版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2025屆河北省行唐縣第三中學(xué)數(shù)學(xué)高三上期末考試試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.窗花是貼在窗紙或窗戶玻璃上的剪紙,是中國古老的傳統(tǒng)民間藝術(shù)之一,它歷史悠久,風(fēng)格獨(dú)特,神獸人們喜愛.下圖即是一副窗花,是把一個邊長為12的大正方形在四個角處都剪去邊長為1的小正方形后剩余的部分,然后在剩余部分中的四個角處再剪出邊長全為1的一些小正方形.若在這個窗花內(nèi)部隨機(jī)取一個點(diǎn),則該點(diǎn)不落在任何一個小正方形內(nèi)的概率是()A. B. C. D.2.直角坐標(biāo)系中,雙曲線()與拋物線相交于、兩點(diǎn),若△是等邊三角形,則該雙曲線的離心率()A. B. C. D.3.定義,已知函數(shù),,則函數(shù)的最小值為()A. B. C. D.4.《聊齋志異》中有這樣一首詩:“挑水砍柴不堪苦,請歸但求穿墻術(shù).得訣自詡無所阻,額上墳起終不悟.”在這里,我們稱形如以下形式的等式具有“穿墻術(shù)”:,,,,則按照以上規(guī)律,若具有“穿墻術(shù)”,則()A.48 B.63 C.99 D.1205.已知數(shù)列{an}滿足a1=3,且aA.22n-1+1 B.22n-1-16.若不等式對于一切恒成立,則的最小值是()A.0 B. C. D.7.已知數(shù)列為等差數(shù)列,且,則的值為()A. B. C. D.8.已知某幾何體的三視圖如圖所示,其中正視圖與側(cè)視圖是全等的直角三角形,則該幾何體的各個面中,最大面的面積為()A.2 B.5 C. D.9.已知函數(shù)若關(guān)于的方程有六個不相等的實(shí)數(shù)根,則實(shí)數(shù)的取值范圍為()A. B. C. D.10.已知正四面體的棱長為,是該正四面體外接球球心,且,,則()A. B.C. D.11.ΔABC中,如果lgcosA=lgsinA.等邊三角形 B.直角三角形 C.等腰三角形 D.等腰直角三角形12.是虛數(shù)單位,則()A.1 B.2 C. D.二、填空題:本題共4小題,每小題5分,共20分。13.二項(xiàng)式的展開式的各項(xiàng)系數(shù)之和為_____,含項(xiàng)的系數(shù)為_____.14.甲、乙兩人同時參加公務(wù)員考試,甲筆試、面試通過的概率分別為和;乙筆試、面試通過的概率分別為和.若筆試面試都通過才被錄取,且甲、乙錄取與否相互獨(dú)立,則該次考試只有一人被錄取的概率是__________.15.已知多項(xiàng)式(x+1)3(x+2)2=x5+a1x4+a2x3+a3x2+a4x+a5,則a4=________,a5=________.16.已知函數(shù),若對于任意正實(shí)數(shù),均存在以為三邊邊長的三角形,則實(shí)數(shù)k的取值范圍是_______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在平面直角坐標(biāo)系中,橢圓的離心率為,且過點(diǎn).求橢圓的方程;已知是橢圓的內(nèi)接三角形,①若點(diǎn)為橢圓的上頂點(diǎn),原點(diǎn)為的垂心,求線段的長;②若原點(diǎn)為的重心,求原點(diǎn)到直線距離的最小值.18.(12分)已知動圓過定點(diǎn),且與直線相切,動圓圓心的軌跡為,過作斜率為的直線與交于兩點(diǎn),過分別作的切線,兩切線的交點(diǎn)為,直線與交于兩點(diǎn).(1)證明:點(diǎn)始終在直線上且;(2)求四邊形的面積的最小值.19.(12分)在直角坐標(biāo)系中,以為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系.曲線的極坐標(biāo)方程為:,曲線的參數(shù)方程為其中,為參數(shù),為常數(shù).(1)寫出與的直角坐標(biāo)方程;(2)在什么范圍內(nèi)取值時,與有交點(diǎn).20.(12分)設(shè)函數(shù).(Ⅰ)當(dāng)時,求不等式的解集;(Ⅱ)若函數(shù)的圖象與直線所圍成的四邊形面積大于20,求的取值范圍.21.(12分)的內(nèi)角A,B,C的對邊分別為a,b,c,已知.(1)求B;(2)若,求的面積的最大值.22.(10分)已知函數(shù).(1)若函數(shù)在上單調(diào)遞減,求實(shí)數(shù)的取值范圍;(2)若,求的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
