=120°(其中O為原點(diǎn)),可以發(fā)現(xiàn)∠QOx的大小,求得結(jié)果.【詳解】如圖,直線(xiàn)過(guò)定點(diǎn)(0,1),∵∠POQ=120°∴∠OPQ=30°,?∠1=120°,∠2=60°,∴由對(duì)稱(chēng)性可知k=±.故選C.【點(diǎn)睛】本題考查過(guò)定點(diǎn)的直線(xiàn)系問(wèn)題,以及直線(xiàn)和圓的位置關(guān)系,是基礎(chǔ)題.10、B【解析】

由函數(shù)解析式中含絕對(duì)值,所以去絕對(duì)值并畫(huà)出函數(shù)圖象,結(jié)合圖象即可求得在上的最大值和最小值.【詳解】依題意,,作出函數(shù)的圖象如下所示;由函數(shù)圖像可知,當(dāng)時(shí),有最大值,當(dāng)時(shí),有最小值.故選:B.【點(diǎn)睛】本題考查了絕對(duì)值函數(shù)圖象的畫(huà)法,由函數(shù)圖象求函數(shù)的最值,屬于基礎(chǔ)題.11、C【解析】

由已知先求出,即,進(jìn)一步可得,再將所求問(wèn)題轉(zhuǎn)化為對(duì)于任意正整數(shù)恒成立,設(shè),只需找到數(shù)列的最大值即可.【詳解】當(dāng)時(shí),則,,所以,,顯然當(dāng)時(shí),,故,,若對(duì)于任意正整數(shù)不等式恒成立,即對(duì)于任意正整數(shù)恒成立,即對(duì)于任意正整數(shù)恒成立,設(shè),,令,解得,令,解得,考慮到,故有當(dāng)時(shí),單調(diào)遞增,當(dāng)時(shí),有單調(diào)遞減,故數(shù)列的最大值為,所以.故選:C.【點(diǎn)睛】本題考查數(shù)列中的不等式恒成立問(wèn)題,涉及到求函數(shù)解析、等比數(shù)列前n項(xiàng)和、數(shù)列單調(diào)性的判斷等知識(shí),是一道較為綜合的數(shù)列題.12、D【解析】試題分析:因?yàn)閍n+1=4an+3,所以an+1+1=4(an+1),即an+1+1an+1考點(diǎn):數(shù)列的通項(xiàng)公式.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

連接,易得,可得四邊形的面積為,從而可得,進(jìn)而求出的取值范圍,可求得的范圍.【詳解】如圖,連接,易得,所以四邊形的面積為,且四邊形的面積為三角形面積的兩倍,所以,所以,當(dāng)最小時(shí),最小,設(shè)點(diǎn),則,所以當(dāng)時(shí),,則,當(dāng)點(diǎn)的橫坐標(biāo)時(shí),,此時(shí),因?yàn)殡S著的增大而增大,所以的取值范圍為.故答案為:.【點(diǎn)睛】本題考查直線(xiàn)與圓的位置關(guān)系的應(yīng)用,考查拋物線(xiàn)上的動(dòng)點(diǎn)到定點(diǎn)的距離的求法,考查學(xué)生的計(jì)算求解能力,屬于中檔題.14、1【解析】

直接用表示出,然后由不等式性質(zhì)得出結(jié)論.【詳解】由題意,又,∴,即,∴的最大值為1.故答案為:1.【點(diǎn)睛】本題考查不等式的性質(zhì),掌握不等式的性質(zhì)是解題關(guān)鍵.15、【解析】

由向量平行的坐標(biāo)表示得出,求解即可得出答案.【詳解】因?yàn)?,所以,解?故答案為:【點(diǎn)睛】本題主要考查了由向量共線(xiàn)或平行求參數(shù),屬于基礎(chǔ)題.16、【解析】

求出雙曲線(xiàn)的漸近線(xiàn)方程,右準(zhǔn)線(xiàn)方程,得到交點(diǎn)坐標(biāo)代入拋物線(xiàn)方程求解即可.【詳解】解:雙曲線(xiàn)的右準(zhǔn)線(xiàn),漸近線(xiàn),雙曲線(xiàn)的右準(zhǔn)線(xiàn)與漸近線(xiàn)的交點(diǎn),交點(diǎn)在拋物線(xiàn)上,可得:,解得.故答案為.【點(diǎn)睛】本題考查雙曲線(xiàn)的簡(jiǎn)單性質(zhì)以及拋物線(xiàn)的簡(jiǎn)單性質(zhì)的應(yīng)用,是基本知識(shí)的考查,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)有的把握認(rèn)為喜歡物理與性別有關(guān);(2)分布列見(jiàn)解析,.【解析】

