![2025屆北京市航空航天大學附屬中學高二上數(shù)學期末質(zhì)量跟蹤監(jiān)視試題含解析_第1頁](http://file4.renrendoc.com/view14/M0B/21/21/wKhkGWclxS-AeecpAAGO09nR2d0360.jpg)
![2025屆北京市航空航天大學附屬中學高二上數(shù)學期末質(zhì)量跟蹤監(jiān)視試題含解析_第2頁](http://file4.renrendoc.com/view14/M0B/21/21/wKhkGWclxS-AeecpAAGO09nR2d03602.jpg)
![2025屆北京市航空航天大學附屬中學高二上數(shù)學期末質(zhì)量跟蹤監(jiān)視試題含解析_第3頁](http://file4.renrendoc.com/view14/M0B/21/21/wKhkGWclxS-AeecpAAGO09nR2d03603.jpg)
![2025屆北京市航空航天大學附屬中學高二上數(shù)學期末質(zhì)量跟蹤監(jiān)視試題含解析_第4頁](http://file4.renrendoc.com/view14/M0B/21/21/wKhkGWclxS-AeecpAAGO09nR2d03604.jpg)
![2025屆北京市航空航天大學附屬中學高二上數(shù)學期末質(zhì)量跟蹤監(jiān)視試題含解析_第5頁](http://file4.renrendoc.com/view14/M0B/21/21/wKhkGWclxS-AeecpAAGO09nR2d03605.jpg)
版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2025屆北京市航空航天大學附屬中學高二上數(shù)學期末質(zhì)量跟蹤監(jiān)視試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知是橢圓右焦點,點在橢圓上,線段與圓相切于點,且,則橢圓的離心率等于()A. B.C. D.2.已知向量,,若,則()A.1 B.C. D.23.如圖,雙曲線,是圓的一條直徑,若雙曲線過,兩點,且離心率為,則直線的方程為()A. B.C. D.4.圓關于直線對稱,則的最小值是()A. B.C. D.5.阿基米德(公元前287年~公元前212年)不僅是著名的物理學家,也是著名的數(shù)學家,他利用“逼近法”得到的橢圓的面積除以圓周率等于橢圓的長半軸長與短半軸長的乘積.若橢圓C的對稱軸為坐標軸,焦點在y軸上,且橢圓C的離心率為,面積為6π,則橢圓C的標準方程為()A. B.C. D.6.等差數(shù)列中,若,,則等于()A. B.C. D.7.已知為定義在R上的偶函數(shù)函數(shù),且在單調(diào)遞減.若關于的不等式在上恒成立,則實數(shù)m的取值范圍是()A. B.C. D.8.已知集合,則()A. B.C. D.9.已知f(x)是定義在R上的偶函數(shù),當時,,且f(-1)=0,則不等式的解集是()A. B.C. D.10.已知雙曲線的一條漸近線方程是,它的一個焦點在拋物線的準線上,則雙曲線的方程為()A. B.C. D.11.平面的法向量為,平面的法向量為,則下列命題正確的是()A.,平行 B.,垂直C.,重合 D.,相交不垂直12.下列直線中,傾斜角為銳角的是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知定義在實數(shù)集R上的函數(shù)f(x)滿足f(1)=3,且f(x)的導數(shù)在R上恒有<2(x∈R),則不等式f(x)<2x+1的解集為______.14.如果橢圓上一點P到焦點的距離等于6,則點P到另一個焦點的距離為____15.《九章算術》是人類科學史上應用數(shù)學的最早巔峰,書中有這樣一道題:“今有大夫、不更,簪裹、上造、公士,凡五人,共獵得五只鹿,欲以爵次分之,問各得幾何?”其譯文是“現(xiàn)在有從高到低依次為大夫,不更,簪裹,上造、公士的五個不同爵次的官員,共獵得五只鹿,要按爵次商低分(即根據(jù)爵次高低分配得到的獵物數(shù)依次成等差數(shù)列),向各得多少鹿?”