版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2025屆貴州省黔西南布依族苗族自治州興義市第八中學(xué)高二上數(shù)學(xué)期末教學(xué)質(zhì)量檢測模擬試題注意事項(xiàng)1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)為坐標(biāo)原點(diǎn),拋物線的焦點(diǎn)為,為拋物線上一點(diǎn).若,則的面積為()A. B.C. D.2.阿基米德(公元前287年~公元前212年)不僅是著名的物理學(xué)家,也是著名的數(shù)學(xué)家,他利用“逼近法”得到的橢圓的面積除以圓周率等于橢圓的長半軸長與短半軸長的乘積.若橢圓C的對稱軸為坐標(biāo)軸,焦點(diǎn)在y軸上,且橢圓C的離心率為,面積為6π,則橢圓C的標(biāo)準(zhǔn)方程為()A. B.C. D.3.已知橢圓上一點(diǎn)到橢圓一個焦點(diǎn)的距離是,則點(diǎn)到另一個焦點(diǎn)的距離為()A.2 B.3C.4 D.54.南北朝時期杰出的數(shù)學(xué)家祖沖之的兒子祖暅在數(shù)學(xué)上也有很多創(chuàng)造,其最著名的成就是祖暅原理:夾在兩個平行平面之間的幾何體,被平行于這兩個平面的任意平面所截,如果截得的兩個截面的面積總相等,那么這兩個幾何體的體積相等,現(xiàn)有一個圓柱體和一個長方體,它們的底面面積相等,高也相等,若長方體的底面周長為,圓柱體的體積為,根據(jù)祖暅原理,可推斷圓柱體的高()A.有最小值 B.有最大值C.有最小值 D.有最大值5.已知拋物線上的一點(diǎn),則點(diǎn)M到拋物線焦點(diǎn)F的距離等于()A.6 B.5C.4 D.26.已知一個圓錐體積為,任取該圓錐的兩條母線a,b,若a,b所成角的最大值為,則該圓錐的側(cè)面積為()A. B.C. D.7.已知則是的A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件8.設(shè)函數(shù)若函數(shù)有兩個零點(diǎn),則實(shí)數(shù)m的取值范圍是()A. B.C. D.9.在中,角A,B,C所對的邊分別為a,b,c,已知,則的面積為()A. B.C. D.10.設(shè)拋物線上一點(diǎn)到軸的距離是4,則點(diǎn)到該拋物線焦點(diǎn)的距離是()A.6 B.8C.9 D.1011.已知矩形,為平面外一點(diǎn),且平面,,分別為,上的點(diǎn),且,,,則()A. B.C.1 D.12.下列說法正確的是()A.空間中的任意三點(diǎn)可以確定一個平面B.四邊相等的四邊形一定是菱形C.兩條相交直線可以確定一個平面D.正四棱柱的側(cè)面都是正方形二、填空題:本題共4小題,每小題5分,共20分。13.已知焦點(diǎn)在軸上的雙曲線,其漸近線方程為,焦距為,則該雙曲線的標(biāo)準(zhǔn)方程為________14.已知函數(shù),則曲線在處的切線方程為___________.15.已知直線,圓,若直線與圓相交于兩點(diǎn),則的最小值為______16.已知拋物線上一點(diǎn)到準(zhǔn)線的距離為,到直線:的距離為,則的最小值為__________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知關(guān)于x的不等式,.(1)若,求不等式的解集;(2)若不等式的解集為R,求k的取值范圍.18.(12分)在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為(t為參數(shù)),直線l與x軸交于點(diǎn)P.