2025屆廣西防城港市高二數(shù)學第一學期期末統(tǒng)考模擬試題含解析_第1頁
2025屆廣西防城港市高二數(shù)學第一學期期末統(tǒng)考模擬試題含解析_第2頁
2025屆廣西防城港市高二數(shù)學第一學期期末統(tǒng)考模擬試題含解析_第3頁
2025屆廣西防城港市高二數(shù)學第一學期期末統(tǒng)考模擬試題含解析_第4頁
2025屆廣西防城港市高二數(shù)學第一學期期末統(tǒng)考模擬試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2025屆廣西防城港市高二數(shù)學第一學期期末統(tǒng)考模擬試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數(shù)圖象如圖所示,則的解析式可以為A. B.C. D.2.已知雙曲線上點到點的距離為15,則點到點的距離為()A.9 B.6C.6或36 D.9或213.已知集合,,若,則=()A.{1,2,3} B.{1,2,3,4}C.{0,1,2} D.{0,1,2,3}4.如圖是拋物線形拱橋,當水面在n時,拱頂離水面2米,水面寬4米.水位下降1米后,水面寬為()A. B.C. D.5.若函數(shù)的圖象如圖所示,則函數(shù)的導函數(shù)的圖象可能是()A. B.C D.6.已知直線是圓的對稱軸,過點A作圓C的一條切線,切點為B,則|AB|=()A.1 B.2C.4 D.87.過點且平行于直線的直線方程為()A. B.C. D.8.若一個正方體的全面積是72,則它的對角線長為()A. B.12C. D.69.雙曲線的左焦點到其漸近線的距離是()A. B.C. D.10.設斜率為2的直線l過拋物線()的焦點F,且和y軸交于點A,若(O為坐標原點)的面積為4,則拋物線方程為()A. B.C. D.11.橢圓的長軸長是()A.3 B.4C.6 D.812.設雙曲線:的左,右焦點分別為,,過的直線與雙曲線的右支交于A,B兩點,若,則雙曲線的離心率為()A.4 B.2C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設,向量,,,且,,則___________.14.在等比數(shù)列中,,,則公比________.15.將連續(xù)的正整數(shù)填入n行n列的方陣中,使得每行、每列、每條對角線上的數(shù)之和相等,可得到n階幻方.記n階幻方每條對角線上的數(shù)之和為,如圖:,那么的值為___________.16.若橢圓和圓(c為橢圓的半焦距)有四個不同的交點,則橢圓的離心率的取值范圍是_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在直三棱柱中,,,,,分別是,上的點,且(1)求證:∥平面;(2)求平面與平面所成銳二面角的余弦值18.(12分)一臺還可以用的機器由于使用的時間較長,它按不同的轉(zhuǎn)速生產(chǎn)出來的某機械零件有一些會有缺陷,每小時生產(chǎn)有缺陷零件的多少隨機器運轉(zhuǎn)的速率而變化,下表為抽樣試驗結(jié)果:轉(zhuǎn)速(轉(zhuǎn)/秒)1615129每小時生產(chǎn)有缺陷的零件數(shù)(件)10985通過觀察散點圖,發(fā)現(xiàn)與有線性相關(guān)關(guān)系:(1)求關(guān)于的回歸直線方程;(2)若實際生產(chǎn)中,允許每小時生產(chǎn)的產(chǎn)品中有缺陷的零件最多為10個,那么機器的運轉(zhuǎn)速度應控制在什么范圍內(nèi)?(參考:回歸直線方程為,其中,)19.(12分)已知橢圓的左,右焦點分別為,三個頂點(左、右頂點和上頂點)構(gòu)成的三角形的面積為,離心率為方程的根.(1)求橢圓方程;(2)橢圓的一個內(nèi)接平行四邊形的一組對邊分別過點和,如圖,若這個平行四邊形面積為,求平行四邊形的四個頂點的縱坐標的乘積.20.(12分)已知等差數(shù)列滿足:,.(1)求數(shù)列的通項公式;(2)若數(shù)列滿足:,,求數(shù)列的通項公式.21.