版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
江西省名校2025屆高二數(shù)學第一學期期末經(jīng)典模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線,則“”是“雙曲線的焦距大于4”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件2.在區(qū)間內隨機取一個數(shù),則方程表示焦點在軸上的橢圓的概率是A. B.C. D.3.中國古代數(shù)學名著《算法統(tǒng)宗》中有這樣一個問題:“今有俸糧三百零五石,令五等官(正一品、從一品、正二品、從二品、正三品)依品遞差十三石分之,問,各若干?”其大意是,現(xiàn)有俸糧石,分給正一品、從一品、正二品、從二品、正三品這位官員,依照品級遞減石分這些俸糧,問,每個人各分得多少俸糧?在這個問題中,正三品分得俸糧是()A.石 B.石C.石 D.石4.設直線,.若,則的值為()A.或 B.或C. D.5.執(zhí)行如圖所示的程序框圖,輸出的s值為()A.8 B.9C.27 D.366.數(shù)列滿足,,,則數(shù)列的前10項和為()A.60 B.61C.62 D.637.已知等差數(shù)列,且,則()A.3 B.5C.7 D.98.在數(shù)列中,,,則()A.985 B.1035C.2020 D.20709.在正方體的12條棱中任選3條,其中任意2條所在的直線都是異面直線的概率為()A. B.C. D.10.當我們停放自行車時,只要將自行車旁的撐腳放下,自行車就穩(wěn)了,這用到了()A.三點確定一平面 B.不共線三點確定一平面C.兩條相交直線確定一平面 D.兩條平行直線確定一平面11.已知曲線的方程為,則下列說法正確的是()①曲線關于坐標原點對稱;②曲線是一個橢圓;③曲線圍成區(qū)域的面積小于橢圓圍成區(qū)域的面積.A.① B.①②C.③ D.①③12.已知拋物線,則它的焦點坐標為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在正方體中,二面角的大小為__________(用反三角表示)14.為增強廣大師生生態(tài)文明意識,大力推進國家森林城市建設創(chuàng)建進程,某班26名同學在一段直線公路一側植樹,每人植一棵(各自挖坑種植),相鄰兩棵樹相距均為10米,在同學們挖坑期間,運到的樹苗集中放置在了某一樹坑旁邊,然后每位同學挖好自己的樹坑后,均從各自樹坑出發(fā)去領取樹苗.記26位同學領取樹苗往返所走的路程總和為,則的最小值為______米15.已知直線:和:,且,則實數(shù)__________,兩直線與之間的距離為__________16.已知拋物線:()的焦點到準線的距離為4,過點的直線與拋物線交于,兩點,若,則______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)求函數(shù)的極值;(2)若對恒成立,求實數(shù)a的取值范圍.18.(12分)如圖,在四棱柱中,底面,,,且,(1)求證:平面平面;(2)求二面角所成角的余弦值19.(12分)如圖,正方形和四邊形所在的平面互相垂直,.(1)求證:平面;(2)求平面與平面的夾角.20.(12分)已知數(shù)列滿足(1)求數(shù)列的通項公式;(2)設,求數(shù)列的前n項和21.(12分)已知,直線過且與交于兩點,過點作直線的平行線交于點(1)求證:為定值,并求點的軌跡的方程;(2)設動直線與相切于點,且與直線交于點,在軸上是否存在定點,使得以為直徑的圓恒過定點?若存在,求出的坐標;若不存在,說明理由22.(10分)已知數(shù)列為等差數(shù)列,滿足,.(1)求數(shù)列的通項公式;(2)求數(shù)列的前n項和,并求的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】先找出“雙曲線的焦距大于4”的充要條件,再進行判斷即可【詳解】若的焦距,則;若,則故選:A2、D【解析】若方程表示焦點在軸上的橢圓,則,解得,,故方程表示焦點在軸上的橢圓的概率是,故選D.3、D【解析】令位官員(正一品、從一品、正二品、從二品、正三品)所分得的俸糧數(shù)是公差為數(shù)列,利用等差數(shù)列的前n項和求,進而求出正三品即可.