以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為(1)求直線l的普通方程與曲線C的直角坐標(biāo)方程;(2)若直線l與曲線C相交于A,B兩點(diǎn),求的值19.(12分)已知為坐標(biāo)原點(diǎn),橢圓的左右焦點(diǎn)分別為,,為橢圓的上頂點(diǎn),以為圓心且過的圓與直線相切.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)已知直線交橢圓于兩點(diǎn).(?。┤糁本€的斜率等于,求面積的最大值;(ⅱ)若,點(diǎn)在上,.證明:存在定點(diǎn),使得為定值.20.(12分)四棱錐中,平面,四邊形為平行四邊形,(1)若為中點(diǎn),求證平面;(2)若,求面與面的夾角的余弦值.21.(12分)設(shè):,:.(1)若命題“,是真命題”,求的取值范圍;(2)若是的充分不必要條件,求的取值范圍.22.(10分)為了解某校今年高一年級女生的身體素質(zhì)狀況,從該校高一年級女生中抽取了一部分學(xué)生進(jìn)行“擲鉛球”的項(xiàng)目測試,成績低于5米為不合格,成績在5至7米(含5米不含7米)的為及格,成績在7米至11米(含7米和11米,假定該校高一女生擲鉛球均不超過11米)為優(yōu)秀.把獲得的所有數(shù)據(jù),分成五組,畫出的頻率分布直方圖如圖所示.已知有4名學(xué)生的成績在9米到11米之間(1)求實(shí)數(shù)的值及參加“擲鉛球”項(xiàng)目測試的人數(shù);(2)若從此次測試成績最好和最差的兩組中隨機(jī)抽取2名學(xué)生再進(jìn)行其它項(xiàng)目的測試,求所抽取的2名學(xué)生自不同組的概率
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】先由拋物線方程求出點(diǎn)的坐標(biāo),準(zhǔn)線方程為,再由可求得點(diǎn)的橫坐標(biāo)為4,從而可求出點(diǎn)的縱坐標(biāo),進(jìn)而可求出的面積【詳解】由題意可得點(diǎn)的坐標(biāo),準(zhǔn)線方程為,因?yàn)闉閽佄锞€上一點(diǎn),,所以點(diǎn)的橫坐標(biāo)為4,當(dāng)時,,所以,所以的面積為,故選:D2、D【解析】設(shè)橢圓的方程為,根據(jù)題意得到和,求得的值,即可求解.【詳解】由題意,橢圓的焦點(diǎn)在軸上,可設(shè)橢圓的方程為,因?yàn)闄E圓C的離心率為,可得,又由,即,解得,又因?yàn)闄E圓的面積為,可得,即,聯(lián)立方程組,解答,所以橢圓方程為.故選:D.3、C【解析】根據(jù)橢圓的定義,結(jié)合題意,即可求得結(jié)果.【詳解】設(shè)橢圓的兩個焦點(diǎn)分別為,故可得,又到橢圓一個焦點(diǎn)的距離是,故點(diǎn)到另一個焦點(diǎn)的距離為.故選:.4、C【解析】由條件可得長方體的體積為,設(shè)長方體的底面相鄰兩邊分別為,根據(jù)基本不等式,可求出底面面積的最大值,進(jìn)而求出高的最小值,得出結(jié)論.【詳解】依題意長方體的體積為,設(shè)圓柱的高為長方體的底面相鄰兩邊分別為,,當(dāng)且僅當(dāng)時,等號成立,.故選:C.【點(diǎn)睛】本題以數(shù)學(xué)文化為背景,考查基本不等式求最值,要認(rèn)真審題,理解題意,屬于基礎(chǔ)題.5、B【解析】將點(diǎn)代入拋物線方程求出,再由拋物線的焦半徑公式可得答案.詳解】將點(diǎn)代入拋物線方程可得,解得則故選:B6、B【解析】設(shè)圓錐的母線長為R,底面半徑長為r,由題可知圓錐的軸截面是等邊三角形,根據(jù)體積公式計算可得,利用扇形的面積公式計算即可求得結(jié)果.