版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2025屆云南楚雄州南華縣民中數(shù)學(xué)高二上期末檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.某市物價部門對5家商場的某商品一天的銷售量及其售價進(jìn)行調(diào)查,5家商場的售價(元)和銷售量(件)之間的一組數(shù)據(jù)如表所示.按公式計算,與的回歸直線方程是,則下列說法錯誤的是()售價99.51010.511銷售量1110865A.B.售價變量每增加1個單位時,銷售變量大約減少3.2個單位C.當(dāng)時,的估計值為12.8D.銷售量與售價成正相關(guān)2.有下列四個命題,其中真命題是()A., B.,,C.,, D.,3.已知直線過點,且與直線垂直,則直線的方程是()A. B.C. D.4.十二平均律是我國明代音樂理論家和數(shù)學(xué)家朱載堉發(fā)明的.明萬歷十二年(公元1584年),他寫成《律學(xué)新說》,提出了十二平均律的理論.十二平均律的數(shù)學(xué)意義是:在1和2之間插入11個正數(shù),使包含1和2的這13個數(shù)依次成遞增的等比數(shù)列.依此規(guī)則,插入的第四個數(shù)應(yīng)為()A. B.C. D.5.古希臘數(shù)學(xué)家阿波羅尼奧斯(約公元前262~公元前190年)的著作《圓錐曲線論》是古代世界光輝的科學(xué)成果,著作中有這樣一個命題:平面內(nèi)與兩定點距離的比為常數(shù)k(k>0且k≠1)的點的軌跡是圓,后人將這個圓稱為阿波羅尼斯圓.已知O(0,0),A(3,0),動點P(x,y)滿,則動點P軌跡與圓的位置關(guān)系是()A.相交 B.相離C.內(nèi)切 D.外切6.“”是“”的()A.充要條件 B.充分不必要條件C.必要不充分條件 D.既不充分也不必要條件7.若數(shù)列對任意滿足,下面選項中關(guān)于數(shù)列的說法正確的是()A.一定是等差數(shù)列B.一定是等比數(shù)列C.可以既是等差數(shù)列又是等比數(shù)列D.可以既不是等差數(shù)列又不是等比數(shù)列8.已知直線,若直線與垂直,則的傾斜角為()A. B.C. D.9.已知雙曲線(,)的左、右焦點分別為,,點A的坐標(biāo)為,點P是雙曲線在第二象限的部分上一點,且,點Q是線段的中點,且,Q關(guān)于直線PA對稱,則雙曲線的離心率為()A.3 B.2C. D.10.某雙曲線的一條漸近方程為,且焦點為,則該雙曲線的方程是()A. B.C. D.11.設(shè)異面直線、的方向向量分別為,,則異面直線與所成角的大小為()A. B.C. D.12.“橢圓的離心率為”是“”的()A.充要條件 B.充分不必要條件C.必要不充分條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),是的導(dǎo)函數(shù),則______14.已知拋物線的焦點為,定點,若直線與拋物線相交于、兩點(點在、中間),且與拋物線的準(zhǔn)線交于點,若,則的長為______.15.若直線與直線平行,且原點到直線的距離為,則直線的方程為____________.16.已知曲線表示焦點在軸上的雙曲線,則符合條件的的一個整數(shù)值為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)滿足.(1)求的解析式,并判斷其奇偶性;(2)若對任意,不等式恒成立,求實數(shù)a的取值范圍.18.(12分)直線經(jīng)過兩直線和的交點(1)若直線與直線平行,求直線的方程;(2)若點到直線的距離為,求直線的方程19.(12分)求下列不等式的解集:(1);(2).20.(12分)已知數(shù)列滿足,.(1)證明:數(shù)列為等差數(shù)列.(2)求數(shù)列的前項和.21.(12分)已知橢圓的右焦點為,且經(jīng)過點.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)橢圓的左頂點為,過點的直線(與軸不重合)交橢圓于兩點,直線交直線于點,若直線上存在另一點,使.求證:三點共線.22.(10分)已知橢圓的左焦點為F,右頂點為,M是橢圓上一點.軸且(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)直線與橢圓C交于E,H兩點,點G在橢圓C上,且四邊形平行四邊形(其中O為坐標(biāo)原點),求
