版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆山東省菏澤市第一中學老校區(qū)高二上數(shù)學期末檢測試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若函數(shù)在區(qū)間上有兩個極值點,則實數(shù)的取值范圍是()A. B.C. D.2.如圖,在三棱錐中,,二面角的正弦值是,則三棱錐外接球的表面積是()A. B.C. D.3.拋物線的準線方程是,則a的值為()A.4 B.C. D.4.(2017新課標全國Ⅲ理科)已知圓柱的高為1,它的兩個底面的圓周在直徑為2的同一個球的球面上,則該圓柱的體積為A. B.C. D.5.如圖,在平行六面體中,設(shè),,,用基底表示向量,則()A. B.C. D.6.“﹣3<m<4”是“方程表示橢圓”的()條件A.充分不必要 B.必要不充分C.充要 D.既不充分也不必要7.已知離散型隨機變量X的分布列如下:X123P則數(shù)學期望()A. B.C.1 D.28.如圖,面積為的正方形中有一個不規(guī)則的圖形,可按下面方法估計的面積:在正方形中隨機投擲個點,若個點中有個點落入中,則的面積的估計值為,假設(shè)正方形的邊長為,的面積為,并向正方形中隨機投擲個點,用以上方法估計的面積時,的面積的估計值與實際值之差在區(qū)間內(nèi)的概率為附表:A. B.C. D.9.如圖,過拋物線的焦點的直線與拋物線交于兩點,與其準線交于點(點位于之間)且于點且,則等于()A. B.C. D.10.如圖,在三棱柱中,為的中點,若,,,則下列向量與相等的是()A. B.C. D.11.在空間四邊形中,,,,且,則()A. B.C. D.12.已知圓,圓,M,N分別是圓上的動點,P為x軸上的動點,則以的最小值為()A B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知曲線在處的切線方程為,則________14.已知正數(shù)滿足,則的最小值是__________.15.函數(shù)在處切線的斜率為_____16.拋物線的焦點到準線的距離是______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖所示,在四棱錐中,平面,底面是等腰梯形,.且(1)證明:平面平面;(2)若,求平面與平面的夾角的余弦值18.(12分)已知等差數(shù)列滿足(1)求的通項公式;(2)設(shè),求數(shù)列的前n項和19.(12分)已知的二項展開式中所有項的二項式系數(shù)之和為,(1)求的值;(2)求展開式的所有有理項(指數(shù)為整數(shù)),并指明是第幾項20.(12分)已知集合,(1)若,求m的取值范圍;(2)若“x∈B”是“x∈A”的充分不必要條件,求m的取值范圍21.(12分)數(shù)列的前n項和為,(1)求數(shù)列的通項公式;(2)令,求數(shù)列的前n項和22.(10分)已知關(guān)于的不等式的解集為.(1)求的值;(2)若,求的最小值,并求此時的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】由題意,即在區(qū)間上有兩個異號零點,令,利用函數(shù)的單調(diào)性與導數(shù)的關(guān)系判斷單調(diào)性,數(shù)形結(jié)合即可求解【詳解】解:由題意,即在區(qū)間上有兩個異號零點,構(gòu)造函數(shù),則,令,得,令,得,所以函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,又時,,時,,且,所以,即,所以的范圍故選:D2、A【解析】利用二面角S﹣AC﹣B的余弦值求得,由此判斷出,且兩兩垂直,由此將三棱錐補形成正方體,利用正方體的外接球半徑,求得外接球的表面積.【詳解】設(shè)是的中點,連接,由于,所以,所以是二面角的平面角,所以.在三角形中,,在三角形中,,在三角形中,由余弦定理得:,所以,由于,所以兩兩垂直.由此將三棱錐補形成正方體如下圖所示,正方體的邊長為2,則體對角線長為.設(shè)正方體外接球的半徑為,則,所以外接球的表面積為,故選:.3、C【解析】先求得拋物線的標準方程,可得其準線方程,根據(jù)題意,列出方程,即可得答案.【詳解】由題意得拋物線的標準方程為,準線方程為,又準線方程是,所以,所以.故選:C4、B【解析】繪制圓柱的軸截面如圖所示,由題意可得:,結(jié)合勾股定理,底面半徑,由圓柱的體積公式,可得圓柱的體積是,故選B.【名師點睛】涉及球與棱柱、棱錐的切、接問題時,一般過球心及多面體中的特殊點(一般為接、切點)或線作截面,把空間問題轉(zhuǎn)化為平面問題,再利用平面幾何知識尋找?guī)缀误w中元素間的關(guān)系,或只畫內(nèi)切、外接的幾何體的直觀圖,確定球心的位置,弄清球的半徑(直徑)與該幾何體已知量的關(guān)系,列方程(組)求解.5、B【解析】直接利用空間向量基本定理求解即可【詳解】因為在平行六面體中,,,,所以,故選:B6、B【解析】求出方程表示橢圓的充要條件是且,由此可得答案.【詳解】因為方程表示橢圓的充要條件是,解得且,所以“﹣3<m<4”是“方程表示橢圓”的必要不充分條件.