版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2025屆湖南省道縣補習(xí)學(xué)校數(shù)學(xué)高一上期末學(xué)業(yè)質(zhì)量監(jiān)測試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知,則角的終邊所在的象限是()A.第一象限 B.第二象限C.第三象限 D.第四象限2.過點且與原點距離最大的直線方程是()A. B.C. D.3.已知定義域為的奇函數(shù)滿足,若方程有唯一的實數(shù)解,則()A.2 B.4C.8 D.164.“”是的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件5.已知函數(shù)的定義域為,集合,若中的最小元素為2,則實數(shù)的取值范圍是:A. B.C. D.6.?dāng)?shù)學(xué)家歐拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直線上,且重心到外心的距離是重心到垂心距離的一半,這條直線后人稱之為三角形的歐拉線.已知的頂點,若其歐拉線方程為,則頂點C的坐標(biāo)是A. B.C. D.7.若點關(guān)于直線的對稱點是,則直線在軸上的截距是A.1 B.2C.3 D.48.函數(shù)是奇函數(shù),則的值為()A.1 B.C.0 D.9.長方體中的8個頂點都在同一球面上,,,,則該球的表面積為()A. B.C. D.10.函數(shù)圖象大致是()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知,且,則______.12.已知角的終邊上有一點,則________.13.定義在上的奇函數(shù)滿足:對于任意有,若,則的值為__________.14.已知角的終邊上一點P與點關(guān)于y軸對稱,角的終邊上一點Q與點A關(guān)于原點O中心對稱,則______15.已知點A(3,2),B(﹣2,a),C(8,12)在同一條直線上,則a=_____.16.已知集合M={3,m+1},4∈M,則實數(shù)m的值為______三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.食品安全問題越來越引起人們的重視,農(nóng)藥、化肥的濫用給人民群眾的健康帶來了一定的危害.為了給消費者帶來放心的蔬菜,某農(nóng)村合作社每年投入資金萬元,搭建甲、乙兩個無公害蔬菜大棚,每個大棚至少要投入資金萬元,其中甲大棚種西紅柿,乙大棚種黃瓜.根據(jù)以往的種菜經(jīng)驗,發(fā)現(xiàn)種西紅柿的年收入、種黃瓜的年收入與各自的資金投入(單位:萬元)滿足,.設(shè)甲大棚的資金投入為(單位:萬元),每年兩個大棚的總收入為(單位:萬元)(1)求的值;(2)試問如何安排甲、乙兩個大棚的資金投入,才能使總收入最大18.設(shè),關(guān)于的二次不等式的解集為,集合,滿足,求實數(shù)的取值范圍.19.已知角的終邊經(jīng)過點,,,求的值.20.如圖,某園林單位準(zhǔn)備綠化一塊直徑為BC的半圓形空地,外的地方種草,的內(nèi)接正方形PQRS為一水池,其余的地方種花.若,,設(shè)的面積為,正方形PQRS的面積為.(1)用a,表示和;(2)當(dāng)a為定值,變化時,求的最小值,及此時的值.21.已知,.(Ⅰ)求證:函數(shù)在上是增函數(shù);(Ⅱ)若,求實數(shù)的取值范圍.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】化,可知角的終邊所在的象限.【詳解】,將逆時針旋轉(zhuǎn)即可得到,角的終邊在第三象限.故選:C【點睛】本題主要考查了象限角的概念,屬于容易題.2、A【解析】首先根據(jù)題意得到過點且與垂直的直線為所求直線,再求直線方程即可.【詳解】由題知:過點且與原點距離最大的直線為過點且與垂直的直線.因為,故所求直線為,即.故選:A【點睛】本題主要考查直線方程的求解,數(shù)形結(jié)合為解題的關(guān)鍵,屬于簡單題.3、B【解析】由條件可得,為周期函數(shù),且一個周期為6,設(shè),則得到偶函數(shù),由有唯一的實數(shù)解,得有唯一的零點,則,從而得到答案.【詳解】由得,即,從而,所以為周期函數(shù),且一個周期為6,所以.