版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
上海金山中學(xué)2025屆高二上數(shù)學(xué)期末學(xué)業(yè)水平測試模擬試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.兩圓與的公切線有()A.1條 B.2條C.3條 D.4條2.如圖,已知多面體,其中是邊長為4的等邊三角形,四邊形是矩形,,平面平面,則點(diǎn)到平面的距離是()A. B.C. D.3.直線在y軸上的截距是A. B.C. D.4.已知,且直線始終平分圓的周長,則的最小值是()A.2 B.C.6 D.165.已知橢圓的左,右兩個焦點(diǎn)分別為,若橢圓C上存在一點(diǎn)A,滿足,則橢圓C的離心率的取值范圍是()A. B.C. D.6.九連環(huán)是我國從古至今廣為流傳的一種益智游戲,它由九個鐵絲圓環(huán)相連成串,按一定規(guī)則移動圓環(huán)的次數(shù)決定解開圓環(huán)的個數(shù).在某種玩法中,用表示解開n(,)個圓環(huán)所需的最少移動次數(shù),若數(shù)列滿足,且當(dāng)時,則解開5個圓環(huán)所需的最少移動次數(shù)為()A.10 B.16C.21 D.227.已知點(diǎn)是橢圓上的任意一點(diǎn),過點(diǎn)作圓:的切線,設(shè)其中一個切點(diǎn)為,則的取值范圍為()A. B.C. D.8.已知向量為平面的法向量,點(diǎn)在內(nèi),點(diǎn)在外,則點(diǎn)到平面的距離為()A. B.C. D.9.已知雙曲線,則雙曲線的漸近線方程為()A. B.C. D.10.現(xiàn)從名男醫(yī)生和名女醫(yī)生中抽取兩人加入“援鄂醫(yī)療隊”,用表示事件“抽到的兩名醫(yī)生性別相同”,表示事件“抽到的兩名醫(yī)生都是女醫(yī)生”,則()A. B.C. D.11.、是橢圓的左、右焦點(diǎn),點(diǎn)在橢圓上,,過作的角平分線的垂線,垂足為,則的長為A.1 B.2C.3 D.412.音樂與數(shù)學(xué)有著密切的聯(lián)系,我國春秋時期有個著名的“三分損益法”:以“宮”為基本音,“宮”經(jīng)過一次“損”,頻率變?yōu)樵瓉淼?,得到“微”,“微”?jīng)過一次“益”,頻率變?yōu)樵瓉淼?,得到“商”……依此?guī)律損益交替變化,獲得了“宮”“微”“商”“羽”“角”五個音階.據(jù)此可推得()A.“商”“羽”“角”的頻率成公比為的等比數(shù)列B.“宮”“微”“商”的頻率成公比為的等比數(shù)列C.“宮”“商”“角”的頻率成公比為的等比數(shù)列D.“角”“商”“宮”的頻率成公比為的等比數(shù)列二、填空題:本題共4小題,每小題5分,共20分。13.寫出直線一個方向向量______14.某高中高二年級學(xué)生在學(xué)習(xí)完成數(shù)學(xué)選擇性必修一后進(jìn)行了一次測試,總分為100分.現(xiàn)用分層隨機(jī)抽樣方法從學(xué)生的數(shù)學(xué)成績中抽取一個樣本量為40的樣本,再將40個成績樣本數(shù)據(jù)分為6組:40,50),50,60),60,70),70,80),80,90),90,100,繪制得到如圖所示的頻率分布直方圖.(1)從所給的頻率分布直方圖中估計成績樣本數(shù)據(jù)眾數(shù),平均數(shù),中位數(shù);(2)在區(qū)間40,50)和90,100內(nèi)的兩組學(xué)生成績樣本數(shù)據(jù)中,隨機(jī)抽取兩個進(jìn)調(diào)查,求調(diào)查對象來自不同分組的概率.15.已知P是橢圓的上頂點(diǎn),過原點(diǎn)的直線l交C于A,B兩點(diǎn),若的面積為,則l的斜率為____________16.