重慶第十一中學校2025屆數學高三上期末統(tǒng)考試題含解析_第1頁
重慶第十一中學校2025屆數學高三上期末統(tǒng)考試題含解析_第2頁
重慶第十一中學校2025屆數學高三上期末統(tǒng)考試題含解析_第3頁
重慶第十一中學校2025屆數學高三上期末統(tǒng)考試題含解析_第4頁
重慶第十一中學校2025屆數學高三上期末統(tǒng)考試題含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

重慶第十一中學校2025屆數學高三上期末統(tǒng)考試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設函數(,)是上的奇函數,若的圖象關于直線對稱,且在區(qū)間上是單調函數,則()A. B. C. D.2.下列說法正確的是()A.“若,則”的否命題是“若,則”B.“若,則”的逆命題為真命題C.,使成立D.“若,則”是真命題3.已知是定義在上的奇函數,且當時,.若,則的解集是()A. B.C. D.4.已知集合,則元素個數為()A.1 B.2 C.3 D.45.《易·系辭上》有“河出圖,洛出書”之說,河圖、洛書是中華文化,陰陽術數之源,其中河圖的排列結構是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中.如圖,白圈為陽數,黑點為陰數.若從這10個數中任取3個數,則這3個數中至少有2個陽數且能構成等差數列的概率為()A. B. C. D.6.一艘海輪從A處出發(fā),以每小時24海里的速度沿南偏東40°的方向直線航行,30分鐘后到達B處,在C處有一座燈塔,海輪在A處觀察燈塔,其方向是南偏東70°,在B處觀察燈塔,其方向是北偏東65°,那么B,C兩點間的距離是()A.6海里 B.6海里 C.8海里 D.8海里7.已知函數.若存在實數,且,使得,則實數a的取值范圍為()A. B. C. D.8.已知函數滿足,且,則不等式的解集為()A. B. C. D.9.下圖是來自古希臘數學家希波克拉底所研究的幾何圖形,此圖由三個半圓構成,三個半圓的直徑分別為直角三角形的斜邊、直角邊,已知以直角邊為直徑的半圓的面積之比為,記,則()A. B. C.1 D.10.已知拋物線的焦點為,過點的直線與拋物線交于,兩點(設點位于第一象限),過點,分別作拋物線的準線的垂線,垂足分別為點,,拋物線的準線交軸于點,若,則直線的斜率為A.1 B. C. D.11.已知點是拋物線:的焦點,點為拋物線的對稱軸與其準線的交點,過作拋物線的切線,切點為,若點恰好在以,為焦點的雙曲線上,則雙曲線的離心率為()A. B. C. D.12.設是虛數單位,復數()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若函數,則的值為______.14.函數在的零點個數為_________.15.設是定義在上的函數,且,對任意,若經過點的一次函數與軸的交點為,且互不相等,則稱為關于函數的平均數,記為.當_________時,為的幾何平均數.(只需寫出一個符合要求的函數即可)16.等腰直角三角形內有一點P,,,,,則面積為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在直角坐標系中,已知直線的直角坐標方程為,曲線的參數方程為(為參數),以直角坐標系原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求曲線和直線的極坐標方程;(2)已知直線與曲線、相交于異于極點的點,若的極徑分別為,求的值.18.(12分)如圖,已知橢圓的右焦點為,,為橢圓上的兩個動點,周長的最大值為8.(Ⅰ)求橢圓的標準方程;(Ⅱ)直線經過,交橢圓于點,,直線與直線的傾斜角互補,且交橢圓于點,,,求證:直線與直線的交點在定直線上.19.(12分)在中,角A、B、C的對邊分別為a、b、c,且.(1)求角A的大小;(2)若,的平分線與交于點D,與的外接圓交于點E(異于點A),,求的值.20.(12分)在直角坐標系中,曲線的參數方程為(為參數,將曲線經過伸縮變換后得到曲線.在以原點為極點,軸正半軸為極軸的極坐標系中,直線的極坐標方程為.(1)說明曲線是哪一種曲線,并將曲線的方程化為極坐標方程;(2)已知點是曲線上的任意一點,又直線上有兩點和,且,又點的極角為,點的極角為銳角.求:①點的極角;②面積的取值范圍.21.(12分)已知函數.(1)若在處取得極值,求的值;(2)求在區(qū)間上的最小值;(3)在(1)的條件下,若,求證:當時,恒有成立.22.(10分)在平面直角坐標系中,已知直線l的參數方程為(t為參數),在以坐標原點O為極點,x軸的正半軸為極軸,且與直角坐標系長度單位相同的極坐標系中,曲線C的極坐標方程是.(1)求直線l的普通方程與曲線C的直角坐標方程;(2)若直線l與曲線C相交于兩點A,B,求線段的長.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

