版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆浙江省溫州市蒼南縣巨人中學(xué)高二上數(shù)學(xué)期末綜合測(cè)試模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)。回答非選擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.直線的傾斜角為()A.-30° B.60°C.150° D.120°2.函數(shù),的值域?yàn)椋ǎ〢. B.C. D.3.已知函數(shù)在上是增函數(shù),則實(shí)數(shù)的取值范圍是()A. B.C. D.4.已知是上的單調(diào)增函數(shù),則的取值范圍是A.﹣1b2 B.﹣1b2C.b﹣2或b2 D.b﹣1或b25.“直線的斜率不大于0”是“直線的傾斜角為鈍角”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件6.在空間直角坐標(biāo)系中,若,,則點(diǎn)B的坐標(biāo)為()A.(3,1,﹣2) B.(-3,1,2)C.(-3,1,-2) D.(3,-1,2)7.已知點(diǎn)是拋物線的焦點(diǎn),點(diǎn)為拋物線上的任意一點(diǎn),為平面上點(diǎn),則的最小值為A.3 B.2C.4 D.8.阿基米德(公元前287年~公元前212年)不僅是著名物理學(xué)家,也是著名的數(shù)學(xué)家,他利用“逼近法”得到的橢圓的面積除以圓周率等于橢圓的長(zhǎng)半軸長(zhǎng)與短半軸長(zhǎng)的乘積.若橢圓的對(duì)稱軸為坐標(biāo)軸,焦點(diǎn)在軸上,且橢圓的離心率為,面積為,則橢圓的標(biāo)準(zhǔn)方程為()A B.C. D.9.圓的圓心和半徑分別是()A. B.C. D.10.雙曲線的離心率是,則雙曲線的漸近線方程是()A. B.C. D.11.下列函數(shù)是偶函數(shù)且在上是減函數(shù)的是A. B.C. D.12.已知等差數(shù)列的公差,記該數(shù)列的前項(xiàng)和為,則的最大值為()A.66 B.72C.132 D.198二、填空題:本題共4小題,每小題5分,共20分。13.直線與圓相交于兩點(diǎn)M,N,若滿足,則________14.設(shè)P為圓上一動(dòng)點(diǎn),Q為直線上一動(dòng)點(diǎn),O為坐標(biāo)原點(diǎn),則的最小值為___15.已知正方體,點(diǎn)在底面內(nèi)運(yùn)動(dòng),且始終保持平面,設(shè)直線與底面所成的角為,則的最大值為______.16.甲乙兩艘輪船都要在某個(gè)泊位???個(gè)小時(shí),假定它們?cè)谝粫円沟臅r(shí)間段內(nèi)隨機(jī)地到達(dá),則兩船中有一艘在??坎次粫r(shí)、另一艘船必須等待的概率為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知銳角的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且.(1)求A;(2)若,求外接圓面積的最小值.18.(12分)已知函數(shù).(1)當(dāng)時(shí),求的極值;(2)當(dāng)時(shí),,求a的取值范圍.19.(12分)已知橢圓C的中心在原點(diǎn),焦點(diǎn)在x軸上,焦距為2,離心率為(1)求橢圓C的方程;(2)設(shè)直線l經(jīng)過點(diǎn)M(0,1),且與橢圓C交于A,B兩點(diǎn),若,求直線l的方程20.(12分)已知橢圓一個(gè)頂點(diǎn)恰好是拋物線的焦點(diǎn),橢圓C的離心率為.