已知上造分得只鹿,則不更所得的鹿數(shù)為_______只16.已知等差數(shù)列滿足,,,則公差______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的左、右兩個焦點,,離心率,短軸長為21求橢圓的方程;2如圖,點A為橢圓上一動點非長軸端點,的延長線與橢圓交于B點,AO的延長線與橢圓交于C點,求面積的最大值18.(12分)已知數(shù)列滿足,(1)設,求證數(shù)列為等差數(shù)列,并求數(shù)列的通項公式;(2)設,數(shù)列的前n項和為,是否存在正整數(shù)m,使得對任意的都成立?若存在,求出m的最小值;若不存在,試說明理由19.(12分)已知函數(shù)(1)當時,求的單調(diào)性;(2)若存在兩個極值點,試證明:20.(12分)如圖所示,在長方體ABCD-A1B1C1D1中,E,F(xiàn)分別是AB,A1C的中點,AD=AA1=2,AB=(1)求證:EF∥平面ADD1A1;(2)求平面EFD與平面DEC的夾角的余弦值;(3)在線段A1D1上是否存在點M,使得BM⊥平面EFD?若存在,求出的值;若不存在,請說明理由21.(12分)已知拋物線的準線方程是.(Ⅰ)求拋物線方程;(Ⅱ)設直線與拋物線相交于,兩點,為坐標原點,證明:.22.(10分)已知橢圓的中心在原點,焦點在軸上,離心率等于,它的一個頂點恰好是拋物線的焦點.(1)求橢圓的標準方程;(2)已知直線與橢圓交于、兩點,、是橢圓上位于直線兩側的動點,且直線的斜率為,求四邊形面積的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】結合橢圓的定義、勾股定理列方程,化簡求得,由此求得離心率.【詳解】圓的圓心為,半徑為.設左焦點為,連接,由于,所以,所以,所以,由于,所以,所以,,.故選:A2、B【解析】由向量平行,先求出的值,再由模長公式求解模長.【詳解】由,則,即則,所以則故選:B3、D【解析】由離心率求得,設出兩點坐標代入雙曲線方程相減求得直線斜率與的關系得結論【詳解】由題意,則,即,由圓方程知,設,,則,,又,兩式相減得,所以,直線方程為,即故選:D4、C【解析】先求出圓的圓心坐標,根據(jù)條件可得直線過圓心,從而可得,然后由,展開利用均值不等式可得答案.【詳解】由圓可得標準方程為,因為圓關于直線對稱,該直線經(jīng)過圓心,即,,,當且僅當,即時取等號,故選:C.5、D【解析】設橢圓的方程為,根據(jù)題意得到和,求得的值,即可求解.【詳解】由題意,橢圓的焦點在軸上,可設橢圓的方程為,因為橢圓C的離心率為,可得,又由,即,解得,又因為橢圓的面積為,可得,即,聯(lián)立方程組,解答,所以橢圓方程為.故選:D.6、C【解析】由等差數(shù)列下標和性質(zhì)可得.【詳解】因為,,所以.故選:C7、C【解析】由條件利用函數(shù)的奇偶性和單調(diào)性,可得對恒成立,轉化為且對恒成立.求得相應的最大值和最小值,從而求得的范圍【詳解】定義在上的函數(shù)為偶函數(shù),且在上遞減,在上單調(diào)遞增,若不等式在上恒成立,即在上恒成立在上恒成立,即在上恒成立,即且在上恒成立令,則,,,,在上遞增,上遞減,令,當時,,在上遞減,故可知,解得,所以實數(shù)m的取值范圍是故選:C8、C【解析】解一元二次不等式求集合A,再由集合的交運算求即可.【詳解】由題設,,∴.故選:C.9、D【解析】根據(jù)題意可知,當時,,即函數(shù)在上單調(diào)遞增,再結合函數(shù)f(x)的奇偶性得到函數(shù)的奇偶性,并根據(jù)奇偶性得到單調(diào)性,進而解得答案.【詳解】由題意,當時,,則函數(shù)在上單調(diào)遞增,而f(x)是定義在R上的偶函數(shù),容易判斷是定義在上的奇函數(shù),于是在上單調(diào)遞增,而f(-1)=0,則.于是當時,.故選:D.10、A【解析】根據(jù)雙曲線漸近線方程得a和b的關系,根據(jù)焦點在拋物線準線上得c的值,結合a、b、c關系即可求解.