由幾何概型可知,概率應(yīng)為非小正方形面積與窗花面積的比,即可求解.【詳解】由題,窗花的面積為,其中小正方形的面積為,所以所求概率,故選:D【點(diǎn)睛】本題考查幾何概型的面積公式的應(yīng)用,屬于基礎(chǔ)題.2、D【解析】
根據(jù)題干得到點(diǎn)A坐標(biāo)為,代入拋物線得到坐標(biāo)為,再將點(diǎn)代入雙曲線得到離心率.【詳解】因?yàn)槿切蜲AB是等邊三角形,設(shè)直線OA為,設(shè)點(diǎn)A坐標(biāo)為,代入拋物線得到x=2b,故點(diǎn)A的坐標(biāo)為,代入雙曲線得到故答案為:D.【點(diǎn)睛】求雙曲線的離心率(或離心率的取值范圍),常見有兩種方法:①求出,代入公式;②只需要根據(jù)一個條件得到關(guān)于的齊次式,結(jié)合轉(zhuǎn)化為的齊次式,然后等式(不等式)兩邊分別除以或轉(zhuǎn)化為關(guān)于的方程(不等式),解方程(不等式)即可得(的取值范圍).3、A【解析】
根據(jù)分段函數(shù)的定義得,,則,再根據(jù)基本不等式構(gòu)造出相應(yīng)的所需的形式,可求得函數(shù)的最小值.【詳解】依題意得,,則,(當(dāng)且僅當(dāng),即時“”成立.此時,,,的最小值為,故選:A.【點(diǎn)睛】本題考查求分段函數(shù)的最值,關(guān)鍵在于根據(jù)分段函數(shù)的定義得出,再由基本不等式求得最值,屬于中檔題.4、C【解析】
觀察規(guī)律得根號內(nèi)分母為分子的平方減1,從而求出n.【詳解】解:觀察各式發(fā)現(xiàn)規(guī)律,根號內(nèi)分母為分子的平方減1所以故選:C.【點(diǎn)睛】本題考查了歸納推理,發(fā)現(xiàn)總結(jié)各式規(guī)律是關(guān)鍵,屬于基礎(chǔ)題.5、D【解析】試題分析:因?yàn)閍n+1=4an+3,所以an+1+1=4(an+1),即an+1+1an+1考點(diǎn):數(shù)列的通項(xiàng)公式.6、C【解析】
試題分析:將參數(shù)a與變量x分離,將不等式恒成立問題轉(zhuǎn)化為求函數(shù)最值問題,即可得到結(jié)論.解:不等式x2+ax+1≥0對一切x∈(0,]成立,等價于a≥-x-對于一切成立,∵y=-x-在區(qū)間上是增函數(shù)∴∴a≥-∴a的最小值為-故答案為C.考點(diǎn):不等式的應(yīng)用點(diǎn)評:本題綜合考查了不等式的應(yīng)用、不等式的解法等基礎(chǔ)知識,考查運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想,屬于中檔題7、B【解析】
由等差數(shù)列的性質(zhì)和已知可得,即可得到,代入由誘導(dǎo)公式計算可得.【詳解】解:由等差數(shù)列的性質(zhì)可得,解得,,故選:B.【點(diǎn)睛】本題考查等差數(shù)列的下標(biāo)和公式的應(yīng)用,涉及三角函數(shù)求值,屬于基礎(chǔ)題.8、D【解析】
根據(jù)三視圖還原出幾何體,找到最大面,再求面積.【詳解】由三視圖可知,該幾何體是一個三棱錐,如圖所示,將其放在一個長方體中,并記為三棱錐.,,,故最大面的面積為.選D.【點(diǎn)睛】本題主要考查三視圖的識別,復(fù)雜的三視圖還原為幾何體時,一般借助長方體來實(shí)現(xiàn).9、B【解析】
令,則,由圖象分析可知在上有兩個不同的根,再利用一元二次方程根的分布即可解決.【詳解】令,則,如圖與頂多只有3個不同交點(diǎn),要使關(guān)于的方程有六個不相等的實(shí)數(shù)根,則有兩個不同的根,設(shè)由根的分布可知,,解得.故選:B.【點(diǎn)睛】本題考查復(fù)合方程根的個數(shù)問題,涉及到一元二次方程根的分布,考查學(xué)生轉(zhuǎn)化與化歸和數(shù)形結(jié)合的思想,是一道中檔題.10、A【解析】
如圖設(shè)平面,球心在上,根據(jù)正四面體的性質(zhì)可得,根據(jù)平面向量的加法的幾何意義,重心的性質(zhì),結(jié)合已知求出的值.【詳解】如圖設(shè)平面,球心在上,由正四面體的性質(zhì)可得:三角形是正三角形,,,在直角三角形中,,,,,,因?yàn)闉橹匦?,因此,則,因此,因此,則,故選A.【點(diǎn)睛】本題考查了正四面體的性質(zhì),考查了平面向量加法的幾何意義,考查了重心的性質(zhì),屬于中檔題.11、B【解析】