(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;(Ⅱ)從橢圓C在第一象限內(nèi)的部分上取橫坐標(biāo)為2的點(diǎn)P,若橢圓C上有兩個(gè)點(diǎn)A,B使得的平分線垂直于坐標(biāo)軸,且點(diǎn)B與點(diǎn)A的橫坐標(biāo)之差為,求直線AP的方程.21.(12分)在△ABC中,角A,B,C的對(duì)邊分別是,已知(1)求角B的大小;(2)求三角形ABC的面積.22.(10分)如圖,在四棱錐P-ABCD中,底面ABCD,,,且,,點(diǎn)E為棱PC的動(dòng)點(diǎn).(1)當(dāng)點(diǎn)E是棱PC的中點(diǎn)時(shí),求直線BE與平面PBD所成角的正弦值;(2)若E為棱PC上任一點(diǎn),滿足,求二面角P-AB-E的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】根據(jù)直線斜率即可得傾斜角.【詳解】設(shè)直線的傾斜角為由已知得,所以直線的斜率,由于,故選:C.2、D【解析】求出函數(shù)的導(dǎo)數(shù),根據(jù)導(dǎo)數(shù)在函數(shù)最值上的應(yīng)用,即可求出結(jié)果.【詳解】因?yàn)?,所以,令,又,所以或;所以?dāng)時(shí),;當(dāng)時(shí),;所以在單調(diào)遞增,在上單調(diào)遞減;所以;又,,所以;所以函數(shù)的值域?yàn)?故選:D.3、A【解析】由題意可知,對(duì)任意的恒成立,可得出對(duì)任意的恒成立,利用基本不等式可求得實(shí)數(shù)的取值范圍.【詳解】因?yàn)?,則,由題意可知,對(duì)任意的恒成立,所以,對(duì)任意的恒成立,由基本不等式可得,當(dāng)且僅當(dāng)時(shí),等號(hào)成立,所以,.故選:A.4、A【解析】利用三次函數(shù)的單調(diào)性,通過其導(dǎo)數(shù)進(jìn)行研究,求出導(dǎo)數(shù),利用其導(dǎo)數(shù)恒大于0即可解決問題【詳解】∵∴∵函數(shù)是上的單調(diào)增函數(shù)∴在上恒成立∴,即.∴故選A.【點(diǎn)睛】可導(dǎo)函數(shù)在某一區(qū)間上是單調(diào)函數(shù),實(shí)際上就是在該區(qū)間上(或)(在該區(qū)間的任意子區(qū)間都不恒等于0)恒成立,然后分離參數(shù),轉(zhuǎn)化為求函數(shù)的最值問題,從而獲得參數(shù)的取值范圍,本題是根據(jù)相應(yīng)的二次方程的判別式來進(jìn)行求解.5、B【解析】直線傾斜角的范圍是[0°,180°),直線斜率為傾斜角(不為90°)的正切值,據(jù)此即可判斷求解.【詳解】直線的斜率不大于0,則直線l斜率可能等于零,此時(shí)直線傾斜角為0°,不為鈍角,故“直線的斜率不大于0”不是“直線的傾斜角為鈍角”充分條件;直線的傾斜角為鈍角時(shí),直線的斜率為負(fù),滿足直線的斜率不大于0,即“直線的傾斜角為鈍角”是“直線的斜率不大于0”的充分條件,“直線的斜率不大于0”是“直線的傾斜角為鈍角”的必要條件;綜上,“直線的斜率不大于0”是“直線的傾斜角為鈍角”的必要不充分條件.故選:B.6、C【解析】利用點(diǎn)的坐標(biāo)表示向量坐標(biāo),即可求解.【詳解】設(shè),,,所以,,,解得:,,,即.故選:C7、A【解析】作垂直準(zhǔn)線于點(diǎn),根據(jù)拋物線的定義,得到,當(dāng)三點(diǎn)共線時(shí),的值最小,進(jìn)而可得出結(jié)果.