版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024/11/61第一章行列式2024/11/62§1
二階與三階行列式1.二階行列式二元線性方程組2024/11/63當(dāng)時,方程組有唯一解用消元法得2024/11/64記則有于是2024/11/65二階行列式,記作也稱為方程組的系數(shù)行列式。行標(biāo)列標(biāo)(1,2)元素2024/11/66對角線法則:主對角線副對角線2024/11/67例.解方程組解:2024/11/682.三階行列式類似地,討論三元線性方程組2024/11/69為三階行列式,記作稱2024/11/610對角線法則:2024/11/611例:2024/11/612§2全排列與逆序數(shù)定義1:把n個不同的元素排成的一列,稱為這n個元素的一個全排列,簡稱排列。把n個不同的元素排成一列,共有Pn個排列。P3=3×2×1=62024/11/613例如:1,2,3的全排列123,231,312,132,213,321共有3×2×1=6種,即一般地,Pn=n·(n-1)·…·3·2·1=n!P3=3×2×1=62024/11/614標(biāo)準(zhǔn)次序:標(biāo)號由小到大的排列。定義2:在n個元素的一個排列中,若某兩個元素排列的次序與標(biāo)準(zhǔn)次序不同,就稱這兩個數(shù)構(gòu)成一個逆序,一個排列中所有逆序的總和稱為這個排列的逆序數(shù)。2024/11/615一個排列的逆序數(shù)的計算方法:設(shè)p1p2…pn是1,2,…,n的一個排列,用ti表示元素
pi的逆序數(shù),即排在pi前面并比
t=t1
+t2
+…
+tnpi大的元素有ti個,則排列的逆序數(shù)為2024/11/616例4:求排列32514的逆序數(shù)。解:2024/11/617逆序數(shù)為奇數(shù)的排列稱為奇排列。逆序數(shù)為偶數(shù)的排列稱為偶排列。例如:123t=0為偶排列,312t=2為偶排列。321t=3為奇排列,2024/11/618§3
n階行列式的定義觀察二、三階行列式,得出下面結(jié)論:每項都是處于不同行不同列的n個元素的乘積。2.n階行列式是n!項的代數(shù)和。3.每項的符號都是由該項元素下標(biāo)排列的奇偶性所確定。2024/11/619定義1:n!項的和稱為n
階行列式(n≥1),記作2024/11/620例1:寫出四階行列式中含有因子的項。2024/11/621例2:計算四階行列式D=
acfh+
bdeg–adeh–bcfg2024/11/622重要結(jié)論:(1)上三角形行列式2024/11/623(2)下三角形行列式2024/11/624(3)
對角行列式2024/11/625(4)副對角行列式2024/11/626行列式的等價定義2024/11/627§5
行列式的性質(zhì)稱DT
為D的轉(zhuǎn)置行列式。設(shè)則D經(jīng)過“行列互換”變?yōu)镈T
2024/11/628性質(zhì)1:行列式與它的轉(zhuǎn)置行列式相等。2024/11/629證明:設(shè)則由行列式定義2024/11/630性質(zhì)2:互換行列式的兩行(列),行列式變號?;Qs、t兩行:互換s、t
兩列:“運算性質(zhì)”2024/11/631推論:若行列式有兩行(列)相同,則行列式為0。2024/11/632性質(zhì)3:用非零數(shù)k
乘行列式的某一行(列)中所有元素,等于用數(shù)k
乘此行列式?!斑\算性質(zhì)”用k
乘第i
行:用k
乘第i
列:2024/11/633推論:行列式中某一行(列)的公因子可以提到行列式符號外面。2024/11/634性質(zhì)4:若行列式有兩行(列)的對應(yīng)元素成比例,則行列式等于0。2024/11/635性質(zhì)5:若某一行是兩組數(shù)的和,則此行列式就等于如下兩個行列式的和。2024/11/636性質(zhì)6:行列式的某一行(列)的所有元素乘以同一數(shù)k后再加到另一行(列)對應(yīng)的元素上去,行列式的值不變。用數(shù)k乘第t
行加到第s
行上:用數(shù)k乘第t
列加到第s
列上:“運算性質(zhì)”2024/11/637利用行列式性質(zhì)計算:(化為三角形行列式)例1:計算2024/11/6382024/11/6392024/11/6402024/11/6412024/11/642例2:計算“行等和”行列式2024/11/6432024/11/644例10:設(shè)證明:02024/11/645證明:利用行的運算性質(zhì)r
把化成下三角形,再利用列的運算性質(zhì)c把化成下三角形,2024/11/646對D的前k行作運算r,后n列作運算c,則有2024/11/647例2024/11/648§6
行列式按行(列)展開問題:一個n
階行列式是否可以轉(zhuǎn)化為若干個