(12分)在平面直角坐標系中,已知點,,過點的動直線與過點的動直線的交點為P,,的斜率均存在且乘積為,設動點Р的軌跡為曲線C.(1)求曲線C的方程;(2)若點M在曲線C上,過點M且垂直于OM的直線交C于另一點N,點M關(guān)于原點O的對稱點為Q.直線NQ交x軸于點T,求的最大值.22.(10分)如圖所示,四棱錐的底面為矩形,,,過底面對角線作與平行的平面交于點(1)求二面角的余弦值;(2)求與所成角的余弦值;(3)求與平面所成角的正弦值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】利用排除法:對于B,令得,,即有兩個零點,不符合題意;對于C,當時,,當且僅當時等號成立,即函數(shù)在區(qū)間上存在最大值,不符合題意;對于D,的定義域為,不符合題意;本題選擇A選項.點睛:函數(shù)圖象的識辨可從以下方面入手:(1)從函數(shù)的定義域,判斷圖象的左右位置;從函數(shù)的值域,判斷圖象的上下位置.(2)從函數(shù)的單調(diào)性,判斷圖象的變化趨勢.(3)從函數(shù)的奇偶性,判斷圖象的對稱性.(4)從函數(shù)的特征點,排除不合要求的圖象.利用上述方法排除、篩選選項2、D【解析】利用雙曲線的定義可得答案.【詳解】設,,,為雙曲線的焦點,則由雙曲線定義,知,而所以或21故選:D.3、D【解析】根據(jù)題意,解不等式求出集合,由,得,進而求出,從而可求出集合,最后根據(jù)并集的運算即可得出答案.【詳解】解:由題可知,,而,即,解得:,又由于,得,因為,則,所以,解得:,所以,所以.故選:D.【點睛】本題考查集合的交集的定義和并集運算,屬于基礎題.4、D【解析】由題建立平面直角坐標系,設拋物線方程為,結(jié)合條件即求.【詳解】建立如圖所示的直角坐標系:設拋物線方程為,由題意知:在拋物線上,即,解得:,,當水位下降1米后,即將代入,即,解得:,∴水面寬為米.故選:D.5、C【解析】由函數(shù)的圖象可知其單調(diào)性情況,再由導函數(shù)與原函數(shù)的關(guān)系即可得解.【詳解】由函數(shù)的圖象可知,當時,從左向右函數(shù)先增后減,故時,從左向右導函數(shù)先正后負,故排除AB;當時,從左向右函數(shù)先減后增,故時,從左向右導函數(shù)先負后正,故排除D.故選:C.6、C【解析】首先將圓心坐標代入直線方程求出參數(shù)a,求得點A的坐標,由切線與圓的位置關(guān)系構(gòu)造直角三角形從而求得.【詳解】圓即,圓心為,半徑為r=3,由題意可知過圓的圓心,則,解得,點A坐標為,,切點為B則,故選:C【點睛】本題考查直線與圓的位置關(guān)系,屬于基礎題.7、A【解析】設直線的方程為,代入點的坐標即得解.【詳解】解:設直線的方程為,把點坐標代入直線方程得.所以所求的直線方程為.故選:A8、D【解析】根據(jù)全面積得到正方體的棱長,再由勾股定理計算對角線.【詳解】設正方體的棱長為,對角線長為,則有,解得,從而,解得.故選:D9、A【解析】求出雙曲線焦點坐標與漸近線方程,利用點到直線的距離公式可求得結(jié)果.【詳解】在雙曲線中,,,,所以,該雙曲線的左焦點坐標為,漸近線方程為,即,因,該雙曲線的左焦點到漸近線的距離為.故選:A10、B【解析】根據(jù)拋物線的方程寫出焦點坐標,求出直線的方程、點的坐標,最后根據(jù)三角形面積公式進行求解即可.【詳解】拋物線的焦點的坐標為,所以直線的方程為:,令,解得,因此點的坐標為:,因為面積為4,所以有,即,,因此拋物線的方程為.故選:B.11、D【解析】根據(jù)橢圓方程可得到a,從而求得長軸長.【詳解】橢圓方程為,故,所以橢圓長軸長為,故選:D.12、B【解析】根據(jù)雙曲線的定義及,求出,,,,再利用余弦定理計算可得;【詳解】解:依題意可知、,又且,所以,,,,則,且,即,即,所以離心率.