2025屆江蘇省淮安市盱眙縣高二上數(shù)學(xué)期末聯(lián)考模擬試題含解析_第1頁
2025屆江蘇省淮安市盱眙縣高二上數(shù)學(xué)期末聯(lián)考模擬試題含解析_第2頁
2025屆江蘇省淮安市盱眙縣高二上數(shù)學(xué)期末聯(lián)考模擬試題含解析_第3頁
2025屆江蘇省淮安市盱眙縣高二上數(shù)學(xué)期末聯(lián)考模擬試題含解析_第4頁
2025屆江蘇省淮安市盱眙縣高二上數(shù)學(xué)期末聯(lián)考模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2025屆江蘇省淮安市盱眙縣高二上數(shù)學(xué)期末聯(lián)考模擬試題考生請注意:1.答題前請將考場、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若離散型隨機(jī)變量的所有可能取值為1,2,3,…,n,且取每一個(gè)值的概率相同,若,則n的值為()A.4 B.6C.9 D.102.用數(shù)學(xué)歸納法證明“”時(shí),由假設(shè)證明時(shí),不等式左邊需增加的項(xiàng)數(shù)為()A. B.C. D.3.已知向量,若,則()A. B.5C.4 D.4.若圓與圓外切,則()A. B.C. D.5.已知三棱錐的各頂點(diǎn)都在同一球面上,且平面,若該棱錐的體積為,,,,則此球的表面積等于()A. B.C. D.6.將函數(shù)圖象上所有點(diǎn)的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,再將所得圖象向右平移個(gè)單位長度,得到函數(shù)的圖象,則()A. B.C. D.7.若數(shù)列為等比數(shù)列,且,,則()A.8 B.16C.32 D.648.已知等差數(shù)列,,則公差d等于()A. B.C.3 D.-39.第屆全運(yùn)會(huì)于年月在陜西西安順利舉辦,其中水上項(xiàng)目在西安奧體中心游泳跳水館進(jìn)行,為了應(yīng)對比賽,大會(huì)組委會(huì)將對泳池進(jìn)行檢修,已知泳池深度為,其容積為,如果池底每平方米的維修費(fèi)用為元,設(shè)入水處的較短池壁長度為,且據(jù)估計(jì)較短的池壁維修費(fèi)用與池壁長度成正比,且比例系數(shù)為,較長的池壁維修費(fèi)用滿足代數(shù)式,則當(dāng)泳池的維修費(fèi)用最低時(shí)值為()A. B.C. D.10.若a,b,c為實(shí)數(shù),且,則以下不等式成立的是()A. B.C. D.11.設(shè)是函數(shù)的導(dǎo)函數(shù),的圖象如圖所示,則的圖象最有可能的是()A. B.C. D.12.設(shè)為直線上任意一點(diǎn),過總能作圓的切線,則的最大值為()A. B.1C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列滿足,若對任意恒成立,則實(shí)數(shù)的取值范圍為________14.已知直線l的方向向量,平面的法向量,若,則______15.不透明袋中裝有完全相同,標(biāo)號(hào)分別為1,2,3,…,8的八張卡片.從中隨機(jī)取出3張.設(shè)X為這3張卡片的標(biāo)號(hào)相鄰的組數(shù)(例如:若取出卡片的標(biāo)號(hào)為3,4,5,則有兩組相鄰的標(biāo)號(hào)3、4和4、5,此時(shí)X的值是2).則隨機(jī)變量X的數(shù)學(xué)期望______16.