【詳解】如圖,作垂直準(zhǔn)線于點(diǎn),由題意可得,顯然,當(dāng)三點(diǎn)共線時(shí),的值最??;因?yàn)?,,?zhǔn)線,所以當(dāng)三點(diǎn)共線時(shí),,所以.故選A【點(diǎn)睛】本題主要考查拋物線上任一點(diǎn)到兩定點(diǎn)距離的和的最值問題,熟記拋物線的定義與性質(zhì)即可,屬于??碱}型.8、C【解析】由題意,設(shè)出橢圓的標(biāo)準(zhǔn)方程為,然后根據(jù)橢圓的離心率以及橢圓面積列出關(guān)于的方程組,求解方程組即可得答案【詳解】由題意,設(shè)橢圓的方程為,由橢圓的離心率為,面積為,∴,解得,∴橢圓的方程為,故選:C.9、B【解析】將圓的方程化成標(biāo)準(zhǔn)方程,即可求解.【詳解】解:.故選:B.10、B【解析】利用雙曲線的離心率,以及漸近線中,關(guān)系,結(jié)合找關(guān)系即可【詳解】解:,又因?yàn)樵陔p曲線中,,所以,故,所以雙曲線的漸近線方程為,故選:B11、C【解析】根據(jù)題意,依次分析選項(xiàng)中函數(shù)的奇偶性與單調(diào)性,綜合即可得答案【詳解】根據(jù)題意,依次分析選項(xiàng):對(duì)于A,為一次函數(shù),不是偶函數(shù),不符合題意;對(duì)于B,,,為奇函數(shù),不是偶函數(shù),不符合題意;對(duì)于C,,為二次函數(shù),是偶函數(shù)且在上是減函數(shù),符合題意;對(duì)于D,,,為奇函數(shù),不是偶函數(shù),不符合題意;故選C【點(diǎn)睛】本題考查函數(shù)的奇偶性與單調(diào)性的判定,關(guān)鍵是掌握常見函數(shù)的奇偶性與單調(diào)性,屬于基礎(chǔ)題12、A【解析】根據(jù)等差數(shù)列的公差,求得其通項(xiàng)公式求解.【詳解】因?yàn)榈炔顢?shù)列的公差,所以,則,所以,由,得,所以或12時(shí),該數(shù)列的前項(xiàng)和取得最大值,最大值為,故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由點(diǎn)到直線的距離公式,結(jié)合已知可得圓心到直線的距離,再由圓的弦長(zhǎng)公式可得,然后可解.【詳解】因?yàn)?,所以,所以,圓心到直線的距離因?yàn)?,所以,所以故答案為?4、4【解析】取點(diǎn),可得,從而,,從而可求解【詳解】解:由圓,得圓心,半徑,取點(diǎn)A(3,0),則,又,∴,∴,∴,當(dāng)且僅當(dāng)直線時(shí)取等號(hào)故答案為:15、【解析】畫出立體圖形,因?yàn)槊婷?在底面內(nèi)運(yùn)動(dòng),且始終保持平面,可得點(diǎn)在線段上運(yùn)動(dòng),因?yàn)槊婷?直線與底面所成的角和直線與底面所成的角相等,即可求得答案.【詳解】連接和,面面在底面內(nèi)運(yùn)動(dòng),且始終保持平面可得點(diǎn)在線段上運(yùn)動(dòng),面面,直線與底面所成的角和直線與底面所成的角相等面直線與底面所成的角為:有圖像可知:長(zhǎng)是定值,當(dāng)最短時(shí),,即最大,即角最大設(shè)正方體的邊長(zhǎng)為,故故答案為:【點(diǎn)睛】本題考查了求線面角的最大值,解題是掌握線面角的定義和處理動(dòng)點(diǎn)問題時(shí),應(yīng)畫出圖形,尋找?guī)缀侮P(guān)系,考查了分析能力和計(jì)算能力,屬于難題.16、【解析】利用幾何概型的面積型概率計(jì)算,作出邊長(zhǎng)為24的正方形面積,求出部分的面積,即可求得答案.【詳解】設(shè)甲乙兩艘輪船到達(dá)的時(shí)間分為,則,記事件為兩船中有一艘在??