化簡得lgcosA=lgsinCsinB=﹣lg2,即cosA=sinCsinB=12,結(jié)合0<A<π,可求A=π【詳解】由lgcosA=lgsinC-lgsinB=-lg2,可得lgcosA=∵0<A<π,∴A=π3,B+C=2π3,∴sinC=12sinB=12sin2π3-C=34cosC+故選:B【點(diǎn)睛】本題主要考查了對數(shù)的運(yùn)算性質(zhì)的應(yīng)用,兩角差的正弦公式的應(yīng)用,解題的關(guān)鍵是靈活利用基本公式,屬于基礎(chǔ)題.12、C【解析】
由復(fù)數(shù)除法的運(yùn)算法則求出,再由模長公式,即可求解.【詳解】由.故選:C.【點(diǎn)睛】本題考查復(fù)數(shù)的除法和模,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
將代入二項(xiàng)式可得展開式各項(xiàng)系數(shù)之和,寫出二項(xiàng)展開式通項(xiàng),令的指數(shù)為,求出參數(shù)的值,代入通項(xiàng)即可得出項(xiàng)的系數(shù).【詳解】將代入二項(xiàng)式可得展開式各項(xiàng)系數(shù)和為.二項(xiàng)式的展開式通項(xiàng)為,令,解得,因此,展開式中含項(xiàng)的系數(shù)為.故答案為:;.【點(diǎn)睛】本題考查了二項(xiàng)式定理及二項(xiàng)式展開式通項(xiàng)公式,屬基礎(chǔ)題.14、【解析】
分別求得甲、乙被錄取的概率,根據(jù)獨(dú)立事件概率公式可求得結(jié)果.【詳解】甲被錄取的概率;乙被錄取的概率;只有一人被錄取的概率.故答案為:.【點(diǎn)睛】本題考查獨(dú)立事件概率的求解問題,屬于基礎(chǔ)題.15、164【解析】
只需令x=0,易得a5,再由(x+1)3(x+2)2=(x+1)5+2(x+1)4+(x+1)3,可得a4=+2+.【詳解】令x=0,得a5=(0+1)3(0+2)2=4,而(x+1)3(x+2)2=(x+1)3[(x+1)2+2(x+1)+1]=(x+1)5+2(x+1)4+(x+1)3;則a4=+2+=5+8+3=16.故答案為:16,4.【點(diǎn)睛】本題主要考查了多項(xiàng)式展開中的特定項(xiàng)的求解,可以用賦值法也可以用二項(xiàng)展開的通項(xiàng)公式求解,屬于中檔題.16、【解析】
根據(jù)三角形三邊關(guān)系可知對任意的恒成立,將的解析式用分離常數(shù)法變形,由均值不等式可得分母的取值范圍,則整個式子的取值范圍由的符號決定,故分為三類討論,根據(jù)函數(shù)的單調(diào)性求出函數(shù)值域,再討論,轉(zhuǎn)化為的最小值與的最大值的不等式,進(jìn)而求出的取值范圍.【詳解】因?yàn)閷θ我庹龑?shí)數(shù),都存在以為三邊長的三角形,故對任意的恒成立,,令,則,當(dāng),即時,該函數(shù)在上單調(diào)遞減,則;當(dāng),即時,,當(dāng),即時,該函數(shù)在上單調(diào)遞增,則,所以,當(dāng)時,因?yàn)?,所以,解得;當(dāng)時,,滿足條件;當(dāng)時,,且,所以,解得,綜上,,故答案為:【點(diǎn)睛】本題考查參數(shù)范圍,考查三角形的構(gòu)成條件,考查利用函數(shù)單調(diào)性求函數(shù)值域,考查分類討論思想與轉(zhuǎn)化思想.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、;①;②.【解析】
根據(jù)題意列出方程組求解即可;①由原點(diǎn)為的垂心可得,軸,設(shè),則,,根據(jù)求出線段的長;②設(shè)中點(diǎn)為,直線與橢圓交于,兩點(diǎn),為的重心,則,設(shè):,,,則,當(dāng)斜率不存在時,則到直線的距離為1,,由,則,,,得出,根據(jù)求解即可.【詳解】解:設(shè)焦距為,由題意知:,因此,橢圓的方程為:;①由題意知:,故軸,設(shè),則,,,解得:或,,不重合,故,,故;②設(shè)中點(diǎn)為,直線與橢圓交于,兩點(diǎn),為的重心,則,當(dāng)斜率不存在時,則到直線的距離為1;設(shè):,,,則,,則,則:,,代入式子得:,設(shè)到直線的距離為,則時,;綜上,原點(diǎn)到直線距離的最小值為.【點(diǎn)睛】本題考查橢圓的方程的知識點(diǎn),結(jié)合運(yùn)用向量,韋達(dá)定理和點(diǎn)到直線的距離的知識,屬于難題.18、(1)見解析(2)最小值為1.【解析】