拋物線的焦點(diǎn)坐標(biāo)為__________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在①,②,③,這三個(gè)條件中任選一個(gè),補(bǔ)充在下面的問題中,并解答問題在中,內(nèi)角A,,的對邊分別為,,,且滿足______________(1)求;(2)若的面積為,在邊上,且,求的最小值注:如果選擇多個(gè)條件分別解答,按第一個(gè)解答計(jì)分18.(12分)已知點(diǎn)是拋物線C:上的點(diǎn),F(xiàn)為拋物線的焦點(diǎn),且,直線l:與拋物線C相交于不同的兩點(diǎn)A,B.(1)求拋物線C的方程;(2)若,求k的值.19.(12分)已知函數(shù)(1)求在點(diǎn)處的切線方程(2)求直線與曲線圍成的封閉圖形的面積20.(12分)已知橢圓的長軸長是6,離心率是.(1)求橢圓E的標(biāo)準(zhǔn)方程;(2)設(shè)O為坐標(biāo)原點(diǎn),過點(diǎn)的直線l與橢圓E交于A,B兩點(diǎn),判斷是否存在常數(shù),使得為定值?若存在,求出的值;若不存在,請說明理由.21.(12分)我們知道:當(dāng)是圓O:上一點(diǎn),則圓O的過點(diǎn)的切線方程為;當(dāng)是圓O:外一點(diǎn),過作圓O的兩條切線,切點(diǎn)分別為,則方程表示直線AB的方程,即切點(diǎn)弦所在直線方程.請利用上述結(jié)論解決以下問題:已知圓C的圓心在x軸非負(fù)半軸上,半徑為3,且與直線相切,點(diǎn)在直線上,過點(diǎn)作圓C的兩條切線,切點(diǎn)分別為.(1)求圓C的方程;(2)當(dāng)時(shí),求線段AB的長;(3)當(dāng)點(diǎn)在直線上運(yùn)動(dòng)時(shí),求線段AB長度的最小值.22.(10分)圓的圓心為,且與直線相切,求:(1)求圓的方程;(2)過的直線與圓交于,兩點(diǎn),如果,求直線的方程

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】根據(jù)分布列即可求出【詳解】因?yàn)?,所以故選:D2、C【解析】當(dāng)成立,寫出左側(cè)的表達(dá)式,當(dāng)時(shí),寫出對應(yīng)的關(guān)系式,觀察計(jì)算即可【詳解】從到成立時(shí),左邊增加的項(xiàng)為,因此增加的項(xiàng)數(shù)是,故選:C3、B【解析】根據(jù)向量垂直列方程,化簡求得.【詳解】由于,所以.故選:B4、C【解析】求得兩圓的圓心坐標(biāo)和半徑,結(jié)合兩圓相外切,列出方程,即可求解.【詳解】由題意,圓與圓可得,,因?yàn)閮蓤A相外切,可得,解得故選:C.5、D【解析】由條件確定三棱錐的外接球的球心位置及球的半徑,再利用球的表面積公式求外接球的表面積.【詳解】由已知,,,可得三棱錐的底面是直角三角形,,由平面可得就是三棱錐外接球的直徑,,,即,則,故三棱錐外接球的半徑為,所以三棱錐外接球的表面積為故選:D.【點(diǎn)睛】與球有關(guān)的組合體問題,一種是內(nèi)切,一種是外接.解題時(shí)要認(rèn)真分析圖形,明確切點(diǎn)和接點(diǎn)的位置,確定有關(guān)元素間的數(shù)量關(guān)系,并作出合適的截面圖,如球內(nèi)切于正方體,切點(diǎn)為正方體各個(gè)面的中心,正方體的棱長等于球的直徑;球外接于正方體,正方體的頂點(diǎn)均在球面上,正方體的體對角線長等于球的直徑.6、A【解析】根據(jù)三角函數(shù)圖象的變換,由逆向變換即可求解.【詳解】由已知的函數(shù)逆向變換,第一步,向左平移個(gè)單位長度,得到的圖象;第二步,圖象上所有點(diǎn)的橫坐標(biāo)縮短到原來的,縱坐標(biāo)不變,得到的圖象,即的圖象.故.故選:A7、B【解析】設(shè)等比數(shù)列的公比為,根據(jù)等比數(shù)列的通項(xiàng)公式得到,即可求出,再根據(jù)計(jì)算可得;【詳解】解:設(shè)等比數(shù)列公比為,因?yàn)?