坎次粫r(shí)、另一艘船必須等待,則,即∴.故答案為:.【點(diǎn)睛】本題考查幾何概型,考查轉(zhuǎn)化與化歸思想、數(shù)形結(jié)合思想,考查邏輯推理能力和運(yùn)算求解能力,求解時(shí)注意對(duì)概率模型的抽象成面積型.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)利用二倍角公式將已知轉(zhuǎn)化為正弦函數(shù),解一元二次方程可得;(2)由余弦定理和(1)可求a的最小值,再由正弦定理可得外接圓半徑的最小值,然后可解.【小問1詳解】因?yàn)?,所以,解得或(舍去),又為銳角三角形,所以.【小問2詳解】因?yàn)?,?dāng)且僅當(dāng)時(shí),等號(hào)成立,所以.外接圓的半徑,故外接圓面積的最小值為.18、(1)極大值,沒有極小值(2)【解析】(1)把代入,然后對(duì)函數(shù)求導(dǎo),結(jié)合導(dǎo)數(shù)可求函數(shù)單調(diào)區(qū)間,即可得解;(2)構(gòu)造函數(shù),將不等式的恒成立轉(zhuǎn)化為函數(shù)的最值問題,結(jié)合導(dǎo)數(shù)與單調(diào)性及函數(shù)的性質(zhì)對(duì)進(jìn)行分類討論,其中當(dāng)和時(shí)易判斷函數(shù)的單調(diào)性以及最小值,而當(dāng)時(shí),的最小值與0進(jìn)一步判斷【小問1詳解】當(dāng)時(shí),的定義域?yàn)椋?當(dāng)時(shí),,當(dāng)時(shí),,所以在上為增函數(shù),在上為減函數(shù).故有極大值,沒有極小值.【小問2詳解】當(dāng)時(shí),恒成立等價(jià)于對(duì)于任意恒成立.令,則.若,則,所以在上單調(diào)遞減,所以,符合題意.若,所以在上單調(diào)遞減,,符合題意.若,當(dāng)時(shí),,當(dāng)時(shí),,所以在上單調(diào)遞減,在上單調(diào)遞增,所以,不合題意.綜上可知,a的取值范圍為.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:本題考查了不等式恒成立問題,其關(guān)鍵是構(gòu)造函數(shù),通過討論參數(shù)在不同取值范圍時(shí)函數(shù)的單調(diào)性,求出函數(shù)的最值,解出參數(shù)的范圍.必要時(shí)二次求導(dǎo).19、(1);(2)或【解析】(1)根據(jù)橢圓的焦距為2,離心率為,求出,,即可求橢圓的方程;(2)設(shè)直線方程為,代入橢圓方程,由得,利用韋達(dá)定理,化簡(jiǎn)可得,求出,即可求直線的方程.試題解析:(1)設(shè)橢圓方程為,因?yàn)椋?,所求橢圓方程為.(2)由題得直線l的斜率存在,設(shè)直線l方程為y=kx+1,則由得,且.設(shè),則由得,又,所以消去得,解得,,所以直線的方程為,即或.20、(Ⅰ);(Ⅱ).【解析】(Ⅰ)由題意可得關(guān)于參數(shù)的方程,解之即可得到結(jié)果;(Ⅱ)設(shè)直線AP的斜率為k,聯(lián)立方程結(jié)合韋達(dá)定理可得A點(diǎn)坐標(biāo),同理可得B點(diǎn)坐標(biāo),結(jié)合橫坐標(biāo)之差為,可得直線方程.【詳解】(Ⅰ)由拋物線方程可得焦點(diǎn)為,則橢圓C的一個(gè)頂點(diǎn)為,即.由,解得.∴橢圓C的標(biāo)準(zhǔn)方程是;(Ⅱ)由題可知點(diǎn),設(shè)直線AP的斜率為k,由題意知,直線BP的斜率為,設(shè),,直線AP的方程為,即.聯(lián)立方程組消去y得.