【詳解】正一品、從一品、正二品、從二品、正三品這位官員所分得的俸糧數(shù)記為數(shù)列,由題意,是以為公差的等差數(shù)列,且,解得.故正三品分得俸糧數(shù)量為(石).故選:D.4、A【解析】由兩直線垂直可得出關于實數(shù)的等式,即可解得實數(shù)的值.【詳解】因為,則,解得或.故選:A.5、B【解析】執(zhí)行程序框圖,第一次循環(huán),,滿足;第二次循環(huán),,滿足;第三次循環(huán),,不滿足,輸出,故選B.【方法點睛】本題主要考查程序框圖的循環(huán)結構流程圖,屬于中檔題.解決程序框圖問題時一定注意以下幾點:(1)不要混淆處理框和輸入框;(2)注意區(qū)分程序框圖是條件分支結構還是循環(huán)結構;(3)注意區(qū)分當型循環(huán)結構和直到型循環(huán)結構;(4)處理循環(huán)結構的問題時一定要正確控制循環(huán)次數(shù);(5)要注意各個框的順序,(6)在給出程序框圖求解輸出結果的試題中只要按照程序框圖規(guī)定的運算方法逐次計算,直到達到輸出條件即可.6、B【解析】討論奇偶性,應用等差、等比前n項和公式對作分組求和即可.【詳解】當且為奇數(shù)時,,則,當且為偶數(shù)時,,則,∴.故選:B.7、B【解析】根據(jù)等差數(shù)列的性質求得正確答案.【詳解】由于數(shù)列是等差數(shù)列,所以.故選:B8、A【解析】根據(jù)累加法得,,進而得.【詳解】解:因為所以,當時,,,……,,所以,將以上式子相加得,所以,,.當時,,滿足;所以,.所以.故選:A9、B【解析】根據(jù)正方體的性質確定3條棱兩兩互為異面直線的情況數(shù),結合組合數(shù)及古典概率的求法,求任選3條其中任意2條所在的直線是異面直線的概率.【詳解】如下圖,正方體中如:中任意2條所在的直線都是異面直線,∴這樣的3條直線共有8種情況,∴任選3條,其中任意2條所在的直線都是異面直線的概率為.故選:B.10、B【解析】自行車前后輪與撐腳分別接觸地面,使得自行車穩(wěn)定,此時自行車與地面的三個接觸點不在同一條線上.【詳解】自行車前后輪與撐腳分別接觸地面,此時三個接觸點不在同一條線上,所以可以確定一個平面,即地面,從而使得自行車穩(wěn)定.故選B項.【點睛】本題考查不共線的三個點確定一個平面,屬于簡單題.11、D【解析】對于①在方程中換為,換為可判斷;對于②分析曲線的圖形是兩個拋物線的部分組成的可判斷;對于③在第一象限內,分析橢圓的圖形與曲線圖形的位置關系可判斷.【詳解】在曲線的方程中,換為,換為,方程不變,故曲線關于坐標原點對稱所以①正確,當時,曲線的方程化為,此時當時,曲線的方程化為,此時所以曲線圖形是兩個拋物線的部分組成的,不是橢圓,故②不正確.當,時,設,設,則,(當且僅當或時等號成立)所以在第一象限內,橢圓的圖形在曲線的上方.根據(jù)曲線和橢圓的的對稱性可得橢圓的圖形在曲線的外部(四個頂點在曲線上)所以曲線圍成區(qū)域的面積小于橢圓圍成區(qū)域的面積,故③正確.故選:D12、D【解析】將拋物線方程化標準形式后得到焦準距,可得結果.【詳解】由得,所以,所以,所以拋物線的焦點坐標為.故選:D.【點睛】關鍵點點睛:將拋物線方程化為標準形式是解題關鍵.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】作出二面角的平面角,并計算出二面角的大小.【詳解】設,畫出圖像如下圖所示,由于,所以平面,所以,所以是二面角的平面角.所以.所以二面角的大小為.故答案為:14、【解析】根據(jù)對稱性易知:當樹苗放在第13或14個坑,26位同學領取樹苗往返所走的路程總和最小,再應用等差數(shù)列前n項和的求法求26位同學領取樹苗往返所走的路程總和.【詳解】將26個同學對應的26個坑分左右各13個坑,∴根據(jù)對稱性:樹苗放在左邊13個坑,與放在對稱右邊的13個坑,26個同學所走的總路程對應相等,∴當樹苗放在第13個坑,26位同學領取樹苗往返所走的路程總和最小,此時,左邊13位同學所走的路程分別為,右邊13位同學所走的路程分別為,∴最小值為米.故答案為:.15、①.-4;②.2【解析】根據(jù)兩直線平行斜率相等求解參數(shù)即可;運用兩平行線間的距離公式計算兩直線之間的距離可得出答案.【詳解】解:直線和,,,解得;∴兩直線與間的距離是:.故答案為:;2.16、15【解析】易得拋物線方程為,根據(jù),求得點P的坐標,進而得到直線l的方程,與拋物線方程聯(lián)立,再利用拋物線定義求解.