版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
山東省鄒城市實驗中學2025屆數(shù)學高二上期末教學質量檢測模擬試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知兩條異面直線的方向向量分別是,,則這兩條異面直線所成的角滿足()A. B.C. D.2.已知函數(shù),若,則()A. B.0C.1 D.23.已知a,b為正數(shù),,則下列不等式一定成立的是()A. B.C. D.4.劉徽是一個偉大的數(shù)學家,他的杰作《九章算術注》和《海島算經》是中國寶貴的數(shù)學遺產,他所提出的割圓術可以估算圓周率π,理論上能把π的值計算到任意精度.割圓術的第一步是求圓的內接正六邊形的面積.若在圓內隨機取一點,則此點取自該圓內接正六邊形的概率是()A. B.C. D.5.過點,的直線的斜率等于1,則m的值為()A.1 B.4C.1或3 D.1或46.已知:,直線l:,M為直線l上的動點,過點M作的切線MA,MB,切點為A,B,則四邊形MACB面積的最小值為()A.1 B.2C. D.47.已知等比數(shù)列的前n項和為,且,則()A.20 B.30C.40 D.508.如圖,在四棱錐中,平面,底面是正方形,,則下列數(shù)量積最大的是()A. B.C. D.9.橢圓的焦點為、,上頂點為,若,則()A B.C. D.10.如圖,D是正方體的一個“直角尖”O(jiān)-ABC(OA,OB,OC兩兩垂直且相等)棱OB的中點,P是BC中點,Q是AD上的一個動點,連PQ,則當AC與PQ所成角為最小時,()A. B.C. D.211.拋物線的焦點為F,點為該拋物線上的動點,點A是拋物線的準線與坐標軸的交點,則的最大值是()A.2 B.C. D.12.某學校要從5名男教師和3名女教師中隨機選出3人去支教,則抽取的3人中,女教師最多為1人的選法種數(shù)為()A.10 B.30C.40 D.46二、填空題:本題共4小題,每小題5分,共20分。13.已知點在拋物線上,那么點到點的距離與點到拋物線焦點距離之和取得最小值時,點的坐標為______14.如圖,在長方體中,,,則直線與平面所成角的正弦值為__________.15.點在以,為焦點的橢圓上運動,則的重心的軌跡方程是___________.16.橢圓的左、右焦點分別為,,過焦點的直線交該橢圓于兩點,若的內切圓面積為,兩點的坐標分別為,,則的面積________,的值為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在中,,,請再從條件①、條件②這兩個條件中選擇一個作為已知,然后解答下列問題.(1)求角的大小;(2)求的面積.條件①:;條件②:.18.(12分)已知數(shù)列的前項和為,且(1)求數(shù)列的通項公式;(2)記,求數(shù)列的前項和19.(12分)如圖,三棱柱中,底面邊長和側棱長都等于1,(1)設,,,用向量表示,并求出的長度;(2)求異面直線與所成角的余弦值20.(12分)已知數(shù)列{an}是一個等差數(shù)列,且a2=1,a5=-5.(1)求{an}的通項an;(2)求{an}前n項和Sn的最大值21.(12分)直線經過兩直線和的交點(1)若直線與直線平行,求直線的方程;(2)若點到直線的距離為,求直線的方程22.(10分)芯片作為在集成電路上的載體,廣泛應用在手機、軍工、航天等多個領域,是能夠影響一個國家現(xiàn)代工業(yè)的重要因素.根據(jù)市場調研與統(tǒng)計,某公司七年時間里在芯片技術上的研發(fā)投入x(億元)與收益y(億元)的數(shù)據(jù)統(tǒng)計如下:(1)根據(jù)折線圖數(shù)據(jù),求y關于x的線性回歸方程(系數(shù)精確到整數(shù)部分);(2)為鼓勵科技創(chuàng)新,當研發(fā)技術投入不少于16億元時,國家給予公司補貼5億元,預測當芯片的研發(fā)投入為17億元時公司的實際收益附:其回歸方程的斜率和截距的最小二乘法估計分別為,.參考數(shù)據(jù),