一條直線經(jīng)過,并且傾斜角是直線的傾斜角的2倍,則直線的方程為__________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在矩形中,是的中點(diǎn),是上,,且,如圖,將沿折起至:(1)指出二面角的平面角,并說明理由;(2)若,求證:平面平面;(3)若是線段的中點(diǎn),求證:直線平面;18.(12分)已知曲線在處的切線方程為,且.(1)求的解析式;(2)若時,不等式恒成立,求實(shí)數(shù)的取值范圍.19.(12分)已知點(diǎn)F為拋物線的焦點(diǎn),點(diǎn)在拋物線上,且.(1)求該拋物線的方程;(2)若點(diǎn)A在第一象限,且拋物線在點(diǎn)A處的切線交y軸于點(diǎn)M,求的面積.20.(12分)已知橢圓C:的長軸長為4,過C的一個焦點(diǎn)且與x軸垂直的直線被C截得的線段長為3(1)求C的方程;(2)若直線:與C交于A,B兩點(diǎn),線段AB的中垂線與C交于P,Q兩點(diǎn),且,求m的值21.(12分)已知圓的圓心為,且圓經(jīng)過點(diǎn)(1)求圓的標(biāo)準(zhǔn)方程;(2)若圓:與圓恰有兩條公切線,求實(shí)數(shù)的取值范圍22.(10分)已知冪函數(shù)在上單調(diào)遞減,函數(shù)的定義域?yàn)榧螦(1)求m的值;(2)當(dāng)時,的值域?yàn)榧螧,若是成立的充分不必要條件,求實(shí)數(shù)的取值范圍
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】求得圓心坐標(biāo)分別為,半徑分別為,根據(jù)圓圓的位置關(guān)系的判定方法,得出兩圓的位置關(guān)系,即可求解.【詳解】由題意,圓與圓,可得圓心坐標(biāo)分別為,半徑分別為,則,所以,可得圓外離,所以兩圓共有4條切線.故選:D.2、C【解析】利用面面垂直性質(zhì)結(jié)合已知尋找兩兩垂直的三條直線建立空間直角坐標(biāo)系,用向量法可解.【詳解】取的中點(diǎn)O,連接OB,過O在平面ACDE面內(nèi)作交DE于F∵平面平面ABC,平面ACDE平面ABC=AC,平面ACDE,∴平面ABC∴∵是邊長為4的等邊三角形,四邊形ACDE是矩形,∴以O(shè)為原點(diǎn),OA,OB,OF分別為x,y,z軸,建立如圖所示空間直角坐標(biāo)系則,,,設(shè)平面ABD的單位法向量,,由解得取,則∴點(diǎn)C到平面ABD的距離.故選:C3、D【解析】在y軸上的截距只需令x=0求出y的值即可得出.【詳解】令x=0,則y=-2,即直線在y周上的截距為-2,故選D.4、B【解析】由已知直線過圓心得,再用均值不等式即可.【詳解】由已知直線過圓心得:,,當(dāng)且僅當(dāng)時取等.故選:B.5、C【解析】根據(jù)題意可知當(dāng)A為橢圓的上下頂點(diǎn)時,即可滿足橢圓C上存在一點(diǎn)A,使得,由此可得,解此不等式可得答案.【詳解】由橢圓的對稱性可知,當(dāng)A為橢圓的上下頂點(diǎn)時,最大,故只需即可滿足題意,設(shè)O為坐標(biāo)原點(diǎn),則只需,即有,所以,解得,故選:C6、D【解析】根據(jù)題意,結(jié)合數(shù)列遞推公式,代入計算即可.【詳解】根據(jù)題意,由,得.故選:D.7、B【解析】設(shè),得到,利用橢圓的范圍求解.【詳解】解:設(shè),則,,,因?yàn)?,所以,即,故選:B8、A【解析】先求出向量,再利用空間向量中點(diǎn)到平面的距離公式即可求解.【詳解】解:由題知,點(diǎn)在內(nèi),點(diǎn)在外,所以又向量為平面的法向量所以點(diǎn)到平面的距離為:故選:A.9、A【解析】求出、的值,可得出雙曲線的漸近線方程.