【詳解】解:因為拋物線的焦點到準線的距離為4,所以,則拋物線:,設點的坐標為,的坐標為,因為,所以,則,則,所以直線的方程為,代入拋物線方程可得,故,則,所以故答案為:15三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)極大值為,無極小值(2)【解析】(1)求函數(shù)的導數(shù),根據(jù)導數(shù)的正負判斷極值點,代入原函數(shù)計算即可;(2)將變形,即對恒成立,然后構造函數(shù),利用求導判定函數(shù)的單調性,進而確定實數(shù)a的取值范圍..【小問1詳解】對函數(shù)求導可得:,可知當時,時,,即可知在上單調遞增,在上單調遞減由上可知,的極大值為,無極小值【小問2詳解】由對恒成立,當時,恒成立;當時,對恒成立,可變形為:對恒成立,令,則;求導可得:由(1)知即恒成立,當時,,則在上單調遞增;又,因,故,,所以在上恒成立,當時,令,得,當時,在上單調遞增,當時,在上單調遞減,從而可知的最大值為,即,因此,對都有恒成立,所以,實數(shù)a的取值范圍是.18、(1)證明見解析;(2).【解析】(1)證出,,由線面垂直的判定定理可得平面,再根據(jù)面面垂直的判定定理即可證明.(2)分別以,,為,,軸,建立空間直角坐標系,求出平面的一個法向量以及平面的一個法向量,由即可求解.【詳解】(1)證明:因為,,所以,,因為,所以,所以,即因為底面,所以底面,所以因為,所以平面,又平面,所以平面平面(2)解:如圖,分別以,,為,,軸,建立空間直角坐標系,則,,,,所以,,,設平面的法向量為,則令,得設平面的法向量為,則令,得,所以,由圖知二面角為銳角,所以二面角所成角的余弦值為【點睛】思路點睛:解決二面角相關問題通常用向量法,具體步驟為:(1)建坐標系,建立坐標系的原則是盡可能的使得已知點在坐標軸上或在坐標平面內;(2)根據(jù)題意寫出點的坐標以及向量的坐標,注意坐標不能出錯.(3)利用數(shù)量積驗證垂直或求平面的法向量.(4)利用法向量求距離、線面角或二面角.19、(1)證明見解析(2)【解析】(1)由題意可證得,所以以C為坐標原點,所在直線分別為x軸,y軸,z軸建立空間直角坐標系,利用空間向量證明,(2)求出兩個平面的法向量,利用空間向量求解【小問1詳解】∵平面平面,平面平面,∴平面,∴,以C為坐標原點,所在直線分別為x軸,y軸,z軸建立空間直角坐標系,則,.設平面的法向量為,則,令,則,∵平面,∴∥平面.【小問2詳解】,設平面的法向量為,則,令,則.∴.由圖可知平面與平面的夾角為銳角,所以平面與平面的夾角為.20、(1)(2)【解析】(1)當時,由,可得,兩式相減化簡可求得通項,(2)由(1)得,然后利用裂項相消法可求得結果【小問1詳解】因為,所以時,,兩式作差得,,所以時,,又時,,得,符合上式,所以的通項公式為【小問2詳解】由(1)知,所以即數(shù)列的前n項和21、(1)證明見解析,()(2)存在,【解析】(1)根據(jù)題意和橢圓的定義可知點的軌跡是以A,為焦點的橢圓,且,,進而得出橢圓標準方程;(2)設,聯(lián)立動直線方程和橢圓方程并消元得出關于的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年山東省職教高考《職測》核心考點必刷必練試題庫(含答案)
- 《鄉(xiāng)村振興促進法》參考試題庫80題(含答案)
- 《公務員法》考試題庫500題(含答案)
- 2025年江蘇農林職業(yè)技術學院高職單招職業(yè)技能測試近5年常考版參考題庫含答案解析
- 預防與解決勞動糾紛
- 人工智能應用開發(fā)合同
- 幼兒園紙張活動策劃方案模板五篇
- 建筑施工合同管理培訓.x
- 租賃房屋租賃合同
- 企業(yè)業(yè)務咨詢服務簡單合同
- 2023年四川省公務員錄用考試《行測》真題卷及答案解析
- 機電一體化系統(tǒng)設計-第5章-特性分析
- 2024尼爾森IQ中國本土快消企業(yè)調研報告
- 2024年印度辣椒行業(yè)狀況及未來發(fā)展趨勢報告
- 鑄鋁焊接工藝
- 《社區(qū)康復》課件-第六章 骨關節(jié)疾病、損傷患者的社區(qū)康復實踐
- 2024年湖南省公務員考試行政職業(yè)能力測驗真題
- 攀巖運動之繩結技巧課程
- 防打架毆斗安全教育課件
- 采購行業(yè)的swot分析
- 石家莊長安區(qū)幼兒園信息統(tǒng)計表
評論
0/150
提交評論