2025屆西藏林芝一中數(shù)學(xué)高二上期末檢測模擬試題含解析_第1頁
2025屆西藏林芝一中數(shù)學(xué)高二上期末檢測模擬試題含解析_第2頁
2025屆西藏林芝一中數(shù)學(xué)高二上期末檢測模擬試題含解析_第3頁
2025屆西藏林芝一中數(shù)學(xué)高二上期末檢測模擬試題含解析_第4頁
2025屆西藏林芝一中數(shù)學(xué)高二上期末檢測模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2025屆西藏林芝一中數(shù)學(xué)高二上期末檢測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.過點(-2,1)的直線中,被圓x2+y2-2x+4y=0截得的弦最長的直線的方程是()A.x+y+1=0 B.x+y-1=0C.x-y+1=0 D.x-y-1=02.如圖,橢圓的右焦點為,過與軸垂直的直線交橢圓于第一象限的點,點關(guān)于坐標(biāo)原點的對稱點為,且,,則橢圓方程為()A. B.C. D.3.設(shè)函數(shù)在R上可導(dǎo),則()A. B.C. D.以上都不對4.設(shè)是雙曲線的一個焦點,,是的兩個頂點,上存在一點,使得與以為直徑的圓相切于,且是線段的中點,則的漸近線方程為A. B.C. D.5.設(shè),直線與直線平行,則()A. B.C. D.6.已知拋物線,則拋物線的焦點到其準(zhǔn)線的距離為()A. B.C. D.7.若直線的斜率,則直線的傾斜角的取值范圍是()A. B.C. D.8.設(shè)A=37+·35+·33+·3,B=·36+·34+·32+1,則A-B的值為()A.128 B.129C.47 D.09.將數(shù)列中的各項依次按第一個括號1個數(shù),第二個括號2個數(shù),第三個括號4個數(shù),第四個括號8個數(shù),第五個括號16個數(shù),…,進(jìn)行排列,,,…,則以下結(jié)論中正確的是()A.第10個括號內(nèi)的第一個數(shù)為1025 B.2021在第11個括號內(nèi)C.前10個括號內(nèi)一共有1025個數(shù) D.第10個括號內(nèi)的數(shù)字之和10.等差數(shù)列中,,則前項的和()A. B.C. D.11.如圖,在平行六面體中,AC與BD的交點為M.設(shè),則下列向量中與相等的向量是()A. B.C. D.12.設(shè)是等差數(shù)列,是其公差,是其前n項的和.若,,則下列結(jié)論不正確的是()A. B.C. D.與均為的最大值二、填空題:本題共4小題,每小題5分,共20分。13.?dāng)?shù)學(xué)中,多數(shù)方程不存在求根公式.因此求精確根非常困難,甚至不可能.從而尋找方程的近似根就顯得特別重要.例如牛頓迭代法就是求方程近似根的重要方法之一,其原理如下:假設(shè)是方程的根,選取作為的初始近似值,在點處作曲線的切線,則與軸交點的橫坐標(biāo)稱為的一次近似值,在點處作曲線的切線.則與軸交點的橫坐標(biāo)稱為的二次近似值.重復(fù)上述過程,用逐步逼近.若給定方程,取,則__________.14.若向量滿足,則_________.15.若點P為雙曲線上任意一點,則P滿足性質(zhì):點P到右焦點的距離與它到直線的距離之比為離心率e,若C的右支上存在點Q,使得Q到左焦點的距離等于它到直線的距離的6倍,則雙曲線的離心率的取值范圍是______16.已知某地區(qū)內(nèi)貓的壽命超過10歲的概率為0.9,超過12歲的概率為0.6,那么該地區(qū)內(nèi),一只壽命超過10歲的貓的壽命超過12歲的概率為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),.(1)當(dāng)時,求不等式的解集;(2)若在上恒成立,求取值范圍.18.(12分)已知函數(shù)f(x)=x﹣lnx(1)求曲線y=f(x)在點(1,f(1))處的切線方程;(2)求函數(shù)f(x)的極值.19.(12分)已知函數(shù)(1)討論的單調(diào)區(qū)間;(2)求在上的最大值.20.(12分)某電腦公司為調(diào)查旗下A品牌電腦的使用情況,隨機(jī)抽取200名用戶,根據(jù)不同年齡段(單位:歲)統(tǒng)計如下表:分組頻率/組距0.010.040.070.060.02(1)根據(jù)上表,試估計樣本的中位數(shù)、平均數(shù)(同一組數(shù)據(jù)以該組區(qū)間的中點值為代表,結(jié)果精確到0.1);(2)按照年齡段從內(nèi)的用戶中進(jìn)行分層抽樣,抽取6人,再從中隨機(jī)選取2人贈送小禮品,求恰有1人在內(nèi)的概率21.