【詳解】在雙曲線中,,,因此,該雙曲線的漸近線方程為.故選:A.10、A【解析】先求出抽到的兩名醫(yī)生性別相同的事件的概率,再求抽到的兩名醫(yī)生都是女醫(yī)生事件的概率,然后代入條件概率公式即可【詳解】解:由已知得,,則,故選:A【點(diǎn)睛】此題考查條件概率問題,屬于基礎(chǔ)題11、A【解析】延長交延長線于N,則選:A.【點(diǎn)睛】涉及兩焦點(diǎn)問題,往往利用橢圓定義進(jìn)行轉(zhuǎn)化研究,而角平分線性質(zhì)可轉(zhuǎn)化到焦半徑問題,兩者切入點(diǎn)為橢圓定義.12、C【解析】根據(jù)文化知識,分別求出相對應(yīng)的頻率,即可判斷出結(jié)果【詳解】設(shè)“宮”的頻率為a,由題意經(jīng)過一次“損”,可得“徵”的頻率為a,“徵”經(jīng)過一次“益”,可得“商”的頻率為a,“商”經(jīng)過一次“損”,可得“羽”頻率為a,最后“羽”經(jīng)過一次“益”,可得“角”的頻率是a,由于a,a,a成等比數(shù)列,所以“宮、商、角”的頻率成等比數(shù)列,且公比為,故選:C【點(diǎn)睛】本題考查等比數(shù)列的定義,考查學(xué)生的運(yùn)算能力和轉(zhuǎn)換能力及思維能力,屬于基礎(chǔ)題二、填空題:本題共4小題,每小題5分,共20分。13、【解析】本題可先將直線的一般式化為斜截式,然后根據(jù)斜率即可得到直線的一個方向向量.【詳解】由題意可知,直線可以化為,所以直線的斜率為,直線的一個方向向量可以寫為.故答案為:.14、(1)眾數(shù);平均數(shù),中位數(shù).(2).【解析】(1)按“眾數(shù),平均數(shù),中位數(shù)”的公式求解.(2)由頻率分布直方圖得到各區(qū)間的頻率,再用古典概型求解.【小問1詳解】眾數(shù)取頻率分布直方圖中最高矩形對應(yīng)區(qū)間的中點(diǎn)75;平均數(shù);因?yàn)椋灾形粩?shù)在區(qū)間上,且中位數(shù)【小問2詳解】由頻率分布直方圖得出在區(qū)間40,50)和90,100內(nèi)的成績樣本數(shù)據(jù)分別有4個和2個,從6個樣本選2個共有個結(jié)果,記事件A=“調(diào)查對象來自不同分組”,結(jié)果有所以.15、【解析】設(shè)出直線AB的方程,聯(lián)立橢圓方程得到A點(diǎn)橫坐標(biāo)滿足,再利用,解方程即可得到答案.【詳解】設(shè)直線AB的方程為:,,由,得,所以,又所以,解得.故答案為:16、【解析】先求出直線傾斜角,從而可求得直線的傾斜角,則可求出直線的斜率,進(jìn)而可求出直線的方程【詳解】因?yàn)橹本€的斜率為,所以直線的傾斜角為,所以直線的傾斜角為,所以直線的斜率為,因?yàn)橹本€經(jīng)過,所以直線的方程為,即,故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)為二面角的平面角,理由見解析(2)證明見解析(3)證明見解析【解析】(1)根據(jù),結(jié)合二面角定義得到答案.(2)證明平面得到,得到平面,得到證明.(3)延長,交于點(diǎn),連接,證明即可.【小問1詳解】連接,則,,故為二面角的平面角.【小問2詳解】,,,故平面,平面,故,又,,故平面,平面,故平面平面.【小問3詳解】延長,交于點(diǎn),連接,易知,故故是的中點(diǎn),是線段的中點(diǎn),故,平面,且平面,故直線平面.18、(1);(2).【解析】(1)根據(jù)導(dǎo)數(shù)的幾何意義得,結(jié)合對數(shù)的運(yùn)算性質(zhì)求出m,利用直線的點(diǎn)斜式方程即可得出切線方程;(2)由(1)將不等式變形為,利用導(dǎo)數(shù)研究函數(shù)在、、時的單調(diào)性,即可得出結(jié)果.