n-1階行列式來計算?對于三階行列式,容易驗證:2024/11/649定義1:在n
階行列式中,把元素所在的第i
行和第j列劃去后,余下的n-1階行列式叫的余子式,記為稱為(i,j)元素的代數(shù)余子式。做(i,j)元素,同時2024/11/650例如:考慮(2,3)元素(2,3)元素的余子式(2,3)元素的代數(shù)余子式2024/11/651定理3:行列式等于它的任一行(列)的各元素與其對應(yīng)的代數(shù)余子式乘積之和,即2024/11/6522024/11/653證明:分三種情況討論,只對行來證明此定理。(1)利用上一節(jié)例10的結(jié)論有2024/11/654(2)設(shè)D
的第i
行除了把D
轉(zhuǎn)化為(1)的情形外都是0。2024/11/655先把D
的第i
行依次與第i–1行,第i–2行,···,第1行交換,經(jīng)過i–1次行交換后得2024/11/656再把第j
列依次與第j–1列,第j–2列,···,第1列交換,經(jīng)過j–1次列交換后得2024/11/657(3)一般情形,考慮第i
行2024/11/6582024/11/659例或者那么2024/11/660推論:行列式任一行(列)的元素與另一行(列)的對應(yīng)元素的代數(shù)余子式乘積之和等于零,即2024/11/661綜上,得公式2024/11/662例12:證明范德蒙德(
Vandermonde)行列式2024/11/663證明:用數(shù)學(xué)歸納法(1)當(dāng)n=2時,2024/11/664(2)設(shè)n-1階范德蒙德行列式成立,則2024/11/665=2024/11/666有個因子!2024/11/667例:2024/11/668例:設(shè)求2024/11/669解:2024/11/670例:2024/11/671D按第4列展開,然后各列的提出公因子=2024/11/6722024/11/673例:2024/11/674D2024/11/675例:2024/11/676D2024/11/6772024/11/678§7Cramer法則Cramer法則:如果線性方程組的系數(shù)行列式不等于零,2024/11/679即則線性方程組(11)有唯一解,2024/11/680其中2024/11/681證明:2024/11/682再把
n
個方程依次相加,得2024/11/683當(dāng)
D≠0時,方程組(1)也即(11)有唯一的解于是2024/11/684例1:用Cramer法則解線性方程組。2024/11/685解:2024/11/6862024/11/687定理4:定理4’:如果線性方程組(11)的系數(shù)行列式D≠0
則(11)一定有解,且解是唯一的。如果線性方程組(11)無解或有兩個不同的解,則它的系數(shù)行列式必為零。Cramer法則也可以敘述為定理4的逆否命題是2024/11/688線性方程組非齊次與齊次線性方程組的概念:不全為零,則稱此方程若常數(shù)項組為非齊次線性方程組;若全為零,則稱此方程組為齊次線性方程組。2024/11/689齊次線性方程組易知,是(13)的解,稱為零解。若有一組不全為零的數(shù)是(13)的解,稱為非零解。2024/11/690定理5:定理5’:如果齊次線性方程組的系數(shù)行列式D≠0則齊次線性方程組沒有非零解。對于齊次線性方程組有如果齊次線性方程組有非零解,則它的系數(shù)行列式必為0。2024/11/691例:問
l
取何值時,齊次線性方程組有非零解?2024/11/692解:因齊次方程組有非零解,則D=0故l=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 單位管理制度呈現(xiàn)大全人事管理篇十篇
- 《行政職業(yè)能力測驗》2024年公務(wù)員考試尤溪縣臨考沖刺試卷含解析
- 八下期末考拔高測試卷(5)(解析版)
- 寒假自習(xí)課 25春初中道德與法治八年級下冊教學(xué)課件 第三單元 第五課 第2課時 基本政治制度
- 《皮外骨傷科病證》課件
- 鐵路線路設(shè)計合同三篇
- 服裝店衛(wèi)生消毒指南
- 幼兒園工作總結(jié)攜手陪伴成長無憂
- 餐飲行業(yè)助理工作總結(jié)
- 感恩父母演講稿錦集八篇
- 明細賬(三欄式)模板
- 正大天虹方矩管鍍鋅方矩管材質(zhì)書
- 2024年山東魯商集團有限公司招聘筆試參考題庫含答案解析
- 妊娠劇吐伴酮癥護理查房課件
- 200#溶劑油安全技術(shù)說明書
- 單位洗車房管理制度
- 廣西壯族自治區(qū)欽州市浦北縣2022-2023學(xué)年七年級上學(xué)期期末英語試題
- 動力學(xué)全套課件
- 廣東省深圳市2022-2023學(xué)年六年級上學(xué)期語文期末試卷(含答案)6
- 2022-2023學(xué)年北京市海淀區(qū)高一(上)期末生物試卷(附答案詳解)
- 河南省出版物經(jīng)營許可證申請登記表
評論
0/150
提交評論