【詳解】∵雙曲線的一條漸近線方程是,∴,∵準線方程是,∴,∵,∴,,∴雙曲線標準方程為:.故選:A.11、B【解析】根據(jù)可判斷兩平面垂直.【詳解】因為,所以,所以,垂直.故選:B.12、A【解析】先由直線方程找到直線的斜率,再推導出直線的傾斜角即可.【詳解】選項A:直線的斜率,則直線傾斜角為,是銳角,判斷正確;選項B:直線的斜率,則直線傾斜角為鈍角,判斷錯誤;選項C:直線的斜率,則直線傾斜角為0,不是銳角,判斷錯誤;選項D:直線沒有斜率,傾斜角為直角,不是銳角,判斷錯誤.故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】構造函數(shù)g(x)=f(x)-2x-1,則原不等式可化為.利用導數(shù)判斷出g(x)在R上為減函數(shù),直接利用單調(diào)性解不等式即可【詳解】令g(x)=f(x)-2x-1,則g(1)=f(1)-2-1=0.所以原不等式可化為.因為,所以g(x)在R上為減函數(shù).由解得:x>1.故答案為:.14、14【解析】根據(jù)橢圓的定義及橢圓上一點P到焦點的距離等于6,可得的長.【詳解】解:根據(jù)橢圓的定義,又橢圓上一點P到焦點的距離等于6,,故,故答案:.【點睛】本題主要考查橢圓的定義及簡單性質(zhì),相對簡單.15、【解析】由題意分析,利用等差數(shù)列基本量代換列方程組即可求解.【詳解】記大夫,不更,簪裹,上造、公士得到的獵物數(shù)為等差數(shù)列,公差為d,由題意可得,即,解得,∴故答案為:16、2【解析】根據(jù)等差數(shù)列性質(zhì)求得,再根據(jù)題意列出相關的方程組,解得答案.【詳解】為等差數(shù)列,故由可得:,即,故,故,所以,解得,故答案為:2三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)橢圓的標準方程為(2)面積的最大值為【解析】(1)由題意得,再由,標準方程為;(2)①當?shù)男甭什淮嬖跁r,不妨取;②當?shù)男甭蚀嬖跁r,設的方程為,聯(lián)立方程組,又直線的距離點到直線的距離為面積的最大值為.試題解析:(1)由題意得,解得,∵,∴,,故橢圓的標準方程為(2)①當直線的斜率不存在時,不妨取,故;②當直線的斜率存在時,設直線的方程為,聯(lián)立方程組,化簡得,設點到直線的距離因為是線段的中點,所以點到直線的距離為,∴綜上,面積的最大值為.【點睛】本題主要考查橢圓的標準方程及其性質(zhì)、點到直線的距離、弦長公式和三角形面積公式等知識,涉及函數(shù)與方程思想、數(shù)形結合思想分類與整合、轉化與化歸等思想,并考查運算求解能力和邏輯推理能力,屬于較難題型.第一小題由題意由方程思想建立方程組求得標準方程為;(2)利用分類與整合思想分當?shù)男甭什淮嬖谂c存在兩種情況求解,在斜率存在時,由舍而不求法求得,再求得點到直線的距離為面積的最大值為.18、(1);(2)存在,3【解析】(1)結合遞推關系可證得bn+1-bn1,且b1=1,可證數(shù)列{bn}為等差數(shù)列,據(jù)此可得數(shù)列的通項公式;(2)結合通項公式裂項有求和有,再結合條件可得,即求【詳解】(1)證明:∵,又由a1=2,得b1=1,所以數(shù)列{bn}是首項為1,公差為1的等差數(shù)列,所以bn=1+(n-1)×1=n,由,得(2)解:∵,,所以,依題意,要使對于n∈N*恒成立,只需,解得m≥3或m≤-4又m>0,所以m≥3,所以正整數(shù)m的最小值為319、(1)答案見解析(2)證明見解析【解析】(1)依據(jù)導函數(shù)判定函數(shù)的單調(diào)性即可;(2)等價轉化和構造新函數(shù)在不等式證明中可以起到關鍵性作用.【小問1詳解】的定義域為,當時,令得,當時,;當時,所以在和上單調(diào)遞減,在上單調(diào)遞增.【小問2詳解】,存在兩個極值點,則有二正根,由,得由于的兩個極值點滿足,所以,不妨設,則由于,所以等價于設函數(shù),在單調(diào)遞減,又,從而所以,故.