(1)根據(jù)拋物線的定義,判斷出的軌跡為拋物線,并由此求得軌跡的方程.設(shè)出兩點(diǎn)的坐標(biāo),利用導(dǎo)數(shù)求得切線的方程,由此求得點(diǎn)的坐標(biāo).寫出直線的方程,聯(lián)立直線的方程和曲線的方程,根據(jù)韋達(dá)定理求得點(diǎn)的坐標(biāo),并由此判斷出始終在直線上,且.(2)設(shè)直線的傾斜角為,求得的表達(dá)式,求得的表達(dá)式,由此求得四邊形的面積的表達(dá)式進(jìn)而求得四邊形的面積的最小值.【詳解】(1)∵動圓過定點(diǎn),且與直線相切,∴動圓圓心到定點(diǎn)和定直線的距離相等,∴動圓圓心的軌跡是以為焦點(diǎn)的拋物線,∴軌跡的方程為:,設(shè),∴直線的方程為:,即:①,同理,直線的方程為:②,由①②可得:,直線方程為:,聯(lián)立可得:,,∴點(diǎn)始終在直線上且;(2)設(shè)直線的傾斜角為,由(1)可得:,,∴四邊形的面積為:,當(dāng)且僅當(dāng)或,即時取等號,∴四邊形的面積的最小值為1.【點(diǎn)睛】本小題主要考查動點(diǎn)軌跡方程的求法,考查直線和拋物線的位置關(guān)系,考查拋物線中四邊形面積的最值的計算,考查運(yùn)算求解能力,屬于中檔題.19、(1),.(2)【解析】
(1)利用,代入可求;消參可得直角坐標(biāo)方程.(2)將的參數(shù)方程代入的直角坐標(biāo)方程,與有交點(diǎn),可得,解不等式即可求解.【詳解】(1)(2)將的參數(shù)方程代入的直角坐標(biāo)方程得:與有交點(diǎn),即【點(diǎn)睛】本題考查了極坐標(biāo)方程與普通方程的轉(zhuǎn)化、參數(shù)方程與普通方程的轉(zhuǎn)化、直線與圓的位置關(guān)系的判斷,屬于基礎(chǔ)題.20、(1)(2)【解析】
(Ⅰ)當(dāng)時,不等式為.若,則,解得或,結(jié)合得或.若,則,不等式恒成立,結(jié)合得.綜上所述,不等式解集為.(Ⅱ)則的圖象與直線所圍成的四邊形為梯形,令,得,令,得,則梯形上底為,下底為11,高為..化簡得,解得,結(jié)合,得的取值范圍為.點(diǎn)睛:含絕對值不等式的解法有兩個基本方法,一是運(yùn)用零點(diǎn)分區(qū)間討論,二是利用絕對值的幾何意義求解.法一是運(yùn)用分類討
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 云南工程職業(yè)學(xué)院《流行音樂器樂演奏(1)》2023-2024學(xué)年第一學(xué)期期末試卷
- 新媒體時代下信息傳播速度與范圍
- 公司年度總結(jié)與展望模板
- 市場營銷成果報告模板
- 業(yè)務(wù)操作-房地產(chǎn)經(jīng)紀(jì)人《業(yè)務(wù)操作》模擬試卷2
- 房地產(chǎn)交易制度政策-《房地產(chǎn)基本制度與政策》預(yù)測試卷3
- 醫(yī)生辭職報告怎么寫
- 二零二五年度軌道交通信號系統(tǒng)安裝合同6篇
- 山東省菏澤市2024-2025學(xué)年高二上學(xué)期期末教學(xué)質(zhì)量檢測數(shù)學(xué)試題參考答案
- 2024-2025學(xué)年四川省瀘州市老窖天府中學(xué)高一(上)期末數(shù)學(xué)試卷(含答案)
- 完整版:美制螺紋尺寸對照表(牙數(shù)、牙高、螺距、小徑、中徑外徑、鉆孔)
- 2024年黑龍江齊齊哈爾中考英語試題及答案1
- 河道綜合治理工程技術(shù)投標(biāo)文件
- 專題24 短文填空 選詞填空 2024年中考英語真題分類匯編
- JT∕T 794-2011 道路運(yùn)輸車輛衛(wèi)星定位系統(tǒng) 車載終端技術(shù)要求
- 西南師大版五年級上冊小數(shù)乘除法豎式計算題200道及答案
- 再生障礙性貧血課件
- AQ/T 2061-2018 金屬非金屬地下礦山防治水安全技術(shù)規(guī)范(正式版)
- 2024年湖北三江航天江河化工科技有限公司招聘筆試沖刺題(帶答案解析)
- 采購人員管理制度
- 礦卡司機(jī)安全教育考試卷(帶答案)
評論
0/150
提交評論