、,所以,所以;故選:B8、B【解析】根據(jù)題意,利用公式,即可求解.【詳解】由題意,等差數(shù)列,,可得等差數(shù)列的公差.故選:B.9、A【解析】根據(jù)題意得到泳池維修費(fèi)用的的解析式,再利用導(dǎo)數(shù)求出最值即可【詳解】解:設(shè)泳池維修的總費(fèi)用為元,則由題意得,則,令,解得,當(dāng)時(shí),;當(dāng)時(shí),,故當(dāng)時(shí),有最小值因此,當(dāng)較短池壁為時(shí),泳池的總維修費(fèi)用最低故選A10、C【解析】利用不等式的性質(zhì)直接推導(dǎo)和取值驗(yàn)證相結(jié)合可解.【詳解】取可排除ABD;由不等式的性質(zhì)易得C正確.故選:C11、C【解析】利用導(dǎo)函數(shù)的圖象,判斷導(dǎo)函數(shù)的符號(hào),得到函數(shù)的單調(diào)性以及函數(shù)的極值點(diǎn),然后判斷選項(xiàng)即可【詳解】解:由題意可知:和時(shí),,函數(shù)是增函數(shù),時(shí),,函數(shù)是減函數(shù);是函數(shù)的極大值點(diǎn),是函數(shù)的極小值點(diǎn);所以函數(shù)的圖象只能是故選:C12、D【解析】根據(jù)題意,判斷點(diǎn)與圓的位置關(guān)系以及直線與圓的位置關(guān)系,根據(jù)直線與圓的位置關(guān)系,即可求得的最大值.【詳解】因?yàn)檫^過總能作圓的切線,故點(diǎn)在圓外或圓上,也即直線與圓相離或相切,則,即,解得,故的最大值為.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)給定條件求出,構(gòu)造新數(shù)列并借助單調(diào)性求解作答.【詳解】在數(shù)列中,,當(dāng),時(shí),,則有,而滿足上式,因此,,,顯然數(shù)列是遞增數(shù)列,且,,又對任意恒成立,則,所以實(shí)數(shù)的取值范圍為.故答案為:【點(diǎn)睛】思路點(diǎn)睛:給定數(shù)列的前項(xiàng)和或者前項(xiàng)積,求通項(xiàng)時(shí),先要按和分段求,然后看時(shí)是否滿足時(shí)的表達(dá)式,若不滿足,就必須分段表達(dá).14、【解析】由,可得∥,從而可得,代入坐標(biāo)列方程可求出,從而可求出【詳解】因?yàn)橹本€l的方向向量,平面的法向量,,所以∥,所以存在唯一實(shí)數(shù),使,所以,所以,解得,所以,故答案為:15、##【解析】設(shè)為這3張卡片的標(biāo)號(hào)相鄰的組數(shù),則的可能取值為0,1,2,利用列舉法分別求出相應(yīng)的概率,由此能求出隨機(jī)變量的數(shù)學(xué)期望【詳解】解:不透明袋中裝有完全相同,標(biāo)號(hào)分別為1,2,3,,8的八張卡片從中隨機(jī)取出3張,共有種,設(shè)為這3張卡片的標(biāo)號(hào)相鄰的組數(shù),則的可能取值為0,1,2,的情況有:,2,,,3,,,4,,,5,,,6,,,7,,共6個(gè),,的情況有:取,另外一個(gè)數(shù)有5種取法;取,另外一個(gè)數(shù)有4種取法;取,另外一個(gè)數(shù)有4種取法;取,另外一個(gè)數(shù)有4種取法;取,另外一個(gè)數(shù)有4種取法;取,另外一個(gè)數(shù)有4種取法;取,另外一個(gè)數(shù)有5種取法的情況一共有:,,,隨機(jī)變量的數(shù)學(xué)期望:故答案為:16、【解析】化成標(biāo)準(zhǔn)形式,結(jié)合焦點(diǎn)定義即可求解.