【點睛】導函數(shù)中常用的兩種常用的轉化方法:一是利用導數(shù)研究含參函數(shù)的單調(diào)性,?;癁椴坏仁胶愠闪栴}.注意分類討論與數(shù)形結合思想的應用;二是函數(shù)的零點、不等式證明常轉化為函數(shù)的單調(diào)性、極(最)值問題處理20、(1)證明見解析;(2);(3)不存在;理由見解析【解析】(1)連接AD1,A1D,交于點O,所以點O是A1D的中點,連接FO,根據(jù)判定定理證明四邊形AEFO是平行四邊形,進而得到線面平行;(2)建立坐標系,求出兩個面的法向量,求得兩個法向量的夾角的余弦值,進而得到二面角的夾角的余弦值;(3)假設在線段A1D1上存在一點M,使得BM⊥平面EFD,設出點M的坐標,由第二問得到平面EFD的一個法向量,判斷出和該法向量不平行,故不存在滿足題意的點M.【詳解】(1)證明:連接AD1,A1D,交于點O,所以點O是A1D的中點,連接FO因為F是A1C的中點,所以OF∥CD,OF=CD因AE∥CD,AE=CD,所以OF∥AE,OF=AE所以四邊形AEFO是平行四邊形所以EF∥AO因為EF?平面ADD1A1,AO?平面ADD1A1,所以EF∥平面ADD1A1(2)以點A為坐標原點,直線AB,AD,AA1分別為x軸,y軸,z軸建立空間直角坐標系,因為點E,F(xiàn)分別是AB,A1C的中點,AD=AA1=2,AB=,所以B(,0,0),D(0,2,0),E,F(xiàn)所以=,=(0,1,1)設平面EFD的法向量為,則即令y=1,則z=-1,x=2所以,由題知,平面DEC的一個法向量為m=(0,0,1),所以cos<,>==所以平面EFD與平面DEC的夾角的余弦值是(3)假設在線段A1D1上存在一點M,使得BM⊥平面EFD設點M的坐標為(0,t,2)(0≤t≤2),則=(,t,2)因為平面EFD的一個法向量為,而與不平行,所以在線段A1D1上不存在點M,使得BM⊥平面EFD21、(Ⅰ)(Ⅱ)詳見解析【解析】(Ⅰ)利用排趨性的準線方程求出p,即可求解拋物線的方程;(Ⅱ)直線y=k(x-2)(k≠0)與拋物線聯(lián)立,通過韋達定理求解直線的斜率關系即可證明OM⊥ON試題解析:(Ⅰ)解:因為拋物線的準線方程為,所以,解得,所以拋物線的方程為.(Ⅱ)證明:設,.將代入,消去整理得.所以.由,,兩式相乘,得,注意到,異號,所以.所以直線與直線的斜率之積為,即.考點:直線與拋物線的位置關系;拋物線的標準方程22、(1)(2)【解析】(1)根據(jù)離心率的定義以
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024-2025學年高中歷史 第一單元 古代中國經(jīng)濟的基本結構與特點 第1課 發(fā)達的古代農(nóng)業(yè)新課說課稿1 新人教版必修2
- Unit 4 There are seven days in a week. Lesson 19(說課稿)-2023-2024學年人教精通版英語四年級下冊
- Unit 1 Teenage Life Listening and Speaking 說課稿 -2024-2025學年高中英語人教版2019 必修第一冊001
- 2024年春七年級語文下冊 第3單元 10 老王說課稿 新人教版
- Unit 5 Working the Land Reading and thinking 說課稿-2024-2025學年高二英語人教版(2019)選擇性必修第一冊
- 農(nóng)田整改合同范本
- 作品出版合同范例
- 鄭州水泥化糞池施工方案
- 關于活動執(zhí)行合同范本
- 加盟區(qū)域保護合同范例
- 測繪工程產(chǎn)品價格表匯編
- 拘留所教育課件02
- 語言和語言學課件
- 《工作場所安全使用化學品規(guī)定》
- 裝飾圖案設計-裝飾圖案的形式課件
- 2022年菏澤醫(yī)學??茖W校單招綜合素質(zhì)考試筆試試題及答案解析
- 護理學基礎教案導尿術catheterization
- ICU護理工作流程
- 廣東版高中信息技術教案(全套)
- 市政工程設施養(yǎng)護維修估算指標
- 分布式光伏屋頂調(diào)查表
評論
0/150
提交評論