(1)根據(jù)題目所給信息,列出列聯(lián)表,計(jì)算的觀(guān)測(cè)值,對(duì)照臨界值表可得出結(jié)論;(2)設(shè)參加座談會(huì)的人中喜歡物理的男同學(xué)有人,女同學(xué)有人,則,確定的所有取值為、、、、.根據(jù)計(jì)數(shù)原理計(jì)算出每個(gè)所對(duì)應(yīng)的概率,列出分布列計(jì)算期望即可.【詳解】(1)根據(jù)所給條件得列聯(lián)表如下:男女合計(jì)喜歡物理不喜歡物理合計(jì),所以有的把握認(rèn)為喜歡物理與性別有關(guān);(2)設(shè)參加座談會(huì)的人中喜歡物理的男同學(xué)有人,女同學(xué)有人,則,由題意可知,的所有可能取值為、、、、.,,,,.所以的分布列為:所以.【點(diǎn)睛】本題考查了獨(dú)立性檢驗(yàn)、離散型隨機(jī)變量的概率分布列.離散型隨機(jī)變量的期望.屬于中等題.18、(1);(2)【解析】

(1)利用參數(shù)方程、普通方程、極坐標(biāo)方程間的互化公式即可;(2)將直線(xiàn)參數(shù)方程代入圓的普通方程,可得,,而根據(jù)直線(xiàn)參數(shù)方程的幾何意義,知,代入即可解決.【詳解】(1)直線(xiàn)的參數(shù)方程為(為參數(shù)),消去;得曲線(xiàn)的極坐標(biāo)方程為.由,,,可得,即曲線(xiàn)的直角坐標(biāo)方程為;(2)將直線(xiàn)的參數(shù)方程(為參數(shù))代入的方程,可得,,設(shè),是點(diǎn)對(duì)應(yīng)的參數(shù)值,,,則.【點(diǎn)睛】本題考查參數(shù)方程、普通方程、極坐標(biāo)方程間的互化,直線(xiàn)參數(shù)方程的幾何意義,是一道容易題.19、(1)(2)點(diǎn)在以為直徑的圓上【解析】

(1)根據(jù)題意列出關(guān)于,,的方程組,解出,,的值,即可得到橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)點(diǎn),,則,,求出直線(xiàn)的方程,進(jìn)而求出點(diǎn)的坐標(biāo),再利用中點(diǎn)坐標(biāo)公式得到點(diǎn)的坐標(biāo),下面結(jié)合點(diǎn)在橢圓上證出,所以點(diǎn)在以為直徑的圓上.【詳解】(1)由題意可知,,解得,橢圓的標(biāo)準(zhǔn)方程為:.(2)設(shè)點(diǎn),,則,,直線(xiàn)的斜率為,直線(xiàn)的方程為:,令得,,點(diǎn)的坐標(biāo)為,,點(diǎn)的坐標(biāo)為,,,,又點(diǎn),在橢圓上,,,,點(diǎn)在以為直徑的圓上.【點(diǎn)睛】本題主要考查了橢圓方程,考查了中點(diǎn)坐標(biāo)公式,以及平面向量的基本知識(shí),屬于中檔題.20、(1)(2)是定值,且定值為2【解析】

(1)設(shè)出點(diǎn)坐標(biāo)并代入橢圓方程,根據(jù)列方程,求得的值,結(jié)合求得的值,進(jìn)而求得橢圓的方程.(2)設(shè)出直線(xiàn)的方程,聯(lián)立直線(xiàn)的方程和橢圓方程,求得點(diǎn)的橫坐標(biāo),聯(lián)立直線(xiàn)的方程和橢圓方程,求得,由此化簡(jiǎn)求得為定值.【詳解】(1)已知點(diǎn)在橢圓:()上,可設(shè),即,又,且,可得橢圓的方程為.(2)設(shè)直線(xiàn)的方程為:,則直線(xiàn)的方程為.聯(lián)立直線(xiàn)與橢圓的方程可得:,由,可得,聯(lián)立直線(xiàn)與橢圓的方程可得:,即,即.即為定值,且定值為2.【點(diǎn)睛】本小題主要考查本小題主要考查橢圓方程的求法,考查橢圓中的定值問(wèn)題的求解,考查直線(xiàn)和橢圓的位置關(guān)系,考查運(yùn)算求解能力,屬于中檔題.21、(1)x24+【解析】試題分析:本題主要考查橢圓的標(biāo)準(zhǔn)方程及其幾何性質(zhì)、直線(xiàn)與橢圓的位置關(guān)系等基礎(chǔ)知識(shí),考查學(xué)生的分析問(wèn)題解決問(wèn)題的能力、轉(zhuǎn)化能力、計(jì)算能力.第一問(wèn),先利用離心率、a2=b2+c2、四邊形的面積列出方程,解出a和b的值,從而得到橢圓的標(biāo)準(zhǔn)方程;第二問(wèn),討論直線(xiàn)MN的斜率是否存在,當(dāng)直線(xiàn)MN的斜率存在時(shí),直線(xiàn)方程與橢圓方程聯(lián)立,消參,利用韋達(dá)定理,得到x1+x2、

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論