(12分)自2021年秋季起,江西省普通高中起始年級全面實施新課程改革,為了迎接新高考,某校舉行物理和化學(xué)等選科考試,其中600名學(xué)生化學(xué)成績(滿分100分)的頻率分布直方圖如圖所示,其中成績分組區(qū)間是:第一組,第二組,第三組,第四組,第五組.已知圖中前三個組的頻率依次構(gòu)成等差數(shù)列,第一組和第五組的頻率相同(1)求a,b的值;(2)估算高分(大于等于80分)人數(shù);(3)估計這600名學(xué)生化學(xué)成績的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表)和中位數(shù)(中位數(shù)精確到0.1)22.(10分)設(shè)數(shù)列的前項和為,且.(1)求數(shù)列的通項公式;(2)記,求數(shù)列的前項和為.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】當(dāng)直線被圓截得的最弦長最大時,直線要經(jīng)過圓心,即圓心在直線上,然后根據(jù)兩點式方程可得所求【詳解】由題意得,圓的方程為,∴圓心坐標(biāo)為∵直線被圓截得的弦長最大,∴直線過圓心,又直線過點(-2,1),所以所求直線的方程為,即故選:A2、C【解析】連結(jié),設(shè),則,,由可求出,進(jìn)而可求出,得出橢圓方程.【詳解】由題意設(shè)橢圓的方程:,設(shè)左焦點為,連結(jié),由橢圓的對稱性易得四邊形為平行四邊形,由得,又,設(shè),則,,又,解得,又由,,解得,,,則橢圓的方程為.故選:C.【點睛】關(guān)鍵點睛:本題考查了橢圓的標(biāo)準(zhǔn)方程求解及橢圓的簡單幾何性質(zhì),在求解橢圓標(biāo)準(zhǔn)方程時,關(guān)鍵是求解基本量,,.3、B【解析】根據(jù)極限的定義計算【詳解】由題意故選:B4、C【解析】根據(jù)圖形的幾何特性轉(zhuǎn)化成雙曲線的之間的關(guān)系求解.【詳解】設(shè)另一焦點為,連接,由于是圓的切線,則,且,又是的中點,則是的中位線,則,且,由雙曲線定義可知,由勾股定理知,,,即,漸近線方程為,所以漸近線方程為故選C.【點睛】本題考查雙曲線的簡單的幾何性質(zhì),屬于中檔題.5、C【解析】根據(jù)直線平行求解即可.【詳解】因為直線與直線平行,所以,即,經(jīng)檢驗,滿足題意.故選:C6、D【解析】將拋物線方程化為標(biāo)準(zhǔn)方程,由此確定的值即可.【詳解】由可得拋物線標(biāo)準(zhǔn)方程為:,,拋物線的焦點到其準(zhǔn)線的距離為.故選:D.7、B【解析】根據(jù)斜率的取值范圍,結(jié)合來求得傾斜角的取值范圍.【詳解】設(shè)傾斜角為,因為,且,所以.故選:B8、A【解析】先化簡A-B,發(fā)現(xiàn)其結(jié)果為二項式展開式,然后計算即可【詳解】A-B=37-·36+·35-·34+·33-·32+·3-1=故選A.【點睛】本題主要考查了二項式定理的運(yùn)用,關(guān)鍵是通過化簡能夠發(fā)現(xiàn)其結(jié)果在形式上滿足二項式展開式,然后計算出結(jié)果,屬于基礎(chǔ)題9、D【解析】由第10個括號內(nèi)的第一個數(shù)為數(shù)列的第512項,最后一個數(shù)為數(shù)列的第1023項,進(jìn)行分析求解即可【詳解】由題意可得,第個括號內(nèi)有個數(shù),對于A,由題意得前9個括號內(nèi)共有個數(shù),所以第10個括號內(nèi)的第一個數(shù)為數(shù)列的第512項,所以第10個括號內(nèi)的第一個數(shù)為,所以A錯誤,對于C,前10個括號內(nèi)共有個數(shù),所以C錯誤,對于B,令,得,所以2021為數(shù)列的第1011項,由AC選項的分析可得2021在第10個括號內(nèi),所以B錯誤,對于D,因為第10個括號內(nèi)的第一個數(shù)為,最后一個數(shù)為,所以第10個括號內(nèi)的數(shù)字之和為,所以D正確,故選:D【點睛】關(guān)鍵點點睛:此題考查數(shù)列的綜合應(yīng)用,解題的關(guān)鍵是由題意確定出第10個括號內(nèi)第一個數(shù)和最后一個數(shù)分別對應(yīng)數(shù)列的哪一項,考查分析問題的能力,屬于較難題10、D【解析】利用等差數(shù)列下標(biāo)和性質(zhì)可求得,根據(jù)等差數(shù)列求和公式可求得結(jié)果.