【詳解】如圖,設(shè)圓錐的母線長為R,底面半徑長為r,由題可知圓錐的軸截面是等邊三角形,所以,圓錐的體積,解得,所以該圓錐的側(cè)面積為.故選:B7、A【解析】先解不等式,再比較集合包含關(guān)系確定選項(xiàng).【詳解】因?yàn)?,所以是的充分不必要條件,選A.【點(diǎn)睛】本題考查解含絕對值不等式、解一元二次不等式以及充要關(guān)系判定,考查基本分析求解能力,屬基礎(chǔ)題.8、D【解析】有兩個零點(diǎn)等價于與的圖象有兩個交點(diǎn),利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性與最值,畫出函數(shù)圖象,數(shù)形結(jié)合可得結(jié)果.【詳解】解:設(shè),則,所以在上遞減,在上遞增,,且時,,有兩個零點(diǎn)等價于與的圖象有兩個交點(diǎn),畫出的圖象,如下圖所示,由圖可得,時,與的圖象有兩個交點(diǎn),此時,函數(shù)有兩個零點(diǎn),實(shí)數(shù)m的取值范圍是,故選:D.【點(diǎn)睛】方法點(diǎn)睛:本題主要考查分段函數(shù)的性質(zhì)、利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、函數(shù)的零點(diǎn),以及數(shù)形結(jié)合思想的應(yīng)用,屬于難題.數(shù)形結(jié)合是根據(jù)數(shù)量與圖形之間的對應(yīng)關(guān)系,通過數(shù)與形的相互轉(zhuǎn)化來解決數(shù)學(xué)問題的一種重要思想方法,函數(shù)圖象是函數(shù)的一種表達(dá)形式,它形象地揭示了函數(shù)的性質(zhì),為研究函數(shù)的數(shù)量關(guān)系提供了“形”的直觀性.歸納起來,圖象的應(yīng)用常見的命題探究角度有:1、確定方程根的個數(shù);2、求參數(shù)的取值范圍;3、求不等式的解集;4、研究函數(shù)性質(zhì)9、A【解析】由余弦定理計算求得角,根據(jù)三角形面積公式計算即可得出結(jié)果.【詳解】由余弦定理得,,∴,∴,故選:A10、A【解析】計算拋物線的準(zhǔn)線,根據(jù)距離結(jié)合拋物線的定義得到答案.【詳解】拋物線的焦點(diǎn)為,準(zhǔn)線方程為,到軸的距離是4,故到準(zhǔn)線的距離是,故點(diǎn)到該拋物線焦點(diǎn)的距離是.故選:A.11、B【解析】由,,得,然后利用向量的加減法法則把向量用向量表示出來,可求出的值,從而可得答案【詳解】解:因?yàn)椋?,所以所?因?yàn)椋?,所以,故選:B12、C【解析】根據(jù)立體幾何相關(guān)知識對各選項(xiàng)進(jìn)行判斷即可.【詳解】對于A,根據(jù)公理2及推論可知,不共線的三點(diǎn)確定一個平面,故A錯誤;對于B,在一個平面內(nèi),四邊相等的四邊形才一定是菱形,故B錯誤;對于C,根據(jù)公理2及推論可知,兩條相交直線可以確定一個平面,故C正確;對于D,正四棱柱指上、下底面都是正方形且側(cè)棱垂直于底面的棱柱,側(cè)面可以是矩形,故D錯誤.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)漸近線方程、焦距可得,,再根據(jù)雙曲線參數(shù)關(guān)系、焦點(diǎn)的位置寫出雙曲線標(biāo)準(zhǔn)方程.詳解】由題設(shè),可知:,,∴由,可得,,又焦點(diǎn)在軸上,∴雙曲線的標(biāo)準(zhǔn)方程為.故答案為:.14、【解析】求出函數(shù)的導(dǎo)函數(shù),即可求出切線的斜率,再利用點(diǎn)斜式求出切線方程【詳解】解:∵,∴,又,∴曲線在點(diǎn)處的切線方程為,即.