根據函數為上的奇函數可得,由函數的對稱軸及單調性即可確定的值,進而確定函數的解析式,即可求得的值.【詳解】函數(,)是上的奇函數,則,所以.又的圖象關于直線對稱可得,,即,,由函數的單調區(qū)間知,,即,綜上,則,.故選:D【點睛】本題考查了三角函數的圖象與性質的綜合應用,由對稱軸、奇偶性及單調性確定參數,屬于中檔題.2、D【解析】選項A,否命題為“若,則”,故A不正確.選項B,逆命題為“若,則”,為假命題,故B不正確.選項C,由題意知對,都有,故C不正確.選項D,命題的逆否命題“若,則”為真命題,故“若,則”是真命題,所以D正確.選D.3、B【解析】

利用函數奇偶性可求得在時的解析式和,進而構造出不等式求得結果.【詳解】為定義在上的奇函數,.當時,,,為奇函數,,由得:或;綜上所述:若,則的解集為.故選:.【點睛】本題考查函數奇偶性的應用,涉及到利用函數奇偶性求解對稱區(qū)間的解析式;易錯點是忽略奇函數在處有意義時,的情況.4、B【解析】

作出兩集合所表示的點的圖象,可得選項.【詳解】由題意得,集合A表示以原點為圓心,以2為半徑的圓,集合B表示函數的圖象上的點,作出兩集合所表示的點的示意圖如下圖所示,得出兩個圖象有兩個交點:點A和點B,所以兩個集合有兩個公共元素,所以元素個數為2,故選:B.【點睛】本題考查集合的交集運算,關鍵在于作出集合所表示的點的圖象,再運用數形結合的思想,屬于基礎題.5、C【解析】

先根據組合數計算出所有的情況數,再根據“3個數中至少有2個陽數且能構成等差數列”列舉得到滿足條件的情況,由此可求解出對應的概率.【詳解】所有的情況數有:種,3個數中至少有2個陽數且能構成等差數列的情況有:,共種,所以目標事件的概率.故選:C.【點睛】本題考查概率與等差數列的綜合,涉及到背景文化知識,難度一般.求解該類問題可通過古典概型的概率求解方法進行分析;當情況數較多時,可考慮用排列數、組合數去計算.6、A【解析】

先根據給的條件求出三角形ABC的三個內角,再結合AB可求,應用正弦定理即可求解.【詳解】由題意可知:∠BAC=70°﹣40°=30°.∠ACD=110°,∴∠ACB=110°﹣65°=45°,∴∠ABC=180°﹣30°﹣45°=105°.又AB=24×0.5=12.在△ABC中,由正弦定理得,即,∴.故選:A.【點睛】本題考查正弦定理的實際應用,關鍵是將給的角度、線段長度轉化為三角形的邊角關系,利用正余弦定理求解.屬于中檔題.7、D【解析】

首先對函數求導,利用導數的符號分析函數的單調性和函數的極值,根據題意,列出參數所滿足的不等關系,求得結果.【詳解】,令,得,.其單調性及極值情況如下:x0+0_0+極大值極小值若存在,使得,則(如圖1)或(如圖2).(圖1)(圖2)于是可得,故選:D.【點睛】該題考查的是有關根據函數值的關系求參數的取值范圍的問題,涉及到的知識點有利用導數研究函數的單調性與極值,畫出圖象數形結合,屬于較難題目.8、B【解析】

