版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
江西省名校2025屆高二數(shù)學(xué)第一學(xué)期期末經(jīng)典模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知雙曲線,則“”是“雙曲線的焦距大于4”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件2.在區(qū)間內(nèi)隨機(jī)取一個(gè)數(shù),則方程表示焦點(diǎn)在軸上的橢圓的概率是A. B.C. D.3.中國古代數(shù)學(xué)名著《算法統(tǒng)宗》中有這樣一個(gè)問題:“今有俸糧三百零五石,令五等官(正一品、從一品、正二品、從二品、正三品)依品遞差十三石分之,問,各若干?”其大意是,現(xiàn)有俸糧石,分給正一品、從一品、正二品、從二品、正三品這位官員,依照品級(jí)遞減石分這些俸糧,問,每個(gè)人各分得多少俸糧?在這個(gè)問題中,正三品分得俸糧是()A.石 B.石C.石 D.石4.設(shè)直線,.若,則的值為()A.或 B.或C. D.5.執(zhí)行如圖所示的程序框圖,輸出的s值為()A.8 B.9C.27 D.366.?dāng)?shù)列滿足,,,則數(shù)列的前10項(xiàng)和為()A.60 B.61C.62 D.637.已知等差數(shù)列,且,則()A.3 B.5C.7 D.98.在數(shù)列中,,,則()A.985 B.1035C.2020 D.20709.在正方體的12條棱中任選3條,其中任意2條所在的直線都是異面直線的概率為()A. B.C. D.10.當(dāng)我們停放自行車時(shí),只要將自行車旁的撐腳放下,自行車就穩(wěn)了,這用到了()A.三點(diǎn)確定一平面 B.不共線三點(diǎn)確定一平面C.兩條相交直線確定一平面 D.兩條平行直線確定一平面11.已知曲線的方程為,則下列說法正確的是()①曲線關(guān)于坐標(biāo)原點(diǎn)對(duì)稱;②曲線是一個(gè)橢圓;③曲線圍成區(qū)域的面積小于橢圓圍成區(qū)域的面積.A.① B.①②C.③ D.①③12.已知拋物線,則它的焦點(diǎn)坐標(biāo)為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在正方體中,二面角的大小為__________(用反三角表示)14.為增強(qiáng)廣大師生生態(tài)文明意識(shí),大力推進(jìn)國家森林城市建設(shè)創(chuàng)建進(jìn)程,某班26名同學(xué)在一段直線公路一側(cè)植樹,每人植一棵(各自挖坑種植),相鄰兩棵樹相距均為10米,在同學(xué)們挖坑期間,運(yùn)到的樹苗集中放置在了某一樹坑旁邊,然后每位同學(xué)挖好自己的樹坑后,均從各自樹坑出發(fā)去領(lǐng)取樹苗.記26位同學(xué)領(lǐng)取樹苗往返所走的路程總和為,則的最小值為______米15.已知直線:和:,且,則實(shí)數(shù)__________,兩直線與之間的距離為__________16.已知拋物線:()的焦點(diǎn)到準(zhǔn)線的距離為4,過點(diǎn)的直線與拋物線交于,兩點(diǎn),若,則______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)求函數(shù)的極值;(2)若對(duì)恒成立,求實(shí)數(shù)a的取值范圍.18.(12分)如圖,在四棱柱中,底面,,,且,(1)求證:平面平面;(2)求二面角所成角的余弦值19.(12分)如圖,正方形和四邊形所在的平面互相垂直,.(1)求證:平面;(2)求平面與平面的夾角.20.(12分)已知數(shù)列滿足(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),求數(shù)列的前n項(xiàng)和21.(12分)已知,直線過且與交于兩點(diǎn),過點(diǎn)作直線的平行線交于點(diǎn)(1)求證:為定值,并求點(diǎn)的軌跡的方程;(2)設(shè)動(dòng)直線與相切于點(diǎn),且與直線交于點(diǎn),在軸上是否存在定點(diǎn),使得以為直徑的圓恒過定點(diǎn)?