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】利用向量夾角余弦公式直接求解【詳解】解:兩條異面直線的方向向量分別是,,這兩條異面直線所成的角滿足:,,故選:D2、D【解析】求出函數(shù)的導數(shù),直接代入即可求值.【詳解】因為,所以,所以,所以.故選:D.3、A【解析】構造新函數(shù),以函數(shù)單調性把不等式轉化為整式不等式即可解決.【詳解】不等式可化為:令,則則函數(shù)為單調增函數(shù).由可得故選:A4、B【解析】此點取自該圓內接正六邊形的概率是正六邊形面積除以圓的面積,分別求出即可.【詳解】如圖,在單位圓中作其內接正六邊形,該正六邊形是六個邊長等于半徑的正三角形,其面積,圓的面積為則所求概率.故選:B【點睛】此題考查幾何概率模型求解,關鍵在于準確求出正六邊形的面積和圓的面積.5、A【解析】解方程即得解.【詳解】由題得.故選:A【點睛】本題主要考查斜率的計算,意在考查學生對該知識的理解掌握水平.6、B【解析】易知四邊形MACB的面積為,然后由最小,根據(jù)與直線l:垂直求解.【詳解】:化為標準方程為:,由切線長得:,四邊形MACB的面積為,若四邊形MACB的面積最小,則最小,此時與直線l:垂直,所以,所以四邊形MACB面積的最小值,故選:B7、B【解析】利用等比數(shù)列的前n項和公式即可求解.【詳解】設等比數(shù)列的首項為,公比為,則,由得,即,解得或(舍),且代入①得,則,所以.故選:B.8、B【解析】設,根據(jù)線面垂直的性質得,,,,根據(jù)向量數(shù)量積的定義逐一計算,比較可得答案.【詳解】解:設,因為平面,所以,,,,又底面是正方形,所以,,對于A,;對于B,;對于C,;對于D,,所以數(shù)量積最大的是,故選:B.9、C【解析】分析出為等邊三角形,可得出,進而可得出關于的等式,即可解得的值.【詳解】在橢圓中,,,,如下圖所示:因為橢圓的上頂點為點,焦點為、,所以,,為等邊三角形,則,即,因此,.故選:C.10、C【解析】根據(jù)題意,建立空間直角坐標系,求得AC與PQ夾角的余弦值關于點坐標的函數(shù)關系,求得角度最小時點的坐標,即可代值計算求解結果.【詳解】根據(jù)題意,兩兩垂直,故以為坐標原點,建立空間直角坐標系如下所示:設,則,不妨設點的坐標為,則,,則,又,設直線所成角為,則,則,令,令,則,令,則,此時.故當時,取得最大值,此時最小,點,則,故,則故選:C.11、B【解析】設直線的傾斜角為,設垂直于準線于,由拋物線的性質可得,則,當直線PA與拋物線相切時,最小,取得最大值,設出直線方程得到直線和拋物線相切時的點P的坐標,然后進行計算得到結果.【詳解】設直線的傾斜角為,設垂直于準線于,由拋物線的性質可得,所以則,當最小時,則值最大,所以當直線PA與拋物線相切時,θ最大,即最小,由題意可得,設切線PA的方程為:,,整理可得,,可得,將代入,可得,所以,即P的橫坐標為1,即P的坐標,所以,,所以的最大值為:,故選:B【點睛】關鍵點睛:本題主要考查了拋物線的簡單性質.解題的關鍵是利用了拋物線的定義.一般和拋物線有關的小題,很多時可以應用結論來處理的;平時練習時應多注意拋物線的結論的總結和應用.尤其和焦半徑聯(lián)系的題目,一般都和定義有關,實現(xiàn)點點距和點線距的轉化12、C【解析】可分為女教師0人,男教師3人和女教師1人,男教師2人兩種情況,用組合數(shù)表示計算即得解【詳解】女教師最多為1人即女教師為0人或者1人若女教師為0人,則男教師有3人,有種選擇;若女教師為1人,則男教師2人,有種選擇;故女教師最多為1人的選法種數(shù)為種故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由拋物線定義可得,由此可知當為與拋物線的交點時,取得最小值,進而求得點坐標.