【小問1詳解】,∴,,,,,切線方程為,即,∴.【小問2詳解】令,,,當(dāng)時,,所以在上單調(diào)遞增,所以,即符合題意;當(dāng)時,設(shè),①當(dāng),,,所以在上單調(diào)遞增,,所以在上單調(diào)遞增,所以,故符合題意;②當(dāng)時,,,所以在上遞增,在上遞減,且,所以當(dāng)時,,則在上單調(diào)遞減,且,故,,舍去.綜上:19、(1);(2)10.【解析】(1)由根據(jù)拋物線的定義求出可得拋物線方程;(2)求出拋物線過點(diǎn)A的切線,得出點(diǎn)M的坐標(biāo)即可求三角形面積.【小問1詳解】由拋物線的定義可知,即,拋物線的方程為.【小問2詳解】,且A在第一象限,,即A(4,4),顯然切線的斜率存在,故可設(shè)其方程為,由,消去得,即,令,解得,切線方程為.令x=0,得,即,又,,.20、(1);(2).【解析】(1)由題設(shè)可得且,求出,即可得橢圓方程.(2)聯(lián)立直線l和橢圓C并整理為關(guān)于x的一元二次方程,由求出m的范圍,再應(yīng)用韋達(dá)定理、弦長公式求,進(jìn)而可得線段AB的中垂線,同理聯(lián)立曲線C求相交弦長,再由已知條件求m值,注意其范圍.【小問1詳解】由題意知,,則,令,可得,由題設(shè)有,則,所以C的方程為【小問2詳解】聯(lián)立方程得:,由,得設(shè),,則,,所以,另一方面,,即線段AB的中點(diǎn)為,所以線段AB的中垂線方程為令,聯(lián)立方程得:同理求法,可得:,即因此,解得,故21、(1);(2).【解析】(1)根據(jù)給定條件求出圓C的半徑,再直接寫出方程作答.(2)由給定條件可得圓C與圓O相交,由此列出
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 沈陽理工大學(xué)《車輛人機(jī)工程學(xué)》2021-2022學(xué)年第一學(xué)期期末試卷
- 國家著作權(quán)軟件著作權(quán)轉(zhuǎn)讓合同
- 2024-2025學(xué)年新教材高中歷史第5課古代非洲與美洲課時素養(yǎng)評價含解析新人教版必修中外歷史綱要下
- 高中歷史第六單元資本主義運(yùn)行機(jī)制的調(diào)節(jié)第19課當(dāng)代資本主義的新變化史料解讀素材北師大版必修2
- 大班音樂《粗心的小畫家》課件
- 2024房屋維修工程施工合同
- 2024裝修合同簽署小常識分享
- 2024辦公設(shè)備采購合同范本
- 2024【服務(wù)協(xié)議模板】代駕服務(wù)協(xié)議合同范本
- 2024裝修合同制定的注意事項
- 《船舶電氣設(shè)備》課程標(biāo)準(zhǔn)(含課程思政)
- 中職職教高考《電工基礎(chǔ)》歷年考試真題題庫匯總含答案
- 2023年廣東省公務(wù)員錄用考試《行測》題
- 從科學(xué)探究到跨學(xué)科實(shí)踐:初中物理教學(xué)的新變革基于新舊課標(biāo)的比較分析
- 2024年安徽興泰融資租賃有限責(zé)任公司招聘筆試參考題庫含答案解析
- 南京交通職業(yè)技術(shù)學(xué)院單招職測參考試題庫(含答案)
- 班前晨會內(nèi)容及安全注意事項
- T-NAHIEM 101-2023 急診科建設(shè)與設(shè)備配置標(biāo)準(zhǔn)
- 教育部《中小學(xué)德育工作指南》-德育工作指南
- 建筑保溫材料生產(chǎn)加工項目建設(shè)方案
- 2016-2023年太原幼兒師范高等??茖W(xué)校高職單招(英語/數(shù)學(xué)/語文)筆試歷年參考題庫含答案解析
評論
0/150
提交評論