【詳解】由,得,故拋物線的焦點(diǎn)坐標(biāo)為故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、選擇見解析;(1);(2)【解析】(1)選條件①.利用正弦定理邊角互化,結(jié)合兩角和的正弦公式可得,從而可得答案;選條件②.邊角互化、切化弦,結(jié)合兩角和的正弦公式可得,從而得答案;選條件③.邊角互化,利用余弦定理可得,從而可得答案;(2)由三角形面積公式可得得,再利用余弦定理與基本不等式可得答案.【詳解】(1)方案一:選條件①由可得,由正弦定理得,因?yàn)?,所以,所以,故,又,于是,即,因?yàn)?,所以方案二:選條件②因?yàn)椋杂烧叶ɡ砑巴侨呛瘮?shù)的基本關(guān)系式,得,即,因?yàn)?,所以,又,所以,因?yàn)?,所以方案三:選條件③∵,∴,即,∴,∴又,所以(2)由題意知,得由余弦定理得,當(dāng)且僅當(dāng)且,即,時(shí)取等號(hào),所以的最小值為18、(1);(2)1或.【解析】(1)根據(jù)拋物線的定義,即可求得p值;(2)由過拋物線焦點(diǎn)的直線的性質(zhì),結(jié)合拋物線的定義,即可求出弦長AB【詳解】(1)拋物線C:的準(zhǔn)線為,由得:,得.所以拋物線的方程為.(2)設(shè),,由,,∴,∵直線l經(jīng)過拋物線C的焦點(diǎn)F,∴解得:,所以k的值為1或.【點(diǎn)睛】考核拋物線的定義及過焦點(diǎn)弦的求法19、(1)(2)2【解析】(1)首先求出函數(shù)的導(dǎo)函數(shù),即可求出切線的斜率,再利用點(diǎn)斜式求出切線方程;(2)首先求出兩函數(shù)的交點(diǎn)坐標(biāo),再利用定積分及微積分基本定理計(jì)算可得;【小問1詳解】解:因?yàn)椋?,所以切線的斜率,切線過點(diǎn),切線的方程為,即【小問2詳解】解:由題知,即解得或,即或或,直線與曲線于則所求圖形的面積20、(1);(2)存在,.【解析】(1)根據(jù)給定條件求出橢圓長短半軸長即可代入計(jì)算作答.(2)當(dāng)直線l的斜率存在時(shí),設(shè)出直線l的方程,與橢圓E的方程聯(lián)立,利用韋達(dá)定理、向量數(shù)量積運(yùn)算,推理計(jì)算作答.【小問1詳解】依題意,,半焦距為c,則離心率,即,有,所以橢圓E的標(biāo)準(zhǔn)方程為:.【小問2詳解】當(dāng)直線l的斜率存在時(shí),設(shè)直線l的方程為,由消去y并整理得:,設(shè),則,,,,,,要使為定值,必有,解得,此時(shí),當(dāng)直線l的斜率不存在時(shí),由對稱性不妨令,,,當(dāng)時(shí),,即當(dāng)時(shí),過點(diǎn)的任意直線l與橢圓E交于A,B兩點(diǎn),恒有,所以存在滿足條件.【點(diǎn)睛】方法點(diǎn)睛:求定值問題常見的方法:(1)從特殊入手,求出定值,再證明這個(gè)值與變量無關(guān)(2)直接推理、計(jì)算,并在計(jì)算推理的過程中消去變量,從而得到定值21、(1);(2);(3)4.【解析】(1)根據(jù)圓圓心和半徑設(shè)圓的標(biāo)準(zhǔn)方程為,利用圓心到切線的距離等于圓的半徑即可求出a;(2)根據(jù)題意寫出AB的方程,根據(jù)垂徑定理即可求出弦長;(3)根據(jù)題意求出AB經(jīng)過的定點(diǎn)Q,當(dāng)CQ垂直于AB時(shí),AB最短.【小問1詳解】由題,設(shè)圓C的標(biāo)準(zhǔn)方程為,則,解得.故圓C方程為;【小問2詳解】根據(jù)題意可知,直線的方程為,即,圓心C到直線的距離為,故弦長;【小問3詳解】設(shè),則,又直線方程為:,故直線過定點(diǎn)Q,設(shè)圓心C到直線距

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論