∵P,A為直線AP與橢圓C的交點(diǎn),∴,即.把換成,得.∴,解得,當(dāng)時(shí),直線BP的方程為,經(jīng)驗(yàn)證與橢圓C相切,不符合題意;當(dāng)時(shí),直線BP的方程為,符合題意.∴直線AP得方程為.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:兩條直線關(guān)于直線對(duì)稱,兩直線的傾斜角互補(bǔ),斜率互為相反數(shù).21、(1)B=300(2)【解析】分析:(1)由同角三角函數(shù)關(guān)系先求,由正弦定理可求值,從而可求的值;(2)先求得的值,代入三角函數(shù)面積公式即可得結(jié)果.詳解:(1)由正弦定理又∴B為銳角sinA=,由正弦定理B=300(2),∴.點(diǎn)睛:以三角形和為載體,三角恒等變換為手段,正弦定理、余弦定理為工具,對(duì)三角函數(shù)及解三角形進(jìn)行考查是近幾年高考考查的一類熱點(diǎn)問題,一般難度不大,但綜合性較強(qiáng).解答這類問題,兩角和與差的正余弦公式、誘導(dǎo)公式以及二倍角公一定要熟練掌握并靈活應(yīng)用,特別是二倍角公式的各種變化形式要熟記于心.22、(1)(2)【解析】(1)由題意可得兩兩垂直,所以以為原點(diǎn),以所在的直線分別為軸,建立空間直角坐標(biāo)系,利用空間向量求解,(2)設(shè),表示出點(diǎn)的坐標(biāo),然后根據(jù)求出
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030年中國光學(xué)儀器行業(yè)商業(yè)模式創(chuàng)新戰(zhàn)略制定與實(shí)施研究報(bào)告
- 2025-2030年中國幼小銜接教育行業(yè)商業(yè)模式創(chuàng)新戰(zhàn)略制定與實(shí)施研究報(bào)告
- 2025-2030年中國旅游行業(yè)并購重組擴(kuò)張戰(zhàn)略制定與實(shí)施研究報(bào)告
- 2025-2030年中國休閑餐飲行業(yè)全國市場(chǎng)開拓戰(zhàn)略制定與實(shí)施研究報(bào)告
- 2025-2030年中國知識(shí)密集型服務(wù)行業(yè)營銷創(chuàng)新戰(zhàn)略制定與實(shí)施研究報(bào)告
- 2025-2030年中國鉭電容器行業(yè)全國市場(chǎng)開拓戰(zhàn)略制定與實(shí)施研究報(bào)告
- 新形勢(shì)下智能門鎖行業(yè)轉(zhuǎn)型升級(jí)戰(zhàn)略制定與實(shí)施研究報(bào)告
- 德州黑陶品牌推廣調(diào)研
- 單位辦公室2025年工作要點(diǎn)
- 護(hù)肝藥品知識(shí)培訓(xùn)課件
- 梁平法制圖規(guī)則及鋼筋翻樣講解
- 乙肝 丙肝培訓(xùn)課件
- 2024屆湖北省武漢實(shí)驗(yàn)外國語學(xué)校數(shù)學(xué)七上期末統(tǒng)考模擬試題含解析
- 基于深度學(xué)習(xí)的網(wǎng)絡(luò)釣魚郵件識(shí)別技術(shù)研究
- 融資成本視角下的船舶融資租賃模式研究
- 感冒中醫(yī)理論知識(shí)課件
- 2023年希望杯數(shù)學(xué)培訓(xùn)100題-六年級(jí)(含答案)
- 一年級(jí)科學(xué)人教版總結(jié)回顧2
- 個(gè)人住房貸款提前還款月供及節(jié)省利息EXCEL計(jì)算
- 第五單元《圓》教材解析-人教版數(shù)學(xué)六年級(jí)上冊(cè)
- 患者突發(fā)昏迷應(yīng)急預(yù)案演練腳本-
評(píng)論
0/150
提交評(píng)論