設(shè),將的圖象向右平移1個單位長度,可得到函數(shù)的圖象,且為偶函數(shù).由有唯一的實數(shù)解,得有唯一的零點,從而偶函數(shù)有唯一的零點,且零點為,即,即,解得,所以故選:.【點睛】關(guān)鍵點睛:本題考查函數(shù)的奇偶性和周期性的應(yīng)用,解答本題的關(guān)鍵是由條件得到,得到為周期函數(shù),設(shè)的圖象,且為偶函數(shù).由有唯一的實數(shù)解,得有唯一的零點,從而偶函數(shù)有唯一的零點,且零點為,屬于中檔題.4、A【解析】先看時,是否成立,即判斷充分性;再看成立時,能否推出,即判斷必要性,由此可得答案.【詳解】當(dāng)時,,即“”是的充分條件;當(dāng)時,,則或,則或,即成立,推不出一定成立,故“”不是的必要條件,故選:A.5、C【解析】本題首先可以求出集合以及集合中所包含的元素,然后通過交集的相關(guān)性質(zhì)以及中的最小元素為2即可列出不等式組,最后求出實數(shù)的取值范圍【詳解】函數(shù),,或者,所以集合,,,,所以集合,因為中的最小元素為2,所以,解得,故選C【點睛】本題考查了集合的相關(guān)性質(zhì),主要考查了交集的相關(guān)性質(zhì)、函數(shù)的定義域、帶絕對值的不等式的求法,考查了推理能力與計算能力,考查了化歸與轉(zhuǎn)化思想,提升了學(xué)生的邏輯思維,是中檔題6、A【解析】設(shè)C的坐標(biāo),由重心坐標(biāo)公式求重心,代入歐拉線得方程,求出AB的垂直平分線,聯(lián)立歐拉線方程得三角形外心,外心到三角形兩頂點距離相等可得另一方程,兩方程聯(lián)立求得C點的坐標(biāo).【詳解】設(shè)C(m,n),由重心坐標(biāo)公式得重心為,代入歐拉線方程得:①AB的中點為,,所以AB的中垂線方程為聯(lián)立,解得所以三角形ABC的外心為,則,化簡得:②聯(lián)立①②得:或,當(dāng)時,BC重合,舍去,所以頂點C的坐標(biāo)是故選A.【點睛】本題主要考查了直線方程的各種形式,重心坐標(biāo)公式,屬于中檔題.7、D【解析】∵點A(1,1)關(guān)于直線y=kx+b的對稱點是B(﹣3,3),由中點坐標(biāo)公式得AB的中點坐標(biāo)為,代入y=kx+b得①直線AB得斜率為,則k=2.代入①得,.∴直線y=kx+b為,解得:y=4.∴直線y=kx+b在y軸上的截距是4.故選D.8、D【解析】根據(jù)奇函數(shù)的定義可得,代入表達式利用對數(shù)的運算即可求解.【詳解】函數(shù)是奇函數(shù),則,即,從而可得,解得.當(dāng)時,,即定義域為,所以時,是奇函數(shù)故選:D【點睛】本題考查了函數(shù)奇偶性的應(yīng)用,需掌握函數(shù)奇偶性的定義,同時本題也考查了對數(shù)的運算,屬于基礎(chǔ)題.9、B【解析】根據(jù)題意,求得長方體的體對角線,即為該球的直徑,再用球的表面積公式即可求得結(jié)果.【詳解】由已知,該球是長方體的外接球,故,所以長方體的外接球半徑,故外接球的表面積為.故選:.【點睛】本題考查長方體的外接球問題,涉及球表面積公式的使用,屬綜合基礎(chǔ)題.10、A【解析】利用函數(shù)的奇偶性排除部分選項,再利用當(dāng)x>0時,函數(shù)值的正負(fù)確定選項即可.【詳解】函數(shù)f(x)定義域為,所以函數(shù)f(x)是奇函數(shù),排除BC;當(dāng)x>0時,,排除D故選:A二、填空題:本大題共6小題,每小題5分,共30分。11、##【解析】化簡已知條件,求得,通過兩邊平方的方法求得,進而求得.【詳解】依題意,①,,,化簡得①,則,由,得,,.故答案為:12、【解析】直接根據(jù)任意角的三角函數(shù)的定義計算可得;【詳解】解:因為角的終邊上有一點,則所以,所以故答案為:【點睛】考查任意角三角函數(shù)的定義的應(yīng)用,考查計算能力,屬于基礎(chǔ)題13、【解析】由可得,則可化簡,利用可得,由是在上的奇函數(shù)可得,由此【詳解】由題,因為,所以,由,則,則,因為,令,則,所以,因為是在上的奇函數(shù),所以,所以,故答案:0【點睛】本題考查函數(shù)奇偶性、周期性的應(yīng)用,考查由正切值求正、余弦值14、0【解析】根據(jù)對稱,求出P、Q坐標(biāo),根據(jù)三角函數(shù)定義求出﹒【詳解】解:角終邊上一點與點關(guān)于軸對稱,角的終邊上一點與點關(guān)于原點中心對稱,由三角函數(shù)的定義可知,﹒故答案為:015、﹣8【解析】根據(jù)AC的斜率等于AB的斜率得到,解方程即得解.