若存在,求出的坐標(biāo);若不存在,說明理由22.(10分)已知數(shù)列為等差數(shù)列,滿足,.(1)求數(shù)列的通項(xiàng)公式;(2)求數(shù)列的前n項(xiàng)和,并求的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】先找出“雙曲線的焦距大于4”的充要條件,再進(jìn)行判斷即可【詳解】若的焦距,則;若,則故選:A2、D【解析】若方程表示焦點(diǎn)在軸上的橢圓,則,解得,,故方程表示焦點(diǎn)在軸上的橢圓的概率是,故選D.3、D【解析】令位官員(正一品、從一品、正二品、從二品、正三品)所分得的俸糧數(shù)是公差為數(shù)列,利用等差數(shù)列的前n項(xiàng)和求,進(jìn)而求出正三品即可.【詳解】正一品、從一品、正二品、從二品、正三品這位官員所分得的俸糧數(shù)記為數(shù)列,由題意,是以為公差的等差數(shù)列,且,解得.故正三品分得俸糧數(shù)量為(石).故選:D.4、A【解析】由兩直線垂直可得出關(guān)于實(shí)數(shù)的等式,即可解得實(shí)數(shù)的值.【詳解】因?yàn)椋瑒t,解得或.故選:A.5、B【解析】執(zhí)行程序框圖,第一次循環(huán),,滿足;第二次循環(huán),,滿足;第三次循環(huán),,不滿足,輸出,故選B.【方法點(diǎn)睛】本題主要考查程序框圖的循環(huán)結(jié)構(gòu)流程圖,屬于中檔題.解決程序框圖問題時(shí)一定注意以下幾點(diǎn):(1)不要混淆處理框和輸入框;(2)注意區(qū)分程序框圖是條件分支結(jié)構(gòu)還是循環(huán)結(jié)構(gòu);(3)注意區(qū)分當(dāng)型循環(huán)結(jié)構(gòu)和直到型循環(huán)結(jié)構(gòu);(4)處理循環(huán)結(jié)構(gòu)的問題時(shí)一定要正確控制循環(huán)次數(shù);(5)要注意各個(gè)框的順序,(6)在給出程序框圖求解輸出結(jié)果的試題中只要按照程序框圖規(guī)定的運(yùn)算方法逐次計(jì)算,直到達(dá)到輸出條件即可.6、B【解析】討論奇偶性,應(yīng)用等差、等比前n項(xiàng)和公式對(duì)作分組求和即可.【詳解】當(dāng)且為奇數(shù)時(shí),,則,當(dāng)且為偶數(shù)時(shí),,則,∴.故選:B.7、B【解析】根據(jù)等差數(shù)列的性質(zhì)求得正確答案.【詳解】由于數(shù)列是等差數(shù)列,所以.故選:B8、A【解析】根據(jù)累加法得,,進(jìn)而得.【詳解】解:因?yàn)樗?,?dāng)時(shí),,,……,,所以,將以上式子相加得,所以,,.當(dāng)時(shí),,滿足;所以,.所以.故選:A9、B【解析】根據(jù)正方體的性質(zhì)確定3條棱兩兩互為異面直線的情況數(shù),結(jié)合組合數(shù)及古典概率的求法,求任選3條其中任意2條所在的直線是異面直線的概率.【詳解】如下圖,正方體中如:中任意2條所在的直線都是異面直線,∴這樣的3條直線共有8種情況,∴任選3條,其中任意2條所在的直線都是異面直線的概率為.故選:B.10、B【解析】自行車前后輪與撐腳分別接觸地面,使得自行車穩(wěn)定,此時(shí)自行車與地面的三個(gè)接觸點(diǎn)不在同一條線上.【詳解】自行車前后輪與撐腳分別接觸地面,此時(shí)三個(gè)接觸點(diǎn)不在同一條線上,所以可以確定一個(gè)平面,即地面,從而使得自行車穩(wěn)定.故選B項(xiàng).【點(diǎn)睛】本題考查不共線的三個(gè)點(diǎn)確定一個(gè)平面,屬于簡單題.11、D【解析】對(duì)于①在方程中換為,換為可判斷;對(duì)于②分析曲線的圖形是兩個(gè)拋物線的部分組成的可判斷;對(duì)于③在第一象限內(nèi),分析橢圓的圖形與曲線圖形的位置關(guān)系可判斷.【詳解】在曲線的方程中,換為,換為,方程不變,故曲線關(guān)于坐標(biāo)原點(diǎn)對(duì)稱所以①正確,當(dāng)時(shí),曲線的方程化為,此時(shí)當(dāng)時(shí),曲線的方程化為,此時(shí)所以曲線圖形是兩個(gè)拋物線的部分組成的,不是橢圓,故②不正確.