故答案為:.15、【解析】求出直線過的定點(diǎn),當(dāng)圓心和定點(diǎn)的連線垂直于直線時,取得最小值,結(jié)合即可求解.【詳解】由題意知,圓,圓心,半徑,直線,,,解得,故直線過定點(diǎn),設(shè)圓心到直線的距離為,則,可知當(dāng)距離最大時,有最小值,由圖可知,時,最大,此時,此時.故的最小值為.故答案為:.16、3【解析】根據(jù)拋物線的定義可知,點(diǎn)P到拋物線準(zhǔn)線的距離等于點(diǎn)P到焦點(diǎn)F的距離,過焦點(diǎn)F作直線:的垂線,此時取得最小值,利用點(diǎn)到直線的距離公式,即可求解.【詳解】由題意,拋物線的焦點(diǎn)坐標(biāo)為,準(zhǔn)線方程為,如圖所示,根據(jù)拋物線的定義可知,點(diǎn)P到拋物線準(zhǔn)線的距離等于點(diǎn)P到焦點(diǎn)F的距離,過焦點(diǎn)F作直線:的垂線,此時取得最小值,由點(diǎn)到直線的距離公式可得,即的最小值為3.【點(diǎn)睛】本題主要考查了拋物線的標(biāo)準(zhǔn)方程及其簡單的幾何性質(zhì)的應(yīng)用,以及拋物線的最值問題,其中解答中根據(jù)拋物線的定義可知,點(diǎn)P到拋物線準(zhǔn)線的距離等于點(diǎn)P到焦點(diǎn)F的距離,利用點(diǎn)到直線的距離公式求解是解答的關(guān)鍵,著重考查了轉(zhuǎn)化思想,以及運(yùn)算與求解能力,屬于中檔試題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)因式分解后可求不等式的解集.(2)就分類討論后可得的取值范圍.【小問1詳解】時,原不等式即為,其解為.【小問2詳解】不等式的解集為R,當(dāng)時,則有,解得,綜上,.18、(1)直線l的普通方程,曲線C的直角坐標(biāo)方程(2)【解析】(1)直接利用轉(zhuǎn)換關(guān)系,在參數(shù)方程、極坐標(biāo)方程和直角坐標(biāo)方程之間進(jìn)行轉(zhuǎn)換;(2)利用一元二次方程根和系數(shù)關(guān)系式的應(yīng)用求出結(jié)果【小問1詳解】解:直線的參數(shù)方程為為參數(shù)),轉(zhuǎn)換為直角坐標(biāo)方程,曲線的極坐標(biāo)方程為,根據(jù),轉(zhuǎn)換為直角坐標(biāo)方程為;小問2詳解】直線轉(zhuǎn)換為參數(shù)方程為為參數(shù)),代入,得到,所以,,所以19、(1);(2)(ⅰ);(ⅱ).【解析】(1)求出后可得橢圓的標(biāo)準(zhǔn)方程.(2)(ⅰ)設(shè)直線的方程為:,,聯(lián)立直線方程和橢圓方程,利用韋達(dá)定理、弦長公式可求面積表達(dá)式,利用基本不等式可求面積的最大值.(ⅱ)利用韋達(dá)定理化簡可得,從而可得的軌跡為圓,故可證存在定點(diǎn),使得為定值.【詳解】(1)由題意知:,,又,則以為圓心且過的圓的半徑為,故,所以橢圓的標(biāo)準(zhǔn)方程為:.(2)(?。┰O(shè)直線的方程為:,將代入得:,所以且,故.又,點(diǎn)到直線的距離,所以,等號當(dāng)僅當(dāng)時取,即當(dāng)時,的面積取最大值為.(ⅱ)顯然直線的斜率一定存在,設(shè)直線的方程為:,,由(?。┲核?,所以,解得,,直線過定點(diǎn)或,所以D在以O(shè)Z為直徑的圓上,該圓的圓心為或,半徑等于,所以存在定點(diǎn)或,使得為定值.【點(diǎn)睛】方法點(diǎn)睛:求橢圓的標(biāo)準(zhǔn)方程,關(guān)鍵是基本量的確定,方法有待定系數(shù)法、定義法等.