【詳解】由題意可得AC的斜率等于AB的斜率,∴,解得a=﹣8.故答案為:-8【點睛】本題主要考查斜率的計算和三點共線,意在考查學(xué)生對這些知識的理解掌握水平.16、3【解析】∵集合M={3,m+1},4∈M,∴4=m+1,解得m=3故答案為3.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)當(dāng)甲大棚投入資金為128萬元,乙大棚投入資金為72萬元時,總收益最大.【解析】(1)根據(jù)題意,可分別求得甲、乙兩個大棚的資金投入值,代入解析式即可求得總收益.(2)表示出總收益的表達式,并求得自變量取值范圍,利用換元法轉(zhuǎn)化為二次函數(shù)形式,即可確定最大值.【詳解】(1)當(dāng)甲大棚的資金投入為50萬元時,乙大棚資金投入為150萬元,則由足,可得總收益為萬元;(2)根據(jù)題意,可知總收益為滿足,解得,令,所以,因為,所以當(dāng)即時總收益最大,最大收益為萬元,所以當(dāng)甲大棚投入資金為128萬元,乙大棚投入資金為72萬元時,總收益最大,最大收益為282萬元.【點睛】本題考查了函數(shù)在實際問題中的應(yīng)用,分段函數(shù)模型的應(yīng)用,二次函數(shù)型求最值的應(yīng)用,屬于基礎(chǔ)題.18、【解析】由題意,求出方程的兩根,討論的正負(fù),確定二次不等式的解集A的形式,然后結(jié)合數(shù)軸列出不等式求解即可得答案.【詳解】解:由題意,令,解得兩根為,由此可知,當(dāng)時,解集,因為,所以的充要條件是,即,解得;當(dāng)時,解集,因為,所以的充要條件是,即,解得;綜上,實數(shù)的取值范圍為.19、.【解析】利用三角函數(shù)的定義可得,進而可求,利用同角關(guān)系式可求,再利用兩角和的正切公式即得.【詳解】∵角的終邊經(jīng)過點,∴,,∵,,∴,,∴20、(1);(2)當(dāng)時,的值最小,最小值為【解析】(1)利用已知條件,根據(jù)銳角三角形中正余弦的利用,即可表示出和;(2)根據(jù)題意,將表示為的函數(shù),利用倍角公式對函數(shù)進行轉(zhuǎn)化,利用換元法,借助對勾函數(shù)的單調(diào)性,從而求得最小值.【詳解】(1)在中,,所以;設(shè)正方形的邊長為x,則,,由,得,解得;所以;(2),令,因為,所以,則,所以;設(shè),根據(jù)對勾函數(shù)的單調(diào)性可知,在上單調(diào)遞減,因此當(dāng)時,有最小值,此時,解得;所以當(dāng)時,的值最小,最小值為.【點睛】本題考查倍角公式的使用,三角函數(shù)在銳角三角形中的應(yīng)用,以及利用對勾函數(shù)的單調(diào)性求函數(shù)的最值,涉及換元法,屬綜合性中檔題.21、(Ⅰ)答案見詳解;(Ⅱ).【解析】(Ⅰ
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 按揭購房貸款合同范本
- 展覽宣傳活動合同
- 企業(yè)資產(chǎn)抵押貸款合同
- 2024購車協(xié)議書合同范本
- 批量購房合同協(xié)議
- 2024企業(yè)員工勞動合同樣本
- 企業(yè)資產(chǎn)買賣合同模板
- 房屋轉(zhuǎn)讓協(xié)議標(biāo)準(zhǔn)合同范本
- 2024建設(shè)施工合同有些分類
- 2024公司股權(quán)轉(zhuǎn)讓及后續(xù)合伙經(jīng)營合同
- 公司組織架構(gòu)圖模板課件
- 遼寧省葫蘆島市各縣區(qū)鄉(xiāng)鎮(zhèn)行政村村莊村名居民村民委員會明細(xì)
- 植物種子的傳播方式課件
- 電纜敷設(shè)施工方案及安全措施
- 百合干(食品安全企業(yè)標(biāo)準(zhǔn))
- 肺血栓栓塞癥臨床路徑(縣級醫(yī)院版)
- 國開成本會計第10章綜合練習(xí)試題及答案
- 《西游記》-三打白骨精(劇本臺詞)精選
- T∕CSCS 012-2021 多高層建筑全螺栓連接裝配式鋼結(jié)構(gòu)技術(shù)標(biāo)準(zhǔn)-(高清版)
- 充電站項目合作方案-高新
- 急診科臨床診療指南-技術(shù)操作規(guī)范更新版
評論
0/150
提交評論