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】首先求出、,再根據(jù)回歸直線方程必過樣本中心點,即可求出,再根據(jù)回歸直線方程的性質(zhì)一一判斷即可;【詳解】解:因為,,與回歸直線方程,恒過定點,,解得,故A正確,所以回歸直線方程為,即售價變量每增加1個單位時,銷售變量大約減少3.2個單位,故B正確;當(dāng)時,即當(dāng)時,的估計值為12.8,故C正確;因為回歸直線方程為,所以銷售量與售價成負(fù)相關(guān),故D錯誤;故選:D2、B【解析】對于選項A,令即可驗證其不正確;對于選項C、選項D,令,即可驗證其均不正確,進(jìn)而可得出結(jié)果.【詳解】對于選項A,令,則,故A錯;對于選項B,令,則,顯然成立,故B正確;對于選項C,令,則顯然無解,故C錯;對于選項D,令,則顯然不成立,故D錯.故選B【點睛】本題主要考查命題真假的判定,用特殊值法驗證即可,屬于??碱}型.3、D【解析】由題意設(shè)直線方程為,然后將點坐標(biāo)代入求出,從而可求出直線方程【詳解】因為直線與直線垂直,所以設(shè)直線方程為,因為直線過點,所以,得,所以直線方程為,故選:D4、C【解析】先求出等比數(shù)列的公比,再由等比數(shù)列的通項公式即可求解.【詳解】用表示這個數(shù)列,依題意,,則,,第四個數(shù)即.故選:C.5、A【解析】首先求得點的軌跡,再利用圓心距與半徑的關(guān)系,即可判斷兩圓的位置關(guān)系.【詳解】由條件可知,,化簡為:,動點的軌跡是以為圓心,2為半徑的圓,圓是以為圓心,為半徑的圓,兩圓圓心間的距離,所以兩圓相交.故選:A6、B【解析】根據(jù)充分條件、必要條件的定義判斷即可;【詳解】解:由,得,反之不成立,如,,滿足,但是不滿足,故“”是“”的充分不必要條件故選:B7、D【解析】由已知可得或,結(jié)合等差數(shù)列和等比數(shù)列的定義,可得答案【詳解】由,得或,即或,若,則數(shù)列是等差數(shù)列,則B錯誤;若,當(dāng)時,數(shù)列是等差數(shù)列,當(dāng)時,數(shù)列是等比數(shù)列,則A錯誤數(shù)列是等差數(shù)列,也可以是等比數(shù)列;由,不能得到數(shù)列為非0常數(shù)列,則不可以既是等差又是等比數(shù)列,則C錯誤;可以既不是等差又不是等比數(shù)列,如1,3,5,10,20,,故D正確;故選:D8、D【解析】由直線與垂直得到的斜率,再利用斜率與傾斜角的關(guān)系即可得到答案.【詳解】因為直線與垂直,且,所以,解得,設(shè)的傾斜角為,,所以.故選:D9、C【解析】由角平分線的性質(zhì)可得,結(jié)合已知條件即可求雙曲線的離心率.【詳解】由題設(shè),易知:,由知:,即,整理得:.故選:C10、D【解析】設(shè)雙曲線的方程為,利用焦點為求出的值即可.【詳解】因為雙曲線的一條漸近方程為,且焦點為,所以可設(shè)雙曲線的方程為,則,,所以該雙曲線方程為.故選:D.11、C【解析】利用空間向量夾角的公式直接求解.【詳解】,,,.由異面直線所成角的范圍為,故異面直線與所成的角為.故選:C12、C【解析】討論橢圓焦點的位置,根據(jù)離心率分別求出參數(shù)m,由充分必要性的定義判斷條件間的充分、必要關(guān)系.【詳解】當(dāng)橢圓的焦點在軸上時,,得;當(dāng)橢圓的焦點在軸上時,,得故“橢圓的離心率為”是“”的必要不充分條件故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】根據(jù)基本初等函數(shù)的導(dǎo)數(shù)公式及導(dǎo)數(shù)的加法法則,對求導(dǎo),再求即可.【詳解】由題設(shè),,所以.故答案為:14、【解析】分別過點、作、垂直于拋物線的準(zhǔn)線于、,則,求出直線的方程,可求得拋物線的焦點的坐標(biāo),可得出拋物線的標(biāo)準(zhǔn)方程,再將直線的方程與拋物線的方程聯(lián)立,求出點的縱坐標(biāo),利用拋物線的定義可求得線段的長.【詳解】如圖,分別過點、作、垂直于拋物線的準(zhǔn)線于、,則,由得,所以,,又,所以,直線的方程為,所以,,則,則拋物線的方程為,設(shè)點的縱坐標(biāo)為,由,得或,因為點在、之間,則,所以,.故答案為:.15、【解析】可設(shè)直線的方程為,利用點到直線的距離公式求得,即可得解.【詳解】可設(shè)直線的方程為,即,則原點到直線的距離為,解得,所以直線的方程為.