【詳解】由題意得:拋物線焦點為,準線為作,垂直于準線,如下圖所示:由拋物線定義知:(當且僅當三點共線時取等號)即的最小值為,此時為與拋物線的交點故答案為【點睛】本題考查拋物線線上的點到焦點的距離與到定點距離之和最小的相關問題的求解,關鍵是能夠熟練應用拋物線定義確定最值取得的位置.14、##【解析】過作,垂足為,則平面,則即為所求角,從而可得結果.【詳解】依題意,畫出圖形,如圖,過作,垂足為,可知點H為中點,由平面,可得,又所以平面,則即為所求角,因為,,所以,故答案為:.15、【解析】設出點和三角形的重心,利用重心坐標公式得到點和三角形的重心坐標的關系,,代入橢圓方程即可求得軌跡方程,再利用,,三點不共線得到.【詳解】設,,由,得,即,,因為為的重心,所以,,即,,代入,得,即,因為,,三點不共線,所以,則的重心的軌跡方程是.故答案:.16、①.6②.3【解析】由題意得,由內切圓面積為可得其半徑,根據(jù)焦點三角形面積公式可得第一空答案,結合面積公式和等面積法建立等式化簡即可.【詳解】解:由得由內切圓面積為可得其半徑,設其內切圓圓心為則又所以.故答案為:6;3【點睛】橢圓中常用面積公式:(1)(表示邊上的高);(2);(3)(為三角形內切圓半徑);(4).三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)條件選擇見解析,(2)【解析】(1)選①,利用余弦定理求出的值,結合角的取值范圍,即可求得角的值;選②,利用余弦定理可求出的值,并利用余弦定理求出的值,結合角的取值范圍,即可求得角的值;(2)利用三角形的面積公式可求得的面積.【小問1詳解】解:選①,,由余弦定理可得,,所以,.選②,,整理可得,,解得,由余弦定理可得,,所以,.【小問2詳解】解:由三角形的面積公式可得.18、(1)(2)【解析】(1)結合作差法可直接求解;(2)由錯位相減法可直接求解.【小問1詳解】當時,;當時,,當時,滿足上式,所以;【小問2詳解】由(1)知,所以①,②,①-②得,所以.19、(1);(2)【解析】(1)根據(jù)向量加減法運算法則可得,根據(jù)計算可得的長度;(2)根據(jù)空間向量的夾角公式計算可得結果.【小問1詳解】,因為,同理可得,所以【小問2詳解】因為,所以,因為,所以所以異面直線與所成角的余弦值為20、(1)an=-2n+5.(2)4【解析】(Ⅰ)設{an}的公差為d,由已知條件,,解出a1=3,d=-2所以an=a1+(n-1)d=-2n+5(Ⅱ)Sn=na1+d=-n2+4n=-(n-2)2+4,所以n=2時,Sn取到最大值421、(1)(2)或【解析】(1)由題意兩立方程組,求兩直線的交點的坐標,利用兩直線平行的性質,用待定系數(shù)法求出的方程(2)分類討論直線的斜率,利用點到直線的距離公式,用點斜式求直線的方程
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度園林景觀綠化工程養(yǎng)護管理合同匯編3篇
- 2025版醫(yī)療機構護士規(guī)范化培訓及勞動合同3篇
- 2025年度個人對個人小額消費貸款合同書2篇
- 二零二五年度網(wǎng)絡安全風險評估與治理合同集3篇
- 2025年度留學簽證逾期處理合同4篇
- 2025年機動車質押借款合同解除及賠償條款3篇
- 二零二五年度零食店收銀員食品安全責任承諾合同4篇
- 二零二五年度大型工業(yè)鍋爐設備采購合同2篇
- 2025年度塔吊操作人員勞務派遣及技能培訓合同
- 二零二五年度企業(yè)項目管理培訓服務合同標準3篇
- 電化學儲能電站安全規(guī)程
- 幼兒園學習使用人民幣教案教案
- 2023年浙江省紹興市中考科學真題(解析版)
- 語言學概論全套教學課件
- 大數(shù)據(jù)與人工智能概論
- 《史記》上冊注音版
- 2018年湖北省武漢市中考數(shù)學試卷含解析
- 測繪工程產品價格表匯編
- 《腎臟的結構和功能》課件
- 裝飾圖案設計-裝飾圖案的形式課件
- 護理學基礎教案導尿術catheterization
評論
0/150
提交評論