當(dāng),時(shí),設(shè),設(shè),則,(當(dāng)且僅當(dāng)或時(shí)等號(hào)成立)所以在第一象限內(nèi),橢圓的圖形在曲線的上方.根據(jù)曲線和橢圓的的對(duì)稱性可得橢圓的圖形在曲線的外部(四個(gè)頂點(diǎn)在曲線上)所以曲線圍成區(qū)域的面積小于橢圓圍成區(qū)域的面積,故③正確.故選:D12、D【解析】將拋物線方程化標(biāo)準(zhǔn)形式后得到焦準(zhǔn)距,可得結(jié)果.【詳解】由得,所以,所以,所以拋物線的焦點(diǎn)坐標(biāo)為.故選:D.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:將拋物線方程化為標(biāo)準(zhǔn)形式是解題關(guān)鍵.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】作出二面角的平面角,并計(jì)算出二面角的大小.【詳解】設(shè),畫出圖像如下圖所示,由于,所以平面,所以,所以是二面角的平面角.所以.所以二面角的大小為.故答案為:14、【解析】根據(jù)對(duì)稱性易知:當(dāng)樹苗放在第13或14個(gè)坑,26位同學(xué)領(lǐng)取樹苗往返所走的路程總和最小,再應(yīng)用等差數(shù)列前n項(xiàng)和的求法求26位同學(xué)領(lǐng)取樹苗往返所走的路程總和.【詳解】將26個(gè)同學(xué)對(duì)應(yīng)的26個(gè)坑分左右各13個(gè)坑,∴根據(jù)對(duì)稱性:樹苗放在左邊13個(gè)坑,與放在對(duì)稱右邊的13個(gè)坑,26個(gè)同學(xué)所走的總路程對(duì)應(yīng)相等,∴當(dāng)樹苗放在第13個(gè)坑,26位同學(xué)領(lǐng)取樹苗往返所走的路程總和最小,此時(shí),左邊13位同學(xué)所走的路程分別為,右邊13位同學(xué)所走的路程分別為,∴最小值為米.故答案為:.15、①.-4;②.2【解析】根據(jù)兩直線平行斜率相等求解參數(shù)即可;運(yùn)用兩平行線間的距離公式計(jì)算兩直線之間的距離可得出答案.【詳解】解:直線和,,,解得;∴兩直線與間的距離是:.故答案為:;2.16、15【解析】易得拋物線方程為,根據(jù),求得點(diǎn)P的坐標(biāo),進(jìn)而得到直線l的方程,與拋物線方程聯(lián)立,再利用拋物線定義求解.【詳解】解:因?yàn)閽佄锞€的焦點(diǎn)到準(zhǔn)線的距離為4,所以,則拋物線:,設(shè)點(diǎn)的坐標(biāo)為,的坐標(biāo)為,因?yàn)?,所以,則,則,所以直線的方程為,代入拋物線方程可得,故,則,所以故答案為:15三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)極大值為,無極小值(2)【解析】(1)求函數(shù)的導(dǎo)數(shù),根據(jù)導(dǎo)數(shù)的正負(fù)判斷極值點(diǎn),代入原函數(shù)計(jì)算即可;(2)將變形,即對(duì)恒成立,然后構(gòu)造函數(shù),利用求導(dǎo)判定函數(shù)的單調(diào)性,進(jìn)而確定實(shí)數(shù)a的取值范圍..【小問1詳解】對(duì)函數(shù)求導(dǎo)可得:,可知當(dāng)時(shí),時(shí),,即可知在上單調(diào)遞增,在上單調(diào)遞減由上可知,的極大值為,無極小值【小問2詳解】由對(duì)恒成立,當(dāng)時(shí),恒成立;當(dāng)時(shí),對(duì)恒成立,可變形為:對(duì)恒成立,令,則;求導(dǎo)可得:由(1)知即恒成立,當(dāng)時(shí),,則在上單調(diào)遞增;又,因,故,,所以在上恒成立,當(dāng)時(shí),令,得,當(dāng)時(shí),在上單調(diào)遞增,當(dāng)時(shí),在上單調(diào)遞減,從而可知的最大值為,即,因此,對(duì)都有恒成立,所以,實(shí)數(shù)a的取值范圍是.18、(1)證明見解析;(2).【解析】(1)證出,,由線面垂直的判定定理可得平面,再根據(jù)面面垂直的判定定理即可證明.(2)分別以,,為,,軸,建立空間直角坐標(biāo)系,求出平面的一個(gè)法向量以及平面的一個(gè)法向量,由即可求解.