構造函數,利用導數研究函數的單調性,即可得到結論.【詳解】設,則函數的導數,,,即函數為減函數,,,則不等式等價為,則不等式的解集為,即的解為,,由得或,解得或,故不等式的解集為.故選:.【點睛】本題主要考查利用導數研究函數單調性,根據函數的單調性解不等式,考查學生分析問題解決問題的能力,是難題.9、D【解析】

根據以直角邊為直徑的半圓的面積之比求得,即的值,由此求得和的值,進而求得所求表達式的值.【詳解】由于直角邊為直徑的半圓的面積之比為,所以,即,所以,所以.故選:D【點睛】本小題主要考查同角三角函數的基本關系式,考查二倍角公式,屬于基礎題.10、C【解析】

根據拋物線定義,可得,,又,所以,所以,設,則,則,所以,所以直線的斜率.故選C.11、D【解析】

根據拋物線的性質,設出直線方程,代入拋物線方程,求得k的值,設出雙曲線方程,求得2a=丨AF2丨﹣丨AF1丨=(1)p,利用雙曲線的離心率公式求得e.【詳解】直線F2A的直線方程為:y=kx,F(xiàn)1(0,),F(xiàn)2(0,),代入拋物線C:x2=2py方程,整理得:x2﹣2pkx+p2=0,∴△=4k2p2﹣4p2=0,解得:k=±1,∴A(p,),設雙曲線方程為:1,丨AF1丨=p,丨AF2丨p,2a=丨AF2丨﹣丨AF1丨=(1)p,2c=p,∴離心率e1,故選:D.【點睛】本題考查拋物線及雙曲線的方程及簡單性質,考查轉化思想,考查計算能力,屬于中檔題.12、D【解析】

利用復數的除法運算,化簡復數,即可求解,得到答案.【詳解】由題意,復數,故選D.【點睛】本題主要考查了復數的除法運算,其中解答中熟記復數的除法運算法則是解答的關鍵,著重考查了運算與求解能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

根據題意,由函數的解析式求出的值,進而計算可得答案.【詳解】根據題意,函數,則,則;故答案為:.【點睛】本題考查分段函數的性質、對數運算法則的應用,考查函數與方程思想、轉化與化歸思想,考查運算求解能力.14、1【解析】

本問題轉化為曲線交點個數問題,在同一直角坐標系內,畫出函數的圖象,利用數形結合思想進行求解即可.【詳解】問題函數在的零點個數,可以轉化為曲線交點個數問題.在同一直角坐標系內,畫出函數的圖象,如下圖所示:由圖象可知:當時,兩個函數只有一個交點.故答案為:1【點睛】本題考查了求函數的零點個數問題,考查了轉化思想和數形結合思想.15、【解析】

由定義可知三點共線,即,通過整理可得,繼而可求出正確答案.【詳解】解:根據題意,由定義可知:三點共線.故可得:,即,整理得:,故可以選擇等.故答案為:.【點睛】本題考查了兩點的斜率公式,考查了推理能力,考查了運算能力.本題關鍵是分析出三點共線.16、【解析】

利用余弦定理計算,然后根據平方關系以及三角形面積公式,可得結果.【詳解】設由題可知:由,,,所以化簡可得:則或,即或由,所以所以故答案為:【點睛】本題主要考查余弦定理解三角形,仔細觀察,細心計算,屬基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),.(2)【解析】

(1)先將曲線的參數方程化為直角坐標方程,即可代入公式化為極坐標;根據直線的直角坐標方程,求得傾斜角,即可得極坐標方程.(2)將直線的極坐標方程代入曲線、可得,進而代入可得的值.【詳解】(1)曲線的參數方程為(為參數),消去得,把,代入得,從而得的極坐標方程為,∵直線的直角坐標方程為,其傾斜角為,∴直線的極坐標方程為.(2)將代入曲線的極坐標方程分別得到,則.【點睛】本題考查了參數方程化為普通方程的方法,直角坐標方程化為極坐標方程的方法,極坐標的幾何意義,屬于中檔題.18、(Ⅰ);(Ⅱ)詳見解析.【解析】