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、3【解析】利用向量平行和向量垂直的性質(zhì)列出方程組,求出,,再由空間向量坐標運算法則求出,由此能求出【詳解】解:設,,向量,,,且,,,解得,,所以,,,故答案為:14、【解析】根據(jù)等比數(shù)列的性質(zhì)求解即可.【詳解】因為等比數(shù)列中,故,又,故,故.故答案為:【點睛】本題主要考查了等比數(shù)列的性質(zhì)運用,需要注意分析項與公比的正負,屬于基礎題.15、34【解析】根據(jù)每行數(shù)字之和相等,四行數(shù)字之和剛好等于1到16之和可得.【詳解】4階幻方中,4行數(shù)字之和,得.故答案為:3416、【解析】當圓的直徑介于橢圓長軸和短軸長度范圍之間時,橢圓和圓有四個不同的焦點,由此列不等式,解不等式求得橢圓離心率的取值范圍.【詳解】由于橢圓和圓有四個焦點,故圓的直徑介于橢圓長軸和短軸長度范圍之間,即.由得,兩邊平方并化簡得,即①.由得,兩邊平方并化簡得,解得②.由①②得.故填.【點睛】本小題主要考查橢圓和圓的位置關(guān)系,考查橢圓離心率取值范圍的求法,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】(1)建立空間直角坐標系,由空間向量證明與平面的法向量垂直(2)由空間向量求解【小問1詳解】以C為原點,分別為軸建立空間直角坐標系,如圖,則,,,,,,設,因為,所以,故,得,同理求得,所以,因為是平面的一個法向量,且,所以,又平面,所以平面;【小問2詳解】由(1)可得:,,設平面的一個法向量為,則,即令,則,所以,又平面的一個法向量為,設表示平面與平面所成銳二面角,則18、(1);(2)控制在16轉(zhuǎn)/秒內(nèi).【解析】(1)結(jié)合已知數(shù)據(jù),代入公式中,先求出,然后求出,進而可求出,從而可得回歸方程.(2)由題意得,即可求出轉(zhuǎn)速的最高速度.【詳解】解:(1)由題意知,,所以,則,即關(guān)于的回歸直線方程為.(2)由可得,解得,所以機器的運轉(zhuǎn)速度應控制在16轉(zhuǎn)/秒內(nèi).19、(1);(2).【解析】(1)由橢圓離心率的性質(zhì)及一元二次方程的根可得,再由橢圓參數(shù)關(guān)系、已知三角形面積求橢圓參數(shù),即可得橢圓方程.(2)設直線,聯(lián)立橢圓方程并結(jié)合韋達定理求,進而可得,再根據(jù)求參數(shù)t,可得,結(jié)合橢圓的對稱性求,即可求結(jié)果.【小問1詳解】由的根為,所以橢圓的離心率,依題意,,解得,即橢圓的方程為;【小問2詳解】設直線,聯(lián)立,消去得,由韋達定理得:,所以,所以,所以橢圓的內(nèi)接平行四邊形面積.所以,解得或(舍去),所以,根據(jù)橢圓的對稱性知:,故平行四邊形的四個頂點的縱坐標的乘積為.20、(1);(2).【解析】(1)由題設條件,結(jié)合等差數(shù)列通項公式求基本量d,進而寫出通項公式.(2)由(1)得,應用累加法、錯位相減法及等比數(shù)列前n項和公式求的通項公式.【小問1詳解】令公差為d,由得:,解得.所以.【小問2詳解】,則,累加整理,得:,①,②②-①得:,又滿足上式,故.21、(1)(2)【解析】(1)設點坐標為,根據(jù)兩直線的斜率之積為得到方程,整理即可;(2)設,,,根據(jù)設、在橢圓上,則,再由,則,即可表示出直線、的方程,聯(lián)立兩直線方程,即可得到點的縱坐標,再根據(jù)弦長公式得到,令,則,最后利用基本不等式計算可得;【小問1詳解】解:設點坐標為,定點,,直線與直線的斜率之積為,,【小問2詳解】解:設,,,則,,所以又,所以,又即,則直線:,直線:,由,解得,即,所以令,則,所以因為,當且僅當即時取等號,所以的最大值為;22、(1);(2);(3).【解析】(1)設,連接、,證明出平面,推導出為的中點,然后以點為坐標原點,、、的方向分別為、、軸的正方向建立空間直角坐標系,利用空間向量法可求得二面角的余弦值;(2)利用空間向量法可求得與所成角的余弦值;(3)利用空

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論