直線與圓錐曲線的位置關(guān)系中的定點(diǎn)、定值、最值問題,一般可通過聯(lián)立方程組并消元得到關(guān)于或的一元二次方程,再把要求解的目標(biāo)代數(shù)式化為關(guān)于兩個的交點(diǎn)橫坐標(biāo)或縱坐標(biāo)的關(guān)系式,該關(guān)系中含有或,最后利用韋達(dá)定理把關(guān)系式轉(zhuǎn)化為若干變量的方程(或函數(shù)),從而可求定點(diǎn)、定值、最值問題.20、(1)證明見解析(2)【解析】(1)先證,,再證平面即可;(2)建立空間直角坐標(biāo)系,先求出面與面的法向量,再計算夾角余弦值即可.小問1詳解】取中點(diǎn),連接,則四邊形為平行四邊形,,為直角三角形,且.又平面,平面,.又,平面.【小問2詳解】,為等邊三角形,取中點(diǎn),連接,則,以為坐標(biāo)原點(diǎn),分別以為軸建立空間坐標(biāo)系,如圖令,則,設(shè)面的法向量為,則由得取,則設(shè)面的法向量為,則由得取,則設(shè)面與面的夾角為,則所以面與面的夾角的余弦值為.21、(1)(2)【解析】(1)解不等式得到解集,根據(jù)題意列出不等式組,求出的取值范圍;(2)先解不等式,再根據(jù)充分不必要條件得到是的真子集,進(jìn)而求出的取值范圍.【小問1詳解】因?yàn)?,由可得:,因?yàn)椤埃睘檎婷},所以,即,解得:.即的取值范圍是.【小問2詳解】因?yàn)椋煽傻茫?,,因?yàn)槭堑某浞植槐匾獥l件,所以是的真子集,所以(等號不同時取),解得:,即的取值范圍是.22、(1)0.05,40;(2)【解析】(1)因?yàn)橛深l率分布直方圖可得共五組的頻率和為1所以可得一個關(guān)于的等式,即可求出的值.再根據(jù)已知有4名學(xué)生的成績在9米到11米之間,可以求出本次參加“擲鉛球”項(xiàng)目測試的人數(shù).本小題要根據(jù)所給的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 強(qiáng)化免疫日宣傳
- 教學(xué)教務(wù)年終總結(jié)匯報
- 四川省眉山市東坡區(qū)眉山育英實(shí)驗(yàn)學(xué)校2024-2025學(xué)年高一上學(xué)期1月期末地理試題( 含答案)
- 電氣物資知識培訓(xùn)課件
- 2025年度智能安防SAAS解決方案銷售服務(wù)協(xié)議2篇
- 醫(yī)學(xué)基礎(chǔ)知識培訓(xùn)課件
- 河北省張家口市萬全區(qū)2024-2025學(xué)年八年級上學(xué)期1月期末考試生物試卷(含答案)
- 遼寧省葫蘆島市(2024年-2025年小學(xué)六年級語文)人教版課后作業(yè)(下學(xué)期)試卷及答案
- 2024年事業(yè)單位教師招聘言語理解與表達(dá)題庫附參考答案【突破訓(xùn)練】
- 貴州盛華職業(yè)學(xué)院《個人理財學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- (42)-妊娠合并內(nèi)外科疾病
- 骨科手術(shù)后患者營養(yǎng)情況及營養(yǎng)不良的原因分析,骨傷科論文
- 糕點(diǎn)生產(chǎn)檢驗(yàn)記錄表
- GB/T 1040.3-2006塑料拉伸性能的測定第3部分:薄膜和薄片的試驗(yàn)條件
- 河北省房屋建筑和市政基礎(chǔ)設(shè)施施工圖設(shè)計文件審查要點(diǎn)(版)
- 醫(yī)院院長年終工作總結(jié)報告精編ppt
- 綠化養(yǎng)護(hù)重點(diǎn)難點(diǎn)分析及解決措施
- “三排查三清零”回頭看問題整改臺賬
- 造價咨詢結(jié)算審核服務(wù)方案
- 中國人民財產(chǎn)保險股份有限公司機(jī)動車綜合商業(yè)保險條款
- 八年級物理上冊計算題精選(50道)
評論
0/150
提交評論