(Ⅰ)由橢圓的定義可得,周長取最大值時,線段過點,可求出,從而求出橢圓的標準方程;(Ⅱ)設直線,直線,,,,.把直線與直線的方程分別代入橢圓的方程,利用韋達定理和弦長公式求出和,根據求出的值.最后直線與直線的方程聯(lián)立,求兩直線的交點即得結論.【詳解】(Ⅰ)設的周長為,則,當且僅當線段過點時“”成立.,,又,,橢圓的標準方程為.(Ⅱ)若直線的斜率不存在,則直線的斜率也不存在,這與直線與直線相交于點矛盾,所以直線的斜率存在.設,,,,,.將直線的方程代入橢圓方程得:.,,.同理,.由得,此時.直線,聯(lián)立直線與直線的方程得,即點在定直線.【點睛】本題考查橢圓的標準方程,考查直線與橢圓的位置關系,考查學生的邏輯推理能力和運算能力,屬于難題.19、(1);(2)【解析】

(1)由,利用正弦定理轉化整理為,再利用余弦定理求解.(2)根據,利用兩角和的余弦得到,利用數形結合,設,在中,由正弦定理求得,在中,求得再求解.【詳解】(1)因為,所以,即,即,所以.(2)∵,.所以,從而.所以,.不妨設,O為外接圓圓心則AO=1,,.在中,由正弦定理知,有.即;在中,由,,從而.所以.【點睛】本題主要考查平面向量的模的幾何意義,還考查了數形結合的方法,屬于中檔題.20、(1)曲線為圓心在原點,半徑為2的圓.的極坐標方程為(2)①②【解析】

(1)求得曲線伸縮變換后所得的參數方程,消參后求得的普通方程,判斷出對應的曲線,并將的普通方程轉化為極坐標方程.(2)①將的極角代入直線的極坐標方程,由此求得點的極徑,判斷出為等腰三角形,求得直線的普通方程,由此求得,進而求得,從而求得點的極角.②解法一:利用曲線的參數方程,求得曲線上的點到直線的距離的表達式,結合三角函數的知識求得的最小值和最大值,由此求得面積的取值范圍.解法二:根據曲線表示的曲線,利用圓的幾何性質求得圓上的點到直線的距離的最大值和最小值,進而求得面積的取值范圍.【詳解】(1)因為曲線的參數方程為(為參數),因為則曲線的參數方程所以的普通方程為.所以曲線為圓心在原點,半徑為2的圓.所以的極坐標方程為,即.(2)①點的極角為,代入直線的極坐標方程得點極徑為,且,所以為等腰三角形,又直線的普通方程為,又點的極角為銳角,所以,所以,所以點的極角為.②解法1:直線的普通方程為.曲線上的點到直線的距離.當,即()時,取到最小值為.當,即()時,取到最大值為.所以面積的最大值為;所以面積的最小值為;故面積的取值范圍.解法2:直線的普通方程為.因為圓的半徑為2,且圓心到直線的距離,因為,所以圓與直線相離.所以圓上的點到直線的距離最大值為,最小值為.所以面積的最大值為;所以面積的最小值為;故面積的取值范圍.【點睛】本小題考查坐標變換,極徑與極角;直線,圓的極坐標方程,圓的參數方程,直線的極坐標方程與普通方程,點到直線的距離等.考查數學運算能力,包括運算原理的理解與應用、運算方法的選擇與優(yōu)化、運算結果的檢驗與改進等.也兼考了數學抽象素養(yǎng)、邏輯推理、數學運算、直觀想象等核心素養(yǎng).21、(1)2;(2);(3)證明見解析【解析】

(1)先求出函數的定義域和導數,由已知函數在處取得極值,得到,即可求

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論