故選:B【點睛】本題考查了由方程表示橢圓求參數(shù)的范圍,考查了充要條件和必要不充分條件,本題易錯點警示:漏掉,本題屬于基礎(chǔ)題.7、D【解析】利用已知條件,結(jié)合期望公式求解即可【詳解】解:由題意可知:故選:D8、D【解析】每個點落入中的概率為,設(shè)落入中的點的數(shù)目為,題意所求概率為故選D9、B【解析】由題可得,然后結(jié)合條件可得,即求.【詳解】設(shè)于點,準線交軸于點G,則,又,∴,又于點且,∴BE∥AD,∴,即,∴,∴等于.故選:B.10、A【解析】利用空間向量基本定理求解即可【詳解】由于M是的中點,所以故選:A11、A【解析】利用空間向量的線性運算即可求解.【詳解】..故選:A.12、A【解析】求出圓關(guān)于軸的對稱圓的圓心坐標,以及半徑,然后求解圓與圓的圓心距減去兩個圓的半徑和,即可求出的最小值.【詳解】圓關(guān)于軸對稱圓的圓心坐標,半徑為1,圓的圓心坐標為,半徑為3,易知,當三點共線時,取得最小值,的最小值為圓與圓的圓心距減去兩個圓的半徑和,即:.故選:A.注意:9至12題為多選題二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】先求導,由,代入即得解【詳解】由題意,故答案為:114、8【解析】利用“1”代換,結(jié)合基本不等式求解.【詳解】因為,,所以,當且僅當,即時等號成立,所以當時,取得最小值8.故答案為:8.15、1【解析】求得函數(shù)的導數(shù),計算得,即可得到切線的斜率【詳解】由題意,函數(shù),則,所以,即切線的斜率為1,故答案為:116、4【解析】由y2=2px=8x知p=4,又焦點到準線的距離就是p,所以焦點到準線的距離為4.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】(1)由線面垂直的判定定理可得平面,再由面面垂直的判定定理可得平面平面;(2)以為坐標原點,以,所在直線分別為,軸,以過點垂直于平面的直線為軸建立空間直角坐標系.求出平面的一個法向量、平面的法向量,由二面角的空間向量求法可得答案.【小問1詳解】因為四邊形是等腰梯形,,所以,所以,即因為平面,所以,又因為,所以平面,因為平面,所以平面平面【小問2詳解】以為坐標原點,以,所在直線分別為,軸,以過點垂直于平面的直線為軸建立如圖所示的空間直角坐標系設(shè),則,所以,,,由(1)可知平面的一個法向量為設(shè)平面的法向量為,因為,,所以得令,則,,所以,則,所以平面與平面的夾角的余弦值為.18、(1)(2)【解析】(1)設(shè)等差數(shù)列的公差為d,由題意得列出方程組,可求得的值,代入公式,即可得答案.(2)由(1)可得,利用等比數(shù)列的定義,可證數(shù)列為等比數(shù)列,結(jié)合前n項和公式,即可得答案.【小問1詳解】設(shè)等差數(shù)列的公差為d,由題意得,解得,所以通項公式【小問2詳解】由(1)可得,,又,所以數(shù)列是以4為首項,4為公比的等比數(shù)列,所以19、(1)(2)【解析】(1)由二項式系數(shù)和公式可得答案;(2)求出的通項,利用的指數(shù)為整數(shù)可得答案.【小問1詳解】的二項展開式中所有項的二項式系數(shù)之和,所以.【小問2詳解】,因此時,有理項,有理項是第一項和第七項.20、(1)(2)【解析】(1)先求出,由得到,得到不等式組,求出m的取值范圍;(2)根據(jù)充分不必要條件得到是的真子集,分與兩種情況進行求解,求得m的取值范圍.【小問1詳解】,解得:,故,因為,所以,故,解得:,所以m的取值范圍是.【小問2詳解】若“x∈B”是“x∈A”的充分不必要條件,則是的真子集,當時,,解得:,當時,需要滿足:或,解得:綜上:m取值范圍是21、(1);(2).【解析】(1)根據(jù)給定條件結(jié)合“當時,”計算作答.(2)由(1)求出,利用裂項相消法計算得解.【小問1詳解】數(shù)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度車輛質(zhì)押借款合同示范文本8篇
- 二零二五年度安全生產(chǎn)信息化培訓責任書3篇
- 2025版木結(jié)構(gòu)建筑防火安全檢測合同4篇
- 二零二五年度存量房交易風險評估及經(jīng)紀服務(wù)合同4篇
- 二零二五年度水電工程知識產(chǎn)權(quán)保護與侵權(quán)處理合同樣本4篇
- 二零二五年度出租車新能源電池更換合同3篇
- 2025年度農(nóng)產(chǎn)品電商平臺運營培訓合同3篇
- 南京市區(qū)夜游包車服務(wù)合同(二零二五年度)3篇
- 數(shù)字貨幣與貨幣政策-第2篇-深度研究
- 二零二五版門面房買賣協(xié)議附帶商業(yè)項目整體運營管理合同4篇
- 足浴技師與店內(nèi)禁止黃賭毒協(xié)議書范文
- 中國高血壓防治指南(2024年修訂版)要點解讀
- 2024-2030年中國光電干擾一體設(shè)備行業(yè)發(fā)展現(xiàn)狀與前景預測分析研究報告
- 湖南省岳陽市岳陽樓區(qū)2023-2024學年七年級下學期期末數(shù)學試題(解析版)
- 農(nóng)村自建房安全合同協(xié)議書
- 杜仲葉藥理作用及臨床應(yīng)用研究進展
- 4S店售后服務(wù)6S管理新規(guī)制度
- 高性能建筑鋼材的研發(fā)與應(yīng)用
- 無線廣播行業(yè)現(xiàn)狀分析
- 漢語言溝通發(fā)展量表(長表)-詞匯及手勢(8-16月齡)
- 高速公路相關(guān)知識講座
評論
0/150
提交評論