故答案為:.16、.(答案不唯一)【解析】給出一個符合條件的值即可.【詳解】當(dāng)時,曲線表示焦點在軸上的雙曲線,故答案為:.(答案不唯一)三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),是奇函數(shù)(2)【解析】(1)由求出,進(jìn)而求得的解析式,利用奇偶函數(shù)的定義判斷函數(shù)的奇偶性即可;(2)根據(jù)冪函數(shù)的單調(diào)性可得函數(shù)的單調(diào)性,求出函數(shù)的最小值,將不等式恒成立轉(zhuǎn)化為對任意使得恒成立即可.【小問1詳解】因為,所以,所以.所以.的定義城為,且,所以是奇函數(shù).【小問2詳解】因為,在上均為增函數(shù),所以在上增函數(shù),所以.對任意,不等式恒成立,則,所以,即實數(shù)a的取值范固為.18、(1)(2)或【解析】(1)由題意兩立方程組,求兩直線的交點的坐標(biāo),利用兩直線平行的性質(zhì),用待定系數(shù)法求出的方程(2)分類討論直線的斜率,利用點到直線的距離公式,用點斜式求直線的方程【小問1詳解】解:由,解得,所以兩直線和的交點為當(dāng)直線與直線平行,設(shè)的方程為,把點代入求得,可得的方程為【小問2詳解】解:斜率不存在時,直線方程為,滿足點到直線的距離為5當(dāng)?shù)男甭蚀嬖跁r,設(shè)直限的方程為,即,則點到直線的距離為,求得,故的方程為,即綜上,直線的方程為或19、(1)(2)【解析】(1)根據(jù)一元二次不等式的解法求得不等式的解集.(2)根據(jù)分式不等式的解法求得不等式的解集.【小問1詳解】不等式等價于,解得.∴不等式的解集為.【小問2詳解】不等式等價于,解得或.∴不等式的解集為.20、(1)證明見解析(2)【解析】(1)由結(jié)合等差數(shù)列的定義證明即可;(2)由結(jié)合錯位相減法得出前項和.【小問1詳解】在兩邊同時除以,得:,,故數(shù)列是以1為首項,1為公差的等差數(shù)列;【小問2詳解】由(1)得:,,①②①②得:所以.21、(1);(2)證明見解析.【解析】(1)根據(jù)給定條件利用橢圓的定義求出軸長即可計算作答.(2)根據(jù)給定條件設(shè)出的方程,與橢圓C的方程聯(lián)立,求出直線PA的方程并求出點M的坐標(biāo),求出點N的坐標(biāo),再利用斜率推理作答.【小問1詳解】依題意,橢圓的左焦點,由橢圓定義得:即,則,所以橢圓的標(biāo)準(zhǔn)方程為.【小問2詳解】由(1)知,,直線不垂直y軸,設(shè)直線方程為,,由消去x得:,則,,直線的斜率,直線的方程:,而直線,即,直線的斜率,而,即,直線的斜率,直線的方程:,則點,直線的斜率,直線的斜率,,而,即,所以三點共線.【點睛】思路點睛:解答直線與橢圓的題目時,時常把兩個曲線的方程聯(lián)立,消去x(或y)建立一元二次方程,然
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度汽車維修設(shè)備租賃合同范本8篇
- 2025至2030年中國手押砂帶床數(shù)據(jù)監(jiān)測研究報告
- 2025年度出租車公司股權(quán)轉(zhuǎn)讓與智能駕駛技術(shù)研發(fā)協(xié)議3篇
- 二零二五版木地板企業(yè)社會責(zé)任報告編制合同3篇
- 二零二五年度生態(tài)保護(hù)區(qū)打井勞務(wù)合作協(xié)議4篇
- 二零二五年度新能源汽車零部件生產(chǎn)承包股東內(nèi)部合同4篇
- 二零二五年度船舶買賣合同船舶檢驗標(biāo)準(zhǔn)3篇
- 二零二四年國際投資權(quán)益轉(zhuǎn)讓合同
- 二零二四商務(wù)培訓(xùn)中心機房改造及系統(tǒng)集成服務(wù)合同3篇
- 二零二四年度新能源汽車電池技術(shù)改進(jìn)合同2篇
- 《中華民族多元一體格局》
- 2023年四川省綿陽市中考數(shù)學(xué)試卷
- 南安市第三次全國文物普查不可移動文物-各鄉(xiāng)鎮(zhèn)、街道分布情況登記清單(表五)
- 選煤廠安全知識培訓(xùn)課件
- 項目前期選址分析報告
- 急性肺栓塞搶救流程
- 《形象價值百萬》課件
- 紅色文化教育國內(nèi)外研究現(xiàn)狀范文十
- 中醫(yī)基礎(chǔ)理論-肝
- 小學(xué)外來人員出入校門登記表
- 《土地利用規(guī)劃學(xué)》完整課件
評論
0/150
提交評論