【詳解】數(shù)列為等差數(shù)列,,解得:;.故選:D.11、B【解析】根據(jù)代入計算化簡即可.【詳解】故選:B.12、C【解析】由已知條件可以得出,,,即可得公差,再利用等差數(shù)列的性質(zhì)以及前n項的和的性質(zhì)可判斷每個選項的正誤,進(jìn)而可得正確選項.【詳解】由可得,由可得,故選項B正確;由可得,因為公差,故選項A正確,,所以,故選項C不正確;由于是等差數(shù)列,公差,,,,所以都是的最大值,故選項D正確;所以選項C不正確,故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)牛頓迭代法的知識求得.【詳解】構(gòu)造函數(shù),,切線的方程為,與軸交點的橫坐標(biāo)為.,所以切線的方程為,與軸交點的橫坐標(biāo)為.故答案為:14、【解析】根據(jù)題目條件,利用模的平方可以得出答案【詳解】∵∴∴.故答案為:.15、【解析】若Q到的距離為有,由題設(shè)有,結(jié)合雙曲線離心率的性質(zhì),即可求離心率的范圍.【詳解】由題意,,即,整理有,所以或,若Q到的距離為,則Q到左、右焦點的距離分別為、,又Q在C的右支上,所以,則,又,綜上,雙曲線的離心率的取值范圍是.故答案為:【點睛】關(guān)鍵點點睛:若Q到的距離為,根據(jù)給定性質(zhì)有Q到左、右焦點的距離分別為、,再由雙曲線性質(zhì)及已知條件列不等式組求離心率范圍.16、【解析】根據(jù)條件概率公式求解即可.【詳解】設(shè)事件A:貓的壽命超過10歲,事件B:貓的壽命超過12歲.依題意有,,則一只壽命超過10歲貓的壽命超過12歲的概率.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)或;(2).【解析】(1)解不含參數(shù)的一元二次不等式即可求出結(jié)果;(2)二次函數(shù)的恒成立問題需要對二次項系數(shù)是否為0進(jìn)行分類討論,即可求出結(jié)果.【詳解】(1)當(dāng)時,,即,解得或,所以,解集為或.(2)因為在上恒成立,①當(dāng)時,恒成立;②當(dāng)時,,解得,綜上,的取值范圍為.18、(1)(2)極小值為,無極大值【解析】(1)求出函數(shù)的導(dǎo)函數(shù),再根據(jù)導(dǎo)數(shù)的幾何意義即可求出切線方程;(2)根據(jù)導(dǎo)數(shù)的符號求出函數(shù)的單調(diào)區(qū)間,再根據(jù)極值的定義即可得出答案.【小問1詳解】解:,則,,即切線的斜率為0,所以曲線y=f(x)在點(1,f(1))處曲線的切線方程為;小問2詳解】當(dāng)時,,當(dāng)時,,所以函數(shù)在上遞減,在上遞增,函數(shù)的極小值為,無極大值.19、(1)①,在上單減;②,在上單增,單減;(2).【解析】(1),根據(jù)函數(shù)定義域,分,,討論求解;(2)根據(jù)(1)知:分,,,討論求解.【小問1詳解】解:(1)定義域,①時,成立,所以在上遞減;②時,當(dāng)時,,當(dāng)時,,所以在上單增,單減;【小問2詳解】由(1)知:時,在單減,所以;時,在單減,所以;時,在上單增,上遞減,所以;時,在單增,所以;綜上:.20、(1)中位數(shù)為38.6,平均數(shù)為38.5歲;(2).【解析】(1)由中位數(shù)分?jǐn)?shù)據(jù)兩邊的頻率相等,列方程求中位數(shù);根據(jù)各組數(shù)據(jù)的中點數(shù)乘以頻率即可得平均數(shù);(2)由分層抽樣確定從中各抽4人、2人,列舉出隨機(jī)選取2人的所有組合,得到恰有1人在的組合數(shù),即可求概率.【詳解】(1)中位數(shù)在中,設(shè)為,則,解得.平均數(shù)為歲.所以樣本的中位數(shù)約為38.6,平均數(shù)為38.5歲.(2)根據(jù)分層抽樣法,其中位于中的有4人,記為,,,;位于中的有2人,記為,.從6人中抽取2人,有,,,,,,,,,,,,,,,共15種情況,恰有1人在內(nèi)的有,,,,,,,,共8種情況,∴恰有1人在內(nèi)的概率為.【點睛】關(guān)鍵點點睛:由中位數(shù)的性質(zhì)以及平均數(shù)與各組數(shù)據(jù)中點值、頻率的關(guān)系求中位數(shù)、平均數(shù);根據(jù)分層抽樣確定各組選取人數(shù),利用列舉法求概率.21、(1)(2)90(3

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論