【詳解】(1)證明:因?yàn)?,,所以,,因?yàn)?,所以,所以,即因?yàn)榈酌?,所以底面,所以因?yàn)?,所以平面,又平面,所以平面平面?)解:如圖,分別以,,為,,軸,建立空間直角坐標(biāo)系,則,,,,所以,,,設(shè)平面的法向量為,則令,得設(shè)平面的法向量為,則令,得,所以,由圖知二面角為銳角,所以二面角所成角的余弦值為【點(diǎn)睛】思路點(diǎn)睛:解決二面角相關(guān)問題通常用向量法,具體步驟為:(1)建坐標(biāo)系,建立坐標(biāo)系的原則是盡可能的使得已知點(diǎn)在坐標(biāo)軸上或在坐標(biāo)平面內(nèi);(2)根據(jù)題意寫出點(diǎn)的坐標(biāo)以及向量的坐標(biāo),注意坐標(biāo)不能出錯(cuò).(3)利用數(shù)量積驗(yàn)證垂直或求平面的法向量.(4)利用法向量求距離、線面角或二面角.19、(1)證明見解析(2)【解析】(1)由題意可證得,所以以C為坐標(biāo)原點(diǎn),所在直線分別為x軸,y軸,z軸建立空間直角坐標(biāo)系,利用空間向量證明,(2)求出兩個(gè)平面的法向量,利用空間向量求解【小問1詳解】∵平面平面,平面平面,∴平面,∴,以C為坐標(biāo)原點(diǎn),所在直線分別為x軸,y軸,z軸建立空間直角坐標(biāo)系,則,.設(shè)平面的法向量為,則,令,則,∵平面,∴∥平面.【小問2詳解】,設(shè)平面的法向量為,則,令,則.∴.由圖可知平面與平面的夾角為銳角,所以平面與平面的夾角為.20、(1)(2)【解析】(1)當(dāng)時(shí),由,可得,兩式相減化簡可求得通項(xiàng),(2)由(1)得,然后利用裂項(xiàng)相消法可求得結(jié)果【小問1詳解】因?yàn)?,所以時(shí),,兩式作差得,,所以時(shí),,又時(shí),,得,符合上式,所以的通項(xiàng)公式為【小問2詳解】由(1)知,所以即數(shù)列的前n項(xiàng)和21、(1)證明見解析,()(2)存在,【解析】(1)根據(jù)題意和橢圓的定義可知點(diǎn)的軌跡是以A,為焦點(diǎn)的橢圓,且,,進(jìn)而得出橢圓標(biāo)準(zhǔn)方程;(2)設(shè),聯(lián)立動(dòng)直線方程和橢圓方程并消元得出關(guān)于的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度年福建省高校教師資格證之高等教育心理學(xué)題庫綜合試卷B卷附答案
- 2024年圖書館管理服務(wù)項(xiàng)目資金申請(qǐng)報(bào)告代可行性研究報(bào)告
- 五年級(jí)數(shù)學(xué)(小數(shù)乘除法)計(jì)算題專項(xiàng)練習(xí)及答案
- 文化自信背景下民族傳統(tǒng)體育文化的傳承與發(fā)展
- 魯教版高三上學(xué)期期末地理試題及解答參考
- 2024年定制出口業(yè)務(wù)銷售協(xié)議模板
- 保安公司門衛(wèi)服務(wù)承攬協(xié)議范本
- 2024高品質(zhì)彩鋼房建設(shè)協(xié)議書
- 2024批次高品質(zhì)片石購買協(xié)議
- 2024年健身機(jī)構(gòu)業(yè)務(wù)合作伙伴協(xié)議
- 2023-2024學(xué)年北京海淀區(qū)首都師大附中初二(上)期中道法試題及答案
- (正式版)HGT 6313-2024 化工園區(qū)智慧化評(píng)價(jià)導(dǎo)則
- 二級(jí)公立醫(yī)院績效考核三級(jí)手術(shù)目錄(2020版)
- 新蘇教版六年級(jí)上冊(cè)《科學(xué)》全一冊(cè)全部課件(含19課時(shí))
- 《VCS-仿真驗(yàn)證》ppt課件
- 親子閱讀ppt課件
- 愛心媽媽結(jié)對(duì)幫扶記錄表
- 農(nóng)貿(mào)市場(chǎng)建設(shè)項(xiàng)目裝飾工程施工方案
- 八年級(jí)語文上冊(cè)期中文言文默寫(含答案)
- MATLAB語言課程論文 基于MATLAB的電磁場(chǎng)數(shù)值圖像分析
- 暗挖隧道帷幕注漿專項(xiàng)